
Text Indexing

Lecture 12: Longest Common Extensions

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit 224e27c compiled at 2022-01-24-09:49

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

Definition: Document Listing
Given a collection of D documents
D = {d1, d2, . . . , dD} containing symbols from an
alphabet Σ = [1, σ] and a pattern P ∈ Σ∗, return all
j ∈ [1,D], such that dj contains P.

d1 = ATA

d2 = TAAA

d3 = TATA

And for queries:

P = TA is contained in d1, d2, and d3

P = ATA is contained in d1 and d3

v1

15

v2

14 v3

4 9

v7

v5

13

v8

7 6

v10

11 1

v6

3 8

v13

10

5v12

12 2

$
$ A TA

$ TA

AA. . .TA. . .

A TA#

$

TA

AA. . .TA. . .

A#. . .AA. . . $ TA. . .

#
AA. . .

TA. . .

$ TA. . .

3

1 2 3

1 2

2 2 3 1

3 1

2

3

{1,2,3}

{1,2,3}

{2}

{3}

2/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Recap: Document Listing and Top-k Retrieval

Definition: Document Listing
Given a collection of D documents
D = {d1, d2, . . . , dD} containing symbols from an
alphabet Σ = [1, σ] and a pattern P ∈ Σ∗, return all
j ∈ [1,D], such that dj contains P.

d1 = ATA

d2 = TAAA

d3 = TATA

And for queries:

P = TA is contained in d1, d2, and d3

P = ATA is contained in d1 and d3

v1

15

v2

14 v3

4 9

v7

v5

13

v8

7 6

v10

11 1

v6

3 8

v13

10

5v12

12 2

$
$ A TA

$ TA

AA. . .TA. . .

A TA#

$

TA

AA. . .TA. . .

A#. . .AA. . . $ TA. . .

#
AA. . .

TA. . .

$ TA. . .

3

1 2 3

1 2

2 2 3 1

3 1

2

3

{1,2,3}

{1,2,3}

{2}

{3}

2/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Recap: Document Listing and Top-k Retrieval

Definition: Document Listing
Given a collection of D documents
D = {d1, d2, . . . , dD} containing symbols from an
alphabet Σ = [1, σ] and a pattern P ∈ Σ∗, return all
j ∈ [1,D], such that dj contains P.

d1 = ATA

d2 = TAAA

d3 = TATA

And for queries:

P = TA is contained in d1, d2, and d3

P = ATA is contained in d1 and d3

v1

15

v2

14 v3

4 9

v7

v5

13

v8

7 6

v10

11 1

v6

3 8

v13

10

5v12

12 2

$
$ A TA

$ TA

AA. . .TA. . .

A TA#

$

TA

AA. . .TA. . .

A#. . .AA. . . $ TA. . .

#
AA. . .

TA. . .

$ TA. . .

3

1 2 3

1 2

2 2 3 1

3 1

2

3

{1,2,3}

{1,2,3}

{2}

{3}

2/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Recap: Document Listing and Top-k Retrieval

remember how many characters of the pattern
and suffix match

identify how long the prefix of the old and next
suffix is

do so using the LCP-array and

range minimum queries detailed introduction
in Advanced Data Structures

Definition: Range Minimum Queries
Given an array A[1..m), a range minimum query for
a range ℓ ≤ r ∈ [1, n) returns

RMQA(ℓ, r) = argmin{A[k] : k ∈ [ℓ, r]}

lcp(i, j) = max{k : T [i..i + k)

lcp(i, j) = T [j..j+k)} = LCP[RMQLCP(i+1, j)]

RMQs can be answered in O(1) time and

require O(n) space

3/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Recap: Pattern Matching with the LCP-Array (1/3)

during binary search matched

λ characters with left border ℓ and

ρ characters with right border r

w.l.o.g. let λ ≥ ρ

middle position i

decide if continue in [ℓ, i] or [i, r]

let ξ = lcp(SA[ℓ],SA[i]) O(1) time with
RMQs

SA
ℓ i r

λ
ρ

P[1]
P[2]
P[3]

...
P[λ]

P[1]
...

P[ρ]

4/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Recap: Pattern Matching with the LCP-Array (2/3)

let ξ = lcp(SA[ℓ],SA[i])

ξ > λ

P[λ+ 1] > T [SA[ℓ] + λ] = T [SA[i] + λ]

ℓ = i without character comparison

ξ = λ

compare as before

ξ < λ

ξ ≥ ρ and P[ξ + 1] < T [SA[i] + ξ]

r = i and ρ = ξ without character comparison

SA
ℓ i r

λ
ρ

P[1]
P[2]
P[3]

...
P[λ]

P[1]
...

P[ρ]

ξ

T [.] = T [.]

ξ

ξ

P[3] ̸= T [.]

5/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Recap: Pattern Matching with the LCP-Array (3/3)

Definition: Longest Common Extensions
Given a text T of size n over an alphabet of size σ,
construct data structure that answers for i, j ∈ [1, n]

lceT (i, j) = max{ℓ ≥ 0 : T [i, i + ℓ) = T [j, j + ℓ)}

also denoted as lcp(i, j) in this lecture

Applications
(sparse) suffix sorting

approximate pattern matching

. . .

1 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

A B C D A B C C D B C C B A B C D A D AT

lceT (1, 14) = 0 1 2 3 4 5

6/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Old Problem, New Name

Definition: Longest Common Extensions
Given a text T of size n over an alphabet of size σ,
construct data structure that answers for i, j ∈ [1, n]

lceT (i, j) = max{ℓ ≥ 0 : T [i, i + ℓ) = T [j, j + ℓ)}

also denoted as lcp(i, j) in this lecture

Applications
(sparse) suffix sorting

approximate pattern matching

. . .

1 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

A B C D A B C C D B C C B A B C D A D AT

lceT (1, 14) = 0 1 2 3 4 5

6/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Old Problem, New Name

Definition: Longest Common Extensions
Given a text T of size n over an alphabet of size σ,
construct data structure that answers for i, j ∈ [1, n]

lceT (i, j) = max{ℓ ≥ 0 : T [i, i + ℓ) = T [j, j + ℓ)}

also denoted as lcp(i, j) in this lecture

Applications
(sparse) suffix sorting

approximate pattern matching

. . .

1 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

A B C D A B C C D B C C B A B C D A D AT

lceT (1, 14) = 0 1 2 3 4 5

6/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Old Problem, New Name

Sophisticated Black Box (BB)
based on ISA, LCP, and RMQ

Black Box

O(1) query time, ≈ 9n bytes additional space

Ultra Naive Scan (UNS)
compare character by character

O(n) query time, no additional space

S
pa

ce

Query Time

UNS

BB

better trade-off

7/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Practical Algorithms for Longest Common Extensions [IT09]

Sophisticated Black Box (BB)
based on ISA, LCP, and RMQ

Black Box

O(1) query time, ≈ 9n bytes additional space

Ultra Naive Scan (UNS)
compare character by character

O(n) query time, no additional space

S
pa

ce

Query Time

UNS

BB

better trade-off

7/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Practical Algorithms for Longest Common Extensions [IT09]

Sophisticated Black Box (BB)
based on ISA, LCP, and RMQ

Black Box

O(1) query time, ≈ 9n bytes additional space

Ultra Naive Scan (UNS)
compare character by character

O(n) query time, no additional space
S

pa
ce

Query Time

UNS

BB

better trade-off

7/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Practical Algorithms for Longest Common Extensions [IT09]

setting: randomized algorithms

Monte Carlo Algorithm
returns wrong result with small probability

deterministic running time

Las Vegas Algorithm
returns correct result

only expected running time

some Monte Carlo algorithms can be turned
into Las Vegas algorithms

depends on correctness check

all Monte Carlo algorithms presented today can
be turned into Las Vegas algorithms

8/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Monte Carlo and Las Vegas Algorithms

setting: randomized algorithms

Monte Carlo Algorithm
returns wrong result with small probability

deterministic running time

Las Vegas Algorithm
returns correct result

only expected running time

some Monte Carlo algorithms can be turned
into Las Vegas algorithms

depends on correctness check

all Monte Carlo algorithms presented today can
be turned into Las Vegas algorithms

8/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Monte Carlo and Las Vegas Algorithms

setting: randomized algorithms

Monte Carlo Algorithm
returns wrong result with small probability

deterministic running time

Las Vegas Algorithm
returns correct result

only expected running time

some Monte Carlo algorithms can be turned
into Las Vegas algorithms

depends on correctness check

all Monte Carlo algorithms presented today can
be turned into Las Vegas algorithms

8/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Monte Carlo and Las Vegas Algorithms

compute s of strings

application not limited to LCEs

Definition: Karp-Rabin Fingerprint [KR87]
Given a text T of length n over an alphabet of size σ
and a random prime number q ∈ Θ(nc), the
Karp-Rabin fingerprint of T [i..j] is

(i, j) = (

j∑
k=i

T [k] · σj−k) mod q

 (x + y) mod z = z mod z + y mod z (mod z)

if T [i..i + ℓ] = T [j..j + ℓ], then

(i, i + ℓ) = (j, j + ℓ)

if T [i..i + ℓ] ̸= T [j..j + ℓ], then

Prob((i, i + ℓ) = (j, j + ℓ)) ∈ O(
ℓ lg σ

nc)

prime has to be chosen uniformly at random

how to turn it into Las Vegas algorithm?

example on the board �

9/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Randomized String Matching

compute s of strings

application not limited to LCEs

Definition: Karp-Rabin Fingerprint [KR87]
Given a text T of length n over an alphabet of size σ
and a random prime number q ∈ Θ(nc), the
Karp-Rabin fingerprint of T [i..j] is

(i, j) = (

j∑
k=i

T [k] · σj−k) mod q

 (x + y) mod z = z mod z + y mod z (mod z)

if T [i..i + ℓ] = T [j..j + ℓ], then

(i, i + ℓ) = (j, j + ℓ)

if T [i..i + ℓ] ̸= T [j..j + ℓ], then

Prob((i, i + ℓ) = (j, j + ℓ)) ∈ O(
ℓ lg σ

nc)

prime has to be chosen uniformly at random

how to turn it into Las Vegas algorithm?

example on the board �

9/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Randomized String Matching

compute s of strings

application not limited to LCEs

Definition: Karp-Rabin Fingerprint [KR87]
Given a text T of length n over an alphabet of size σ
and a random prime number q ∈ Θ(nc), the
Karp-Rabin fingerprint of T [i..j] is

(i, j) = (

j∑
k=i

T [k] · σj−k) mod q

 (x + y) mod z = z mod z + y mod z (mod z)

if T [i..i + ℓ] = T [j..j + ℓ], then

(i, i + ℓ) = (j, j + ℓ)

if T [i..i + ℓ] ̸= T [j..j + ℓ], then

Prob((i, i + ℓ) = (j, j + ℓ)) ∈ O(
ℓ lg σ

nc)

prime has to be chosen uniformly at random

how to turn it into Las Vegas algorithm?

example on the board �

9/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Randomized String Matching

compute s of strings

application not limited to LCEs

Definition: Karp-Rabin Fingerprint [KR87]
Given a text T of length n over an alphabet of size σ
and a random prime number q ∈ Θ(nc), the
Karp-Rabin fingerprint of T [i..j] is

(i, j) = (

j∑
k=i

T [k] · σj−k) mod q

 (x + y) mod z = z mod z + y mod z (mod z)

if T [i..i + ℓ] = T [j..j + ℓ], then

(i, i + ℓ) = (j, j + ℓ)

if T [i..i + ℓ] ̸= T [j..j + ℓ], then

Prob((i, i + ℓ) = (j, j + ℓ)) ∈ O(
ℓ lg σ

nc)

prime has to be chosen uniformly at random

how to turn it into Las Vegas algorithm?

example on the board �

9/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Randomized String Matching

given a text T over an alphabet of size σ

let w be size of a computer word e.g., 64 bit

choose τ ∈ Θ(w/ lg σ) 8 for byte alphabet

choose random prime q ∈ [1
2σ

τ , στ)

group the text into size-τ blocks: B[1..n/τ] with

B[i] = T [(i − 1)τ + 1..iτ]

compute P′[i] = (i, τ i) for i ∈ [1, n/τ]

P′[i] can fits in B[i]

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

all parts of text are restorable

how?

10/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Overwriting the Text with Fingerprints (1/2) [Pre18]

given a text T over an alphabet of size σ

let w be size of a computer word e.g., 64 bit

choose τ ∈ Θ(w/ lg σ) 8 for byte alphabet

choose random prime q ∈ [1
2σ

τ , στ)

group the text into size-τ blocks: B[1..n/τ] with

B[i] = T [(i − 1)τ + 1..iτ]

compute P′[i] = (i, τ i) for i ∈ [1, n/τ]

P′[i] can fits in B[i]

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

all parts of text are restorable

how?

10/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Overwriting the Text with Fingerprints (1/2) [Pre18]

given a text T over an alphabet of size σ

let w be size of a computer word e.g., 64 bit

choose τ ∈ Θ(w/ lg σ) 8 for byte alphabet

choose random prime q ∈ [1
2σ

τ , στ)

group the text into size-τ blocks: B[1..n/τ] with

B[i] = T [(i − 1)τ + 1..iτ]

compute P′[i] = (i, τ i) for i ∈ [1, n/τ]

P′[i] can fits in B[i]

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

all parts of text are restorable

how?

10/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Overwriting the Text with Fingerprints (1/2) [Pre18]

given a text T over an alphabet of size σ

let w be size of a computer word e.g., 64 bit

choose τ ∈ Θ(w/ lg σ) 8 for byte alphabet

choose random prime q ∈ [1
2σ

τ , στ)

group the text into size-τ blocks: B[1..n/τ] with

B[i] = T [(i − 1)τ + 1..iτ]

compute P′[i] = (i, τ i) for i ∈ [1, n/τ]

P′[i] can fits in B[i]

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

all parts of text are restorable

how?

10/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Overwriting the Text with Fingerprints (1/2) [Pre18]

given a text T over an alphabet of size σ

let w be size of a computer word e.g., 64 bit

choose τ ∈ Θ(w/ lg σ) 8 for byte alphabet

choose random prime q ∈ [1
2σ

τ , στ)

group the text into size-τ blocks: B[1..n/τ] with

B[i] = T [(i − 1)τ + 1..iτ]

compute P′[i] = (i, τ i) for i ∈ [1, n/τ]

P′[i] can fits in B[i]

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

all parts of text are restorable

how?

10/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Overwriting the Text with Fingerprints (1/2) [Pre18]

given a text T over an alphabet of size σ

let w be size of a computer word e.g., 64 bit

choose τ ∈ Θ(w/ lg σ) 8 for byte alphabet

choose random prime q ∈ [1
2σ

τ , στ)

group the text into size-τ blocks: B[1..n/τ] with

B[i] = T [(i − 1)τ + 1..iτ]

compute P′[i] = (i, τ i) for i ∈ [1, n/τ]

P′[i] can fits in B[i]

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

all parts of text are restorable

how?

10/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Overwriting the Text with Fingerprints (1/2) [Pre18]

given a text T over an alphabet of size σ

let w be size of a computer word e.g., 64 bit

choose τ ∈ Θ(w/ lg σ) 8 for byte alphabet

choose random prime q ∈ [1
2σ

τ , στ)

group the text into size-τ blocks: B[1..n/τ] with

B[i] = T [(i − 1)τ + 1..iτ]

compute P′[i] = (i, τ i) for i ∈ [1, n/τ]

P′[i] can fits in B[i]

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

all parts of text are restorable

how?

10/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Overwriting the Text with Fingerprints (1/2) [Pre18]

given a text T over an alphabet of size σ

let w be size of a computer word e.g., 64 bit

choose τ ∈ Θ(w/ lg σ) 8 for byte alphabet

choose random prime q ∈ [1
2σ

τ , στ)

group the text into size-τ blocks: B[1..n/τ] with

B[i] = T [(i − 1)τ + 1..iτ]

compute P′[i] = (i, τ i) for i ∈ [1, n/τ]

P′[i] can fits in B[i]

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

all parts of text are restorable

how?

10/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Overwriting the Text with Fingerprints (1/2) [Pre18]

choose random prime q ∈ [1
2σ

τ , στ)

B[i] = T [(i − 1)τ + 1..iτ]

⌊B[i]/q⌋ ∈ {0, 1}
D[i] = ⌊B[i]/q⌋ bit vector of size n/τ

P′[i] = (i, τ i) and together with D:

B[i] = (P′[i]− στ · P′[i − 1] mod q) + D[i] · q

this gives us access to the text(!)

q can be chosen such that MSB of P′[i] is zero
w.h.p., then

D can be stored in the MSBs

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

enough to answer LCE queries

how?

11/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Overwriting the Text with Fingerprints (2/2)

choose random prime q ∈ [1
2σ

τ , στ)

B[i] = T [(i − 1)τ + 1..iτ]

⌊B[i]/q⌋ ∈ {0, 1}

D[i] = ⌊B[i]/q⌋ bit vector of size n/τ

P′[i] = (i, τ i) and together with D:

B[i] = (P′[i]− στ · P′[i − 1] mod q) + D[i] · q

this gives us access to the text(!)

q can be chosen such that MSB of P′[i] is zero
w.h.p., then

D can be stored in the MSBs

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

enough to answer LCE queries

how?

11/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Overwriting the Text with Fingerprints (2/2)

choose random prime q ∈ [1
2σ

τ , στ)

B[i] = T [(i − 1)τ + 1..iτ]

⌊B[i]/q⌋ ∈ {0, 1}
D[i] = ⌊B[i]/q⌋ bit vector of size n/τ

P′[i] = (i, τ i) and together with D:

B[i] = (P′[i]− στ · P′[i − 1] mod q) + D[i] · q

this gives us access to the text(!)

q can be chosen such that MSB of P′[i] is zero
w.h.p., then

D can be stored in the MSBs

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

enough to answer LCE queries

how?

11/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Overwriting the Text with Fingerprints (2/2)

choose random prime q ∈ [1
2σ

τ , στ)

B[i] = T [(i − 1)τ + 1..iτ]

⌊B[i]/q⌋ ∈ {0, 1}
D[i] = ⌊B[i]/q⌋ bit vector of size n/τ

P′[i] = (i, τ i) and together with D:

B[i] = (P′[i]− στ · P′[i − 1] mod q) + D[i] · q

this gives us access to the text(!)

q can be chosen such that MSB of P′[i] is zero
w.h.p., then

D can be stored in the MSBs

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

enough to answer LCE queries

how?

11/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Overwriting the Text with Fingerprints (2/2)

choose random prime q ∈ [1
2σ

τ , στ)

B[i] = T [(i − 1)τ + 1..iτ]

⌊B[i]/q⌋ ∈ {0, 1}
D[i] = ⌊B[i]/q⌋ bit vector of size n/τ

P′[i] = (i, τ i) and together with D:

B[i] = (P′[i]− στ · P′[i − 1] mod q) + D[i] · q

this gives us access to the text(!)

q can be chosen such that MSB of P′[i] is zero
w.h.p., then

D can be stored in the MSBs

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

enough to answer LCE queries

how?

11/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Overwriting the Text with Fingerprints (2/2)

choose random prime q ∈ [1
2σ

τ , στ)

B[i] = T [(i − 1)τ + 1..iτ]

⌊B[i]/q⌋ ∈ {0, 1}
D[i] = ⌊B[i]/q⌋ bit vector of size n/τ

P′[i] = (i, τ i) and together with D:

B[i] = (P′[i]− στ · P′[i − 1] mod q) + D[i] · q

this gives us access to the text(!)

q can be chosen such that MSB of P′[i] is zero
w.h.p., then

D can be stored in the MSBs

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

enough to answer LCE queries

how?

11/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Overwriting the Text with Fingerprints (2/2)

choose random prime q ∈ [1
2σ

τ , στ)

B[i] = T [(i − 1)τ + 1..iτ]

⌊B[i]/q⌋ ∈ {0, 1}
D[i] = ⌊B[i]/q⌋ bit vector of size n/τ

P′[i] = (i, τ i) and together with D:

B[i] = (P′[i]− στ · P′[i − 1] mod q) + D[i] · q

this gives us access to the text(!)

q can be chosen such that MSB of P′[i] is zero
w.h.p., then

D can be stored in the MSBs

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

enough to answer LCE queries

how?

11/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Overwriting the Text with Fingerprints (2/2)

choose random prime q ∈ [1
2σ

τ , στ)

B[i] = T [(i − 1)τ + 1..iτ]

⌊B[i]/q⌋ ∈ {0, 1}
D[i] = ⌊B[i]/q⌋ bit vector of size n/τ

P′[i] = (i, τ i) and together with D:

B[i] = (P′[i]− στ · P′[i − 1] mod q) + D[i] · q

this gives us access to the text(!)

q can be chosen such that MSB of P′[i] is zero
w.h.p., then

D can be stored in the MSBs

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

enough to answer LCE queries

how?

11/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Overwriting the Text with Fingerprints (2/2)

LCEs with Fingerprints
compute LCE of i and j

exponential search until
(i, i + 2k) ̸= (j, j + 2k)

binary search to find correct block m

recompute B[m] and find mismatching
character

requires O(lg ℓ) time for LCEs of size ℓ

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

12/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Answering LCE Queries with Fingerprints

LCEs with Fingerprints
compute LCE of i and j

exponential search until
(i, i + 2k) ̸= (j, j + 2k)

binary search to find correct block m

recompute B[m] and find mismatching
character

requires O(lg ℓ) time for LCEs of size ℓ

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

12/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Answering LCE Queries with Fingerprints

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

13/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

String Synchronizing Sets (Simplified, 1/2)

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

13/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

String Synchronizing Sets (Simplified, 1/2)

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

13/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

String Synchronizing Sets (Simplified, 1/2)

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

13/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

String Synchronizing Sets (Simplified, 1/2)

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

13/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

String Synchronizing Sets (Simplified, 1/2)

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

13/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

String Synchronizing Sets (Simplified, 1/2)

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

13/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

String Synchronizing Sets (Simplified, 1/2)

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

13/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

String Synchronizing Sets (Simplified, 1/2)

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

13/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

String Synchronizing Sets (Simplified, 1/2)

|S| = Θ(n/τ) in practice (on most data sets)

more complex definition required to obtain this
size

Consistency & (Simplified) Density Property
for all i, j ∈ [1, n − 2τ + 1] we have

T [i, i+2τ−1] = T [j, j+2τ−1] ⇒ i ∈ S ⇔ j ∈ S

for any τ consecutive positions there is at least
one position in S

14/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

String Synchronizing Sets (Simplified, 2/2)

Text T ′ for Positions in S

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

T′ [1]
3τ

T′ [2]
3τ

T′ [3]
3τ

. . .
T′ [|S| − 3]

3τ

T′ [|S| − 2]
3τ

T′ [|S| − 1]
3τ

15/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Answering LCE Queries with String Synchronizing Sets (1/2)

Text T ′ for Positions in S

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

T′ [1]
3τ

T′ [2]
3τ

T′ [3]
3τ

. . .
T′ [|S| − 3]

3τ

T′ [|S| − 2]
3τ

T′ [|S| − 1]
3τ

15/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Answering LCE Queries with String Synchronizing Sets (1/2)

in practice, we sort the substrings

characters of T ′ are the ranks of substrings

build BB LCE for T ′ w.r.t. length in T

Answering Queries
compare naively for 3τ characters

if equal find successors of i and j in S

compute LCE of successors in T ′

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

lceT (i, j)

3τ 3τ

✓ ✓

in this example: lceT (i, j) = s1 − i + lceT ′(1, |S| − 2)

in practice: we have a very fast static successor data structure

16/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Answering LCE Queries with String Synchronizing Sets (2/2)

in practice, we sort the substrings

characters of T ′ are the ranks of substrings

build BB LCE for T ′ w.r.t. length in T

Answering Queries
compare naively for 3τ characters

if equal find successors of i and j in S

compute LCE of successors in T ′

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

lceT (i, j)

3τ 3τ

✓ ✓

in this example: lceT (i, j) = s1 − i + lceT ′(1, |S| − 2)

in practice: we have a very fast static successor data structure

16/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Answering LCE Queries with String Synchronizing Sets (2/2)

in practice, we sort the substrings

characters of T ′ are the ranks of substrings

build BB LCE for T ′ w.r.t. length in T

Answering Queries
compare naively for 3τ characters

if equal find successors of i and j in S

compute LCE of successors in T ′

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

lceT (i, j)

3τ 3τ

✓ ✓

in this example: lceT (i, j) = s1 − i + lceT ′(1, |S| − 2)

in practice: we have a very fast static successor data structure

16/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Answering LCE Queries with String Synchronizing Sets (2/2)

in practice, we sort the substrings

characters of T ′ are the ranks of substrings

build BB LCE for T ′ w.r.t. length in T

Answering Queries
compare naively for 3τ characters

if equal find successors of i and j in S

compute LCE of successors in T ′

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

lceT (i, j)

3τ 3τ

✓ ✓

in this example: lceT (i, j) = s1 − i + lceT ′(1, |S| − 2)

in practice: we have a very fast static successor data structure

16/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Answering LCE Queries with String Synchronizing Sets (2/2)

in practice, we sort the substrings

characters of T ′ are the ranks of substrings

build BB LCE for T ′ w.r.t. length in T

Answering Queries
compare naively for 3τ characters

if equal find successors of i and j in S

compute LCE of successors in T ′

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

lceT (i, j)

3τ 3τ

✓ ✓

in this example: lceT (i, j) = s1 − i + lceT ′(1, |S| − 2)

in practice: we have a very fast static successor data structure

16/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Answering LCE Queries with String Synchronizing Sets (2/2)

in practice, we sort the substrings

characters of T ′ are the ranks of substrings

build BB LCE for T ′ w.r.t. length in T

Answering Queries
compare naively for 3τ characters

if equal find successors of i and j in S

compute LCE of successors in T ′

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

lceT (i, j)

3τ 3τ

✓ ✓

in this example: lceT (i, j) = s1 − i + lceT ′(1, |S| − 2)

in practice: we have a very fast static successor data structure

16/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Answering LCE Queries with String Synchronizing Sets (2/2)

0 5 10 15 20

104

105

106

107

108

LCEs in [2k , 2k+1)

th
ro

ug
hp

ut
[q

ue
rie

s/
s]

dna

0 5 10 15 20

104

105

106

107

108

LCEs in [2k , 2k+1)

english.1024MB

0 5 10 15

104

105

106

107

108

LCEs in [2k , 2k+1)

cere

our-rk sss512 ssspl
512

naive
prezza-rk ultra_naive sada sct3

17/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Practical Evaluation [Din+20]

0 5 10 15 20

104

105

106

107

108

LCEs in [2k , 2k+1)

th
ro

ug
hp

ut
[q

ue
rie

s/
s]

dna

0 5 10 15 20

104

105

106

107

108

LCEs in [2k , 2k+1)

english.1024MB

0 5 10 15

104

105

106

107

108

LCEs in [2k , 2k+1)

cere

our-rk sss512 ssspl
512

naive
prezza-rk ultra_naive sada sct3

17/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Practical Evaluation [Din+20]

0 5 10 15 20

104

105

106

107

108

LCEs in [2k , 2k+1)

th
ro

ug
hp

ut
[q

ue
rie

s/
s]

dna

0 5 10 15 20

104

105

106

107

108

LCEs in [2k , 2k+1)

english.1024MB

0 5 10 15

104

105

106

107

108

LCEs in [2k , 2k+1)

cere

our-rk sss512 ssspl
512

naive
prezza-rk ultra_naive sada sct3

17/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Practical Evaluation [Din+20]

0 5 10 15 20

104

105

106

107

108

LCEs in [2k , 2k+1)

th
ro

ug
hp

ut
[q

ue
rie

s/
s]

dna

0 5 10 15 20

104

105

106

107

108

LCEs in [2k , 2k+1)

english.1024MB

0 5 10 15

104

105

106

107

108

LCEs in [2k , 2k+1)

cere

our-rk sss512 ssspl
512

naive
prezza-rk ultra_naive sada sct3

17/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Practical Evaluation [Din+20]

This Lecture
longest common extension queries

Karp-Rabin fingerprints

string synchronizing sets

Next Lecture
big recap and Q&A

Thats all! We are (mostly)
done.

18/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Conclusion and Outlook

This Lecture
longest common extension queries

Karp-Rabin fingerprints

string synchronizing sets

Next Lecture
big recap and Q&A

Thats all! We are (mostly)
done.

18/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Conclusion and Outlook

Anmeldung Projekt
&

Discussion of the evaluation

19/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Misc

[Din+20] Patrick Dinklage, Johannes Fischer, Alexander Herlez, Tomasz Kociumaka, and Florian Kurpicz.
“Practical Performance of Space Efficient Data Structures for Longest Common Extensions”. In: ESA.
Volume 173. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 39:1–39:20. DOI:
10.4230/LIPIcs.ESA.2020.39.

[IT09] Lucian Ilie and Liviu Tinta. “Practical Algorithms for the Longest Common Extension Problem”. In:
SPIRE. Volume 5721. Lecture Notes in Computer Science. Springer, 2009, pages 302–309. DOI:
10.1007/978-3-642-03784-9_30.

[KK19] Dominik Kempa and Tomasz Kociumaka. “String Synchronizing Sets: Sublinear-Time BWT
Construction and Optimal LCE Data Structure”. In: STOC. ACM, 2019, pages 756–767.

[KR87] Richard M. Karp and Michael O. Rabin. “Efficient Randomized Pattern-Matching Algorithms”. In: IBM
J. Res. Dev. 31.2 (1987), pages 249–260. DOI: 10.1147/rd.312.0249.

[Pre18] Nicola Prezza. “In-Place Sparse Suffix Sorting”. In: SODA. SIAM, 2018, pages 1496–1508. DOI:
10.1137/1.9781611975031.98.

20/18 2022-01-24 Florian Kurpicz | Text Indexing | 12 Longest Common Extensions Institute for Theoretical Computer Science, Algorithmics II

Bibliography I

https://doi.org/10.4230/LIPIcs.ESA.2020.39
https://doi.org/10.1007/978-3-642-03784-9_30
https://doi.org/10.1147/rd.312.0249
https://doi.org/10.1137/1.9781611975031.98

	Appendix

