KIT

Karlsruhe Institute of Technology

Advanced Data Structures

Lecture 02: Dynamic Bit Vectors and Succinct Trees
Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @ ®®: www.creativecommons.org/licenses/by-sa/4.0 | commit 3c6d2d4 compiled at 2022-05-09-09:01

KIT — The Research University in the Helmholtz Association WWW. kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

PINGO it

Karlsruhe Institute of Technology

https://pingo.scc.kit.edu/165540

2/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

https://pingo.scc.kit.edu/165540
https://pingo.scc.kit.edu/165540

KIT

Recap: Rank Queries on Bit Vectors

rank,, (/) # of as before i
position of j-th

ranko(5)

of Os w.r.t.
super-block

O | W
= | O
(NN e))
=
S
(o)

block 1 1 ‘ ‘ :
of Os

- I t {
super-block f 1 ' w.rt. BV

3/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Recap: Succinct Trees

4/24

2022-05-09

KIT

Karlsruhe Institute of Technology

LOUDS

ab ch id ejkfg
10111100110011001160000

ab cd ef g hij k
(OCOCOONOCONO))

DFUDS

a bc de fghi jk
(CCCO) OO CO)))

Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

KIT

What is a Dynamic Bit Vector?

Dynamic Bit Vector Operations ® what update time do we want to have?

w insert(BV, i, b) inserts b between BV/[i — 1] = O(n)
and BV[i] . gg'f)g)
u delete(BV, i) deletes BV/|i] , : - :
. y q_ ® js doubling the length sufficient ® amortized
w pitset(BV, i) sets B[i] = 1 analysis %ﬁg PINGO
w bitclear(BV, i) sets B[i] = 0 ‘ EyE

® why not using a linked list? = PINGO

® pijtset and bitclear easy without rank and select

® jnsert and delete require more work o i :
® dynamic bit vector including rank and select

® 10011010001111
® 01001101001111

5/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org
https://kurpicz.org

Practical Dynamic Bit Vectors (1/2) [Nav16] A“(IT

& for dynamic bit vector of size n num = 16) ones = 3

® use slowdown factor O(w)

w if nis large, O(w) becomes similar to O(log n) num =8 (Y ones = 2 num = 167) ones = 5

® query time O(w) | 10000010 | | 00000100 | num =8 ("{ ones = 2

® n+ O(n/w) bits of space
® trade off between query time and space | 00001010 | |00001011|
® use pointer-based balanced search tree BV = 10000010 00000100 10000001 000010160 0OAO1011

® |eaves store pointer to ©(w?) bits

® inner nodes store total number of bits (num)
and number of ones (ones) in left subtree

6/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

KIT

Practical Dynamic Bit Vectors (2/2)

num = 16) ones = 3

The dynamic bit vector requires n + O(n/w) bits of num = 8 (Y ones = 2 num = 16Y) ones = 5

space
[10000010 | [00000100 | num =8 ({ ones = 2| 10000001
o\ L
= O(w?) bits per leaf [e0001010| [0ee01011]
® O(n/w?) nodes
® each (inner) node stores 2 pointers (and 2 BV = 10000010 00000100 10000001 000010160 00001011
integers)

® O(n/w) bits of space in addition to n bits

7124 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Practical Dynamic Bit Vectors: Access

Access

follow path based on num

8/24

requires O(log n) time @ tree is balanced

return bit

example on the board £-J 10000016 |

num =8 (Y ones = 2

KIT

Karlsruhe Institute of Technology

num = 16) ones = 3

num = 167) ones = 5

| 00000100 |num =8 () ones=2

can return O(w?) bits at the same cost

unlike std: :vector<bool>@

2022-05-09

Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees

| 00001010 | | 00001011 |

BV = 10000010 00000100 10000001 00001010 00001011

Institute of Theoretical Informatics, Algorithm Engineering

Practical Dynamic Bit Vectors: Rank

keep track of ones to the left

9/24

update based on ones stored in node
traverse tree accordingly in O(log n) time
popcount on the leaf in O(w) time 10000016 |

