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Definition: Document Listing
Given a collection of D documents
D = {d1, d2, . . . , dD} containing symbols from an
alphabet Σ = [1, σ] and a pattern P ∈ Σ∗, return all
j ∈ [1,D], such that dj contains P.

d1 = ATA

d2 = TAAA

d3 = TATA

And for queries:

P = TA is contained in d1, d2, and d3

P = ATA is contained in d1 and d3
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remember how many characters of the pattern
and suffix match

identify how long the prefix of the old and next
suffix is

do so using the LCP-array and

range minimum queries  detailed introduction
in Advanced Data Structures

Definition: Range Minimum Queries
Given an array A[1..m), a range minimum query for
a range ℓ ≤ r ∈ [1, n) returns

RMQA(ℓ, r) = argmin{A[k ] : k ∈ [ℓ, r ]}

lcp(i, j) = max{k : T [i..i + k)

lcp(i, j) = T [j..j+k)} = LCP[RMQLCP(i+1, j)]

RMQs can be answered in O(1) time and

require O(n) space
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during binary search matched

λ characters with left border ℓ and

ρ characters with right border r

w.l.o.g. let λ ≥ ρ

middle position i

decide if continue in [ℓ, i] or [i, r ]

let ξ = lcp(SA[ℓ],SA[i])  O(1) time with
RMQs

SA
ℓ i r

λ
ρ

P[1]
P[2]
P[3]

...
P[λ]

P[1]
...

P[ρ]
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let ξ = lcp(SA[ℓ],SA[i])

ξ > λ

P[λ+ 1] > T [SA[ℓ] + λ] = T [SA[i] + λ]

ℓ = i without character comparison

ξ = λ

compare as before

ξ < λ

ξ ≥ ρ and P[ξ + 1] < T [SA[i] + ξ]

r = i and ρ = ξ without character comparison

SA
ℓ i r

λ
ρ

P[1]
P[2]
P[3]

...
P[λ]

P[1]
...

P[ρ]

ξ

T [.] = T [.]

ξ

ξ

P[3] ̸= T [.]
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Definition: Longest Common Extensions
Given a text T of size n over an alphabet of size σ,
construct data structure that answers for i, j ∈ [1, n]

lceT (i, j) = max{ℓ ≥ 0 : T [i, i + ℓ) = T [j, j + ℓ)}

also denoted as lcp(i, j)  in this lecture

Applications
(sparse) suffix sorting

approximate pattern matching

. . .

1 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

A B C D A B C C D B C C B A B C D A D AT

lceT (1, 14) = 0 1 2 3 4 5
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Sophisticated Black Box (BB)
based on ISA, LCP, and RMQ

Black Box

O(1) query time, ≈ 9n bytes additional space

Ultra Naive Scan (UNS)
compare character by character

O(n) query time, no additional space

S
pa

ce

Query Time

UNS

BB

better trade-off
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setting: randomized algorithms

Monte Carlo Algorithm
returns wrong result with small probability

deterministic running time

Las Vegas Algorithm
returns correct result

only expected running time

some Monte Carlo algorithms can be turned
into Las Vegas algorithms

depends on correctness check

all Monte Carlo algorithms presented today can
be turned into Las Vegas algorithms
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compute s of strings

application not limited to LCEs

Definition: Karp-Rabin Fingerprint [KR87]
Given a text T of length n over an alphabet of size σ
and a random prime number q ∈ Θ(nc), the
Karp-Rabin fingerprint of T [i..j] is

(i, j) = (

j∑
k=i

T [k ] · σj−k) mod q

 (x + y) mod z = z mod z + y mod z (mod z)

if T [i..i + ℓ] = T [j..j + ℓ], then

(i, i + ℓ) = (j, j + ℓ)

if T [i..i + ℓ] ̸= T [j..j + ℓ], then

Prob( (i, i + ℓ) = (j, j + ℓ)) ∈ O(
ℓ lg σ

nc )

prime has to be chosen uniformly at random

how to turn it into Las Vegas algorithm?

example on the board �
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given a text T over an alphabet of size σ

let w be size of a computer word  e.g., 64 bit

choose τ ∈ Θ(w/ lg σ)  8 for byte alphabet

choose random prime q ∈ [ 1
2σ

τ , στ )

group the text into size-τ blocks: B[1..n/τ ] with

B[i] = T [(i − 1)τ + 1..iτ ]

compute P′[i] = (i, τ i) for i ∈ [1, n/τ ]

P′[i] can fits in B[i]

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

all parts of text are restorable

how?
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choose random prime q ∈ [ 1
2σ

τ , στ )

B[i] = T [(i − 1)τ + 1..iτ ]

⌊B[i]/q⌋ ∈ {0, 1}
D[i] = ⌊B[i]/q⌋  bit vector of size n/τ

P′[i] = (i, τ i) and together with D:

B[i] = (P′[i]− στ · P′[i − 1] mod q) + D[i] · q

this gives us access to the text(!)

q can be chosen such that MSB of P′[i] is zero
w.h.p., then

D can be stored in the MSBs

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

enough to answer LCE queries

how?
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block block block

enough to answer LCE queries

how?
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LCEs with Fingerprints
compute LCE of i and j

exponential search until
(i, i + 2k) ̸= (j, j + 2k)

binary search to find correct block m

recompute B[m] and find mismatching
character

requires O(lg ℓ) time for LCEs of size ℓ

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block
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Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓
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|S| = Θ(n/τ) in practice (on most data sets)

more complex definition required to obtain this
size

Consistency & (Simplified) Density Property
for all i, j ∈ [1, n − 2τ + 1] we have

T [i, i+2τ−1] = T [j, j+2τ−1] ⇒ i ∈ S ⇔ j ∈ S

for any τ consecutive positions there is at least
one position in S
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Text T ′ for Positions in S

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

T′ [1]
3τ

T′ [2]
3τ

T′ [3]
3τ

. . .
T′ [|S| − 3]

3τ

T′ [|S| − 2]
3τ

T′ [|S| − 1]
3τ
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in practice, we sort the substrings

characters of T ′ are the ranks of substrings

build BB LCE for T ′ w.r.t. length in T

Answering Queries
compare naively for 3τ characters

if equal find successors of i and j in S

compute LCE of successors in T ′

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

lceT (i, j)

3τ 3τ

✓ ✓

in this example: lceT (i, j) = s1 − i + lceT ′(1, |S| − 2)

in practice: we have a very fast static successor data structure
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This Lecture
longest common extension queries

Karp-Rabin fingerprints

string synchronizing sets

Next Lecture
big recap and Q&A

Thats all! We are (mostly)
done.
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Anmeldung Projekt
&

Discussion of the evaluation
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