
Text Indexing

Lecture 08: LZ and BWT Compressed Indeces

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit a82b315 compiled at 2021-12-13-09:49

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

https://pingo.scc.kit.edu/669011

2/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

PINGO

https://pingo.scc.kit.edu/669011
https://pingo.scc.kit.edu/669011

based on backwards-search

used to answer rank -queries on BWT

FM-Index
build wavelet tree directly on BWT

wavelet tree can be H0 compressed

blind to repetitions

r -Index
many arrays with r entries

build wavelet tree on one of these arrays

size in numbers of BWT runs r

Function BackwardsSearch(P[1..n],C, rank):
1 s = 1, e = n
2 for i = m, . . . , 1 do
3 s = C[P[i]] + rankP[i](s − 1) + 1
4 e = C[P[i]] + rankP[i](e)
5 if s > e then
6 return ∅
7 return [s, e]

3/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Recap: FM-Index and r -Index

based on backwards-search

used to answer rank -queries on BWT

FM-Index
build wavelet tree directly on BWT

wavelet tree can be H0 compressed

blind to repetitions

r -Index
many arrays with r entries

build wavelet tree on one of these arrays

size in numbers of BWT runs r

Function BackwardsSearch(P[1..n],C, rank):
1 s = 1, e = n
2 for i = m, . . . , 1 do
3 s = C[P[i]] + rankP[i](s − 1) + 1
4 e = C[P[i]] + rankP[i](e)
5 if s > e then
6 return ∅
7 return [s, e]

3/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Recap: FM-Index and r -Index

based on backwards-search

used to answer rank -queries on BWT

FM-Index
build wavelet tree directly on BWT

wavelet tree can be H0 compressed

blind to repetitions

r -Index
many arrays with r entries

build wavelet tree on one of these arrays

size in numbers of BWT runs r

Function BackwardsSearch(P[1..n],C, rank):
1 s = 1, e = n
2 for i = m, . . . , 1 do
3 s = C[P[i]] + rankP[i](s − 1) + 1
4 e = C[P[i]] + rankP[i](e)
5 if s > e then
6 return ∅
7 return [s, e]

3/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Recap: FM-Index and r -Index

Statistical Coding
based on frequencies of
characters

results in size |T | · Hk (T)
� k -th order empirical
entropy

good if frequencies are
skewed

blind to repetitions
|T . . .T︸ ︷︷ ︸

`

| · Hk (T . . .T︸ ︷︷ ︸
`

) ≈

`|T | · Hk (T)

LZ-Compression
references to previous
occurrences

each LZ factor can be
encoded in O(1) space

good for repetitions

index in this lecture

BWT -Compression
used in powerful index

theoretical insight in this
lecture

4/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Different Types of Compression

Statistical Coding
based on frequencies of
characters

results in size |T | · Hk (T)
� k -th order empirical
entropy

good if frequencies are
skewed

blind to repetitions
|T . . .T︸ ︷︷ ︸

`

| · Hk (T . . .T︸ ︷︷ ︸
`

) ≈

`|T | · Hk (T)

LZ-Compression
references to previous
occurrences

each LZ factor can be
encoded in O(1) space

good for repetitions

index in this lecture

BWT -Compression
used in powerful index

theoretical insight in this
lecture

4/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Different Types of Compression

Statistical Coding
based on frequencies of
characters

results in size |T | · Hk (T)
� k -th order empirical
entropy

good if frequencies are
skewed

blind to repetitions
|T . . .T︸ ︷︷ ︸

`

| · Hk (T . . .T︸ ︷︷ ︸
`

) ≈

`|T | · Hk (T)

LZ-Compression
references to previous
occurrences

each LZ factor can be
encoded in O(1) space

good for repetitions

index in this lecture

BWT -Compression
used in powerful index

theoretical insight in this
lecture

4/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Different Types of Compression

Definition: LZ77 Factorization [ZL77]
Given a text T of length n over an alphabet Σ, the
LZ77 factorization is

a set of z factors f1, f2, . . . , fz ∈ Σ+, such that

T = f1f2 . . . fz and for all i ∈ [1, z] fi is

single character not occurring in f1 . . . fi−1 or

longest substring occurring ≥ 2 times in f1 . . . fi

T = abababbbbaba$

f1 = a

f2 = b

f3 = abab

f4 = bbb

f5 = aba

f6 = $

Now
LZ-compressed replacement for wavelet trees

rank and access queries � select also
supported

LZ-compression better than Hk -compression

5/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

LZ-Compressed Index

Definition: LZ77 Factorization [ZL77]
Given a text T of length n over an alphabet Σ, the
LZ77 factorization is

a set of z factors f1, f2, . . . , fz ∈ Σ+, such that

T = f1f2 . . . fz and for all i ∈ [1, z] fi is

single character not occurring in f1 . . . fi−1 or

longest substring occurring ≥ 2 times in f1 . . . fi

T = abababbbbaba$

f1 = a

f2 = b

f3 = abab

f4 = bbb

f5 = aba

f6 = $

Now
LZ-compressed replacement for wavelet trees

rank and access queries � select also
supported

LZ-compression better than Hk -compression

5/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

LZ-Compressed Index

Definition: Block Tree (1/4)
Given a text T of length n over an alphabet of size σ

τ, s ∈ N greater 1

assume that n = s · τ h for some h ∈ N
� append $s until n has this form

A block tree is a

perfectly balanced tree with height h

that may have leaves at higher levels

such that

the root has s children,

each other inner node has τ children

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NNBO BOTW NNBO BIOO TBSH TFNE BOBO TWNE BOBO TWNE BOBI OOTB SHTF NSBO BOTW

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NN BO BO TW NN BO BI OO TB SH TF NE BO BO TW NE BO BO TW NE BO BI SH TF NS BO BO TW

NN BO BO TW NN BO BI OO TB SH TF NE BO TW NE TF NS BO

6/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Block Trees [Bel+21] (1/4)

Definition: Block Tree (2/4)
In a block tree, leaves at

the last level store characters or substrings of T

at higher levels store special leftward pointer

Each node u

represents a block Bu

which is a substring of T identified by a position

The root represents T and its children consecutive
blocks of T of size n/s

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NNBO BOTW NNBO BIOO TBSH TFNE BOBO TWNE BOBO TWNE BOBI OOTB SHTF NSBO BOTW

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NN BO BO TW NN BO BI OO TB SH TF NE BO BO TW NE BO BO TW NE BO BI SH TF NS BO BO TW

NN BO BO TW NN BO BI OO TB SH TF NE BO TW NE TF NS BO

7/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Block Trees (2/4)

Definition: Block Tree (3/4)
Let `u be the level (depth) of node u

the level of the root is 0

Let B1,B2, . . . be the blocks represented at level `u

from left to right

for any i , Bi and Bi+1 are consecutive in T

if BiBi+1 are the leftmost occurrence in T , the
nodes representing the blocks are marked

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NNBO BOTW NNBO BIOO TBSH TFNE BOBO TWNE BOBO TWNE BOBI OOTB SHTF NSBO BOTW

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NN BO BO TW NN BO BI OO TB SH TF NE BO BO TW NE BO BO TW NE BO BI SH TF NS BO BO TW

NN BO BO TW NN BO BI OO TB SH TF NE BO TW NE TF NS BO

8/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Block Trees (3/4)

Definition: Block Tree (4/4)
If node u is marked, then

it is an internal node

with τ children

otherwise, if node u is not marked, then

u is a leaf storing
pointers to nodes vi , vi+1 at the same level

that represent blocks Bi and Bi+1

covering the leftmost occurrence of Bu

offset to the occurrence of Bu in BiBi+1

leaves on last level store text explicitly

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NNBO BOTW NNBO BIOO TBSH TFNE BOBO TWNE BOBO TWNE BOBI OOTB SHTF NSBO BOTW

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NN BO BO TW NN BO BI OO TB SH TF NE BO BO TW NE BO BO TW NE BO BI SH TF NS BO BO TW

NN BO BO TW NN BO BI OO TB SH TF NE BO TW NE TF NS BO

|Bu| = n/(sτ `u−1)

if |Bu| is small enough, store text explicitly
� |Bu ∈ Θ(lgσ n)|

9/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Block Trees (4/4)

Lemma: Number of Blocks per Level
The number of blocks in any level > 0 in the block
tree is at most 3τz

O(τz) blocks per level

unmarked block requires O(lg n) bits of space

marked block requires O(τ lg n) bits of space
� charged to child
last level has O(τz) blocks with plain text