num =8 (Y ones = 2

KIT

Karlsruhe Institute of Technology

num = 16) ones = 3

num = 167) ones = 5

| 00000100 |num =8 () ones=2

example on the board £

2022-05-09

| 00001010 | | 00001011 |

BV = 10000010 00000100 10000001 00001010 00001011

Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees

Institute of Theoretical Informatics, Algorithm Engineering

Practical Dynamic Bit Vectors: Select

similar to rank

10/24

keep track of ones
or number of bits minus ones for select,
traverse tree accordingly in O(log n) time 10000016 |

num =8 (Y ones = 2

KIT

Karlsruhe Institute of Technology

num = 16) ones = 3

num = 167) ones = 5

| 00000100 |num =8 () ones=2

popcount and scan on the leaf in O(w) time

example on the board £/

2022-05-09

| 00001010 | | 00001011 |

BV = 10000010 00000100 10000001 00001010 00001011

Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees

Institute of Theoretical Informatics, Algorithm Engineering

KIT

Practical Dynamic Bit Vectors: Insert
® inserting bit traverses down to leaf num = 16(_) ones = 3
® update num and ones on the path
® insert in bit vector at leaf num = 8 (Y ones = 2 num = 16Y_) ones = 5
@ allocate additional w bits if necessary
® tracking used space requires O(n/w) bits 10000010 | 00000100 | num = 8 ({ ones = 2| 10000001 |

space
[e0001010| [0ee01011]

® at most every w inserts a new allocation

® constant time copy of computer word BV = 10000010 00000100 10000001 60001010 00001611

® are we done? @

11/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

KIT

Maintaining Leaf Sizes (Insert)
® ensure leaves contain ©(w?) bits
® here < 2w? bits ® finding leaf takes O(w) time
® splitting leaf takes O(w) time
a if leaf contains too many bits split leaf ® balancing tree takes O(log n) time
® gplitting can require rebalancing of tree
a (left/right) rotation is sufficient
& example on the board

Inserting a bit in the bit vector requires O(w + log n)
time

12/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

KIT

Practical Dynamic Rank Data Structure: Delete
@ deleting bit traverses down to leaf num = 16) ones = 3
@ update num and ones on the path
@ delete in bit vector at leaf num =8 (Y ones = 2 num = 16_) ones = 5
@ free w bits if possible
® tracking used space requires O(m/w) bits [1000 | [00000100 | num = 8 (7§ ones = 2| 10000001 |

space
[o0ee1010] [eee01011
® at most every w deletes a free
® are we done? BV = 1000 00000100 10000001 00001010 00001011

13/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

KIT

Maintaining Leaf Sizes (Delete)

ensure leaves contain ©(w?) bits

® here > w?/2 bits
Deleting a bit in the bit vector requires O(w + log n)

® if leaf contains not enough bits steal bits from il

preceding or following leaf or

® merge leaves
® finding leaf takes O(w) time

® merging can require rebalancing of tree ® stealing bit requires O(1) time
w (left/right) rotation is sufficient ® merging leaves takes O(1) time
® example on the board ® balancing tree takes O(log n) time

14/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

KIT

Practical Dynamic Rank Data Structure: Set/Unset

& if bit toggles, traverse and update ones

& foggle bit in leaf

a otherwise (unsure if bit toggles) find bit and
® if necessary backtrack path and update ones

15/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

KIT

Partial Sums
Definition: Partial Sum Sampling

Given an array A containing n non-negative numbers ® sample every k-th sum in S of length | n/k|

all < ¢ ® S[i] = sum(A, ik)

a sum(A, i) returns ’: Alj] ® sum(A,0)=0
j=0

= sum(A, i) = S[[i/k]] + .2}, Al
® search(A,) returns min{i > 0, sum(A, i) > j} e

® what has this to do with rank and select - OSSR) e
2 PINