Overview

Bit Vectors are one of the most basic data structures in computer science. Operations on bit vectors include rank and select queries.

- \(\text{rank}_\alpha(i) \) returns the number of 1-bits up to position \(i \) and
- \(\text{select}_\alpha(i) \) returns the position at which the \(i \)-th 1-bit is stored.

One of the many applications of bit vectors with rank and select support are wavelet trees. A wavelet tree is a binary tree data structure that can be used to answer rank and select queries on texts of size \(n \) over an alphabet of size \(\sigma \) in \(O(\log \sigma) \) time. Here, \(\text{rank}_\alpha(i) \) queries ask for the number of occurrences of the symbol \(\alpha \) before the position \(i \) and \(\text{select}_\alpha(i) \) queries return the text position of the \(i \)-th occurrence of the symbol \(\alpha \).

Let \(T \) be a text of length \(n \) over an alphabet of size \(\sigma \). The wavelet tree requires \(n \lceil \log \sigma \rceil (1 + o(1)) \) bits, see Fig. 1. In shared and distributed memory, there exist fast WT construction algorithms [1]. However, there seem to be efficient implementations of neither rank and select data structures, nor wavelet trees on GPUs. A starting point for the bit vector can be the pasta::bit_vector [2]. The Nvidia nvbio library provides an implementation but does not use state of the art algorithms.

Objective

The main objective of this Master’s thesis is to design, develop, and benchmark a parallel construction algorithm for bit vector rank and select data structures on GPUs and use the bit vectors to design, develop, and benchmark a state of the art parallel construction algorithm for wavelet tree construction on GPUs. Contributing both algorithms back to the nvbio library is an optional goal.

Requirements

- Excellent C++ programming and CUDA skills
- Interest in string algorithms and compact data structures

References

Contact

- Dr. Florian Kurpicz (kurpicz@kit.edu)
- Hans-Peter Lehmann (hans-peter.lehmann@kit.edu)

Figure 1: The wavelet tree of \(T = [0, 1, 3, 7, 1, 5, 4, 2, 6, 3] \). The light teal (\(\bullet \)) arrays contain the characters represented at the corresponding position in the bit vector and are not a part of the wavelet tree. Note that all bit vectors on the same depth can be concatenated to a single bit vector, while retaining the same functionality. \(\Sigma_\alpha \) denotes the characters that are represented by the bit vector for \(\alpha \in \{ \epsilon, 0, 1, 00, 01, 10, 11 \} \). All this auxiliary information is not stored explicitly.