O(lgσ n) symbols of dlg ne bits
requiring O(lg n) bits per block

h = lgτ
n lg σ
s lg n and O(s) pointers to top level

rounding up length adds ≤ Ohτ blocks per level

Proof (Sketch)
Let ` > 0 be a level in the block tree and

C = Bi−1BiBi+1 a concatenation of three
consecutive blocks at level `− 1

not containing the end of an LZ factor

thus a leftwards occurrence in T

Bi−1 and Bi+1 can only be marked if Bi is marked

Bi is marked if it contains end of LZ factor

there are only z LZ factors

Each marked block results in τ children

10/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Block Trees are LZ Compressed (1/2)

Lemma: Number of Blocks per Level
The number of blocks in any level > 0 in the block
tree is at most 3τz

O(τz) blocks per level

unmarked block requires O(lg n) bits of space

marked block requires O(τ lg n) bits of space
� charged to child
last level has O(τz) blocks with plain text

O(lgσ n) symbols of dlg ne bits
requiring O(lg n) bits per block

h = lgτ
n lg σ
s lg n and O(s) pointers to top level

rounding up length adds ≤ Ohτ blocks per level

Proof (Sketch)
Let ` > 0 be a level in the block tree and

C = Bi−1BiBi+1 a concatenation of three
consecutive blocks at level `− 1

not containing the end of an LZ factor

thus a leftwards occurrence in T

Bi−1 and Bi+1 can only be marked if Bi is marked

Bi is marked if it contains end of LZ factor

there are only z LZ factors

Each marked block results in τ children

10/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Block Trees are LZ Compressed (1/2)

Lemma: Number of Blocks per Level
The number of blocks in any level > 0 in the block
tree is at most 3τz

O(τz) blocks per level

unmarked block requires O(lg n) bits of space

marked block requires O(τ lg n) bits of space
� charged to child
last level has O(τz) blocks with plain text

O(lgσ n) symbols of dlg ne bits
requiring O(lg n) bits per block

h = lgτ
n lg σ
s lg n and O(s) pointers to top level

rounding up length adds ≤ Ohτ blocks per level

Proof (Sketch)
Let ` > 0 be a level in the block tree and

C = Bi−1BiBi+1 a concatenation of three
consecutive blocks at level `− 1

not containing the end of an LZ factor

thus a leftwards occurrence in T

Bi−1 and Bi+1 can only be marked if Bi is marked

Bi is marked if it contains end of LZ factor

there are only z LZ factors

Each marked block results in τ children

10/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Block Trees are LZ Compressed (1/2)

Lemma: Number of Blocks per Level
The number of blocks in any level > 0 in the block
tree is at most 3τz

O(τz) blocks per level

unmarked block requires O(lg n) bits of space

marked block requires O(τ lg n) bits of space
� charged to child
last level has O(τz) blocks with plain text

O(lgσ n) symbols of dlg ne bits
requiring O(lg n) bits per block

h = lgτ
n lg σ
s lg n and O(s) pointers to top level

rounding up length adds ≤ Ohτ blocks per level

Proof (Sketch)
Let ` > 0 be a level in the block tree and

C = Bi−1BiBi+1 a concatenation of three
consecutive blocks at level `− 1

not containing the end of an LZ factor

thus a leftwards occurrence in T

Bi−1 and Bi+1 can only be marked if Bi is marked

Bi is marked if it contains end of LZ factor

there are only z LZ factors

Each marked block results in τ children

10/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Block Trees are LZ Compressed (1/2)

Lemma: Number of Blocks per Level
The number of blocks in any level > 0 in the block
tree is at most 3τz

O(τz) blocks per level

unmarked block requires O(lg n) bits of space

marked block requires O(τ lg n) bits of space
� charged to child
last level has O(τz) blocks with plain text

O(lgσ n) symbols of dlg ne bits
requiring O(lg n) bits per block

h = lgτ
n lg σ
s lg n and O(s) pointers to top level

rounding up length adds ≤ Ohτ blocks per level

Proof (Sketch)
Let ` > 0 be a level in the block tree and

C = Bi−1BiBi+1 a concatenation of three
consecutive blocks at level `− 1

not containing the end of an LZ factor

thus a leftwards occurrence in T

Bi−1 and Bi+1 can only be marked if Bi is marked

Bi is marked if it contains end of LZ factor

there are only z LZ factors

Each marked block results in τ children

10/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Block Trees are LZ Compressed (1/2)

Lemma: Number of Blocks per Level
The number of blocks in any level > 0 in the block
tree is at most 3τz

O(τz) blocks per level

unmarked block requires O(lg n) bits of space

marked block requires O(τ lg n) bits of space
� charged to child
last level has O(τz) blocks with plain text

O(lgσ n) symbols of dlg ne bits
requiring O(lg n) bits per block

h = lgτ
n lg σ
s lg n and O(s) pointers to top level

rounding up length adds ≤ Ohτ blocks per level

Proof (Sketch)
Let ` > 0 be a level in the block tree and

C = Bi−1BiBi+1 a concatenation of three
consecutive blocks at level `− 1

not containing the end of an LZ factor

thus a leftwards occurrence in T

Bi−1 and Bi+1 can only be marked if Bi is marked

Bi is marked if it contains end of LZ factor

there are only z LZ factors

Each marked block results in τ children

10/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Block Trees are LZ Compressed (1/2)

Lemma: Number of Blocks per Level
The number of blocks in any level > 0 in the block
tree is at most 3τz

O(τz) blocks per level

unmarked block requires O(lg n) bits of space

marked block requires O(τ lg n) bits of space
� charged to child

last level has O(τz) blocks with plain text
O(lgσ n) symbols of dlg ne bits
requiring O(lg n) bits per block

h = lgτ
n lg σ
s lg n and O(s) pointers to top level

rounding up length adds ≤ Ohτ blocks per level

Proof (Sketch)
Let ` > 0 be a level in the block tree and

C = Bi−1BiBi+1 a concatenation of three
consecutive blocks at level `− 1

not containing the end of an LZ factor

thus a leftwards occurrence in T

Bi−1 and Bi+1 can only be marked if Bi is marked

Bi is marked if it contains end of LZ factor

there are only z LZ factors

Each marked block results in τ children

10/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Block Trees are LZ Compressed (1/2)

Lemma: Number of Blocks per Level
The number of blocks in any level > 0 in the block
tree is at most 3τz

O(τz) blocks per level

unmarked block requires O(lg n) bits of space

marked block requires O(τ lg n) bits of space
� charged to child
last level has O(τz) blocks with plain text

O(lgσ n) symbols of dlg ne bits
requiring O(lg n) bits per block

h = lgτ
n lg σ
s lg n and O(s) pointers to top level

rounding up length adds ≤ Ohτ blocks per level

Proof (Sketch)
Let ` > 0 be a level in the block tree and

C = Bi−1BiBi+1 a concatenation of three
consecutive blocks at level `− 1

not containing the end of an LZ factor

thus a leftwards occurrence in T

Bi−1 and Bi+1 can only be marked if Bi is marked

Bi is marked if it contains end of LZ factor

there are only z LZ factors

Each marked block results in τ children

10/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Block Trees are LZ Compressed (1/2)

Lemma: Number of Blocks per Level
The number of blocks in any level > 0 in the block
tree is at most 3τz

O(τz) blocks per level

unmarked block requires O(lg n) bits of space

marked block requires O(τ lg n) bits of space
� charged to child
last level has O(τz) blocks with plain text

O(lgσ n) symbols of dlg ne bits
requiring O(lg n) bits per block

h = lgτ
n lg σ
s lg n and O(s) pointers to top level

rounding up length adds ≤ Ohτ blocks per level

Proof (Sketch)
Let ` > 0 be a level in the block tree and

C = Bi−1BiBi+1 a concatenation of three
consecutive blocks at level `− 1

not containing the end of an LZ factor

thus a leftwards occurrence in T

Bi−1 and Bi+1 can only be marked if Bi is marked

Bi is marked if it contains end of LZ factor

there are only z LZ factors

Each marked block results in τ children

10/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Block Trees are LZ Compressed (1/2)

Lemma: Number of Blocks per Level
The number of blocks in any level > 0 in the block
tree is at most 3τz

O(τz) blocks per level

unmarked block requires O(lg n) bits of space

marked block requires O(τ lg n) bits of space
� charged to child
last level has O(τz) blocks with plain text

O(lgσ n) symbols of dlg ne bits
requiring O(lg n) bits per block

h = lgτ
n lg σ
s lg n and O(s) pointers to top level

rounding up length adds ≤ Ohτ blocks per level

Proof (Sketch)
Let ` > 0 be a level in the block tree and

C = Bi−1BiBi+1 a concatenation of three
consecutive blocks at level `− 1

not containing the end of an LZ factor

thus a leftwards occurrence in T

Bi−1 and Bi+1 can only be marked if Bi is marked

Bi is marked if it contains end of LZ factor

there are only z LZ factors

Each marked block results in τ children

10/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Block Trees are LZ Compressed (1/2)

Lemma: Space Requirements of Block Trees
Given a text T of length n over an alphabet of size σ and integers s, τ > 1, a block tree of T has height
h = lgτ

n lg σ
s lg n . The block tree requires

O((s + zτ lgτ
n lg σ

s lg n
) lg n) bits of space,

where z is the number of LZ77 factors of T

s = z results in a tree of height O(lgτ
n lg σ
z lg n)

space requirements O(zτ lgτ
n lg σ
z lg n) bits

however z not known

11/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Block Trees are LZ Compressed (2/2)

Lemma: Space Requirements of Block Trees
Given a text T of length n over an alphabet of size σ and integers s, τ > 1, a block tree of T has height
h = lgτ

n lg σ
s lg n . The block tree requires

O((s + zτ lgτ
n lg σ

s lg n
) lg n) bits of space,

where z is the number of LZ77 factors of T

s = z results in a tree of height O(lgτ
n lg σ
z lg n)

space requirements O(zτ lgτ
n lg σ
z lg n) bits

however z not known

11/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Block Trees are LZ Compressed (2/2)

queries are easy to realize

if not supported directly, additional information
can be stored for blocks

Access Query
Given position i return T [i]

follow nodes that represent block containing T [i]

of not marked follow pointer and consider offset

at leaf, if last level, return character

else, follow pointer and continue

time O(lgτ
n lg σ
s lg n)

example on the board �

12/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Access Queries in Block Trees

for each block add histogram HistBu for prefix of
T up to block (not containing)

O(σ(s + zτ lgτ
n lg n
s lg n) lg n) bits of space

Rank Query
Given position i and character α return rankα(T , i)

follow nodes that represent block containing T [i]

remember HistBu [α]

of not marked follow pointer and consider offset

at leaf, if last level, compute local rank � binary
rank for each character

else, follow pointer and continue

time O(lgτ
n lg σ
s lg n)

example on the board �

13/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Rank Queries in Block Trees

O(n) Working Space
build Aho-Corasick automaton for containing all
pairs of consecutive unmarked blocks

identify unmarked blocks on next level

O(n(1 + lgτ
z
s)) time and O(n) space

Pruning
size of block tree can be reduced further

some blocks not necessary

those blocks can easily be identified

O(s + zτ) Working Space
replace Aho-Corasick automaton with
Karp-Rabin fingerprints

validate if matching fingerprints due to matching
strings � Monte Carlo algorithm

O(n(1 + lgτ
z
s)) expected time and O(n) space

only expected construction time!

queries very fast in practice

construction very slow in practice

good topic for thesis �

14/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Construction of Block Trees

O(n) Working Space
build Aho-Corasick automaton for containing all
pairs of consecutive unmarked blocks

identify unmarked blocks on next level

O(n(1 + lgτ
z
s)) time and O(n) space

Pruning
size of block tree can be reduced further

some blocks not necessary

those blocks can easily be identified

O(s + zτ) Working Space
replace Aho-Corasick automaton with
Karp-Rabin fingerprints

validate if matching fingerprints due to matching
strings � Monte Carlo algorithm

O(n(1 + lgτ
z
s)) expected time and O(n) space

only expected construction time!

queries very fast in practice

construction very slow in practice

good topic for thesis �

14/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Construction of Block Trees

O(n) Working Space
build Aho-Corasick automaton for containing all
pairs of consecutive unmarked blocks

identify unmarked blocks on next level

O(n(1 + lgτ
z
s)) time and O(n) space

Pruning
size of block tree can be reduced further

some blocks not necessary

those blocks can easily be identified

O(s + zτ) Working Space
replace Aho-Corasick automaton with
Karp-Rabin fingerprints

validate if matching fingerprints due to matching
strings � Monte Carlo algorithm

O(n(1 + lgτ
z
s)) expected time and O(n) space

only expected construction time!

queries very fast in practice

construction very slow in practice

good topic for thesis �

14/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Construction of Block Trees

O(n) Working Space
build Aho-Corasick automaton for containing all
pairs of consecutive unmarked blocks

identify unmarked blocks on next level

O(n(1 + lgτ
z
s)) time and O(n) space

Pruning
size of block tree can be reduced further

some blocks not necessary

those blocks can easily be identified

O(s + zτ) Working Space
replace Aho-Corasick automaton with
Karp-Rabin fingerprints

validate if matching fingerprints due to matching
strings � Monte Carlo algorithm

O(n(1 + lgτ
z
s)) expected time and O(n) space

only expected construction time!

queries very fast in practice

construction very slow in practice

good topic for thesis �

14/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Construction of Block Trees

Let T be a text, then

r(T) is number of BWT runs of T

z(T) is number of LZ77 factors of T

Definition: Burrows-Wheeler Transform
[BW94]
Given a text T of length n and its suffix array SA, for
i ∈ [1, n] the Burrows-Wheeler transform is

BWT [i] =

{
T [SA[i]− 1] SA[i] > 0

$ SA[i] = 0

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

LCP 0 0 1 2 2 5 0 2 1 1 4 0 3

BWT a b $ c c b b a a a a b b

15/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Relation Between BWT Runs and LZ Factors [KK20] (1/3)

Lemma: Number of BWT Runs
Let T be a text of length n, then

r(T) ∈ O(z(T) lg2 n)

LCP[i] is irreducible if i = 1 or
BWT [i] 6= BWT [i − 1]

number of irreducible LCP-values is r(T)

Lemma: Sum of Irreducible LCP-Values
The number of irreducible LCP-Values in [`, 2`] is in
O(z` lg n)

r(T) is number of irreducible LCP-values

apply lemma for [2i , 2i+1) for i ∈ [0, blg nc]
number of LCP[i] = 0 entries is σ ≤ z

16/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Relation Between BWT Runs and LZ Factors (2/3)

Lemma: Number of Occurrences of
Substrings
For any ` > 1, the number of distinct substrings of T
of length ` is ≤ z`

Proof (Sketch)
consider any substring of length ` > 1

if substrings is contained in LZ factor, there is
previous occurrence

distinct substrings overlap LZ factors

there are at most ` substring per end of LZ
factor �

use number of distinct substrings

to show that the number of irreducible
LCP-values

is limited as stated in lemma

17/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Relation Between BWT Runs and LZ Factors (3/3)

This Lecture
block trees

r ∈ O(z lg2 n)

Open Questions
efficient block tree construction

linear time block tree construction

Next Lecture
suffix array construction in different models of
computation

Linear Time Construction

ST SA WT

LCP BWT

FM-Index
r -Index

LZ

18/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Conclusion and Outlook

This Lecture
block trees

r ∈ O(z lg2 n)

Open Questions
efficient block tree construction

linear time block tree construction

Next Lecture
suffix array construction in different models of
computation

Linear Time Construction

ST SA WT

LCP BWT

FM-Index
r -Index

LZ

18/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Conclusion and Outlook

This Lecture
block trees

r ∈ O(z lg2 n)

Open Questions
efficient block tree construction

linear time block tree construction

Next Lecture
suffix array construction in different models of
computation

Linear Time Construction

ST SA WT

LCP BWT

FM-Index
r -Index

LZ

18/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Conclusion and Outlook

[Bel+21] Djamal Belazzougui, Manuel Cáceres, Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen,
Gonzalo Navarro, Alberto Ordóñez Pereira, Simon J. Puglisi, and Yasuo Tabei. “Block Trees”. In: J.
Comput. Syst. Sci. 117 (2021), pages 1–22. DOI: 10.1016/j.jcss.2020.11.002.

[BW94] Michael Burrows and David J. Wheeler. A Block-Sorting Lossless Data Compression Algorithm.
Technical report. 1994.

[KK20] Dominik Kempa and Tomasz Kociumaka. “Resolution of the Burrows-Wheeler Transform Conjecture”.
In: FOCS. IEEE, 2020, pages 1002–1013. DOI: 10.1109/FOCS46700.2020.00097.

[ZL77] Jacob Ziv and Abraham Lempel. “A Universal Algorithm for Sequential Data Compression”. In: IEEE
Trans. Inf. Theory 23.3 (1977), pages 337–343. DOI: 10.1109/TIT.1977.1055714.

19/18 2021-12-13 Florian Kurpicz | Text Indexing | 08 LZ- & BWT-Compressed Indices Institute for Theoretical Computer Science, Algorithmics II

Bibliography I

https://doi.org/10.1016/j.jcss.2020.11.002
https://doi.org/10.1109/FOCS46700.2020.00097
https://doi.org/10.1109/TIT.1977.1055714

	Appendix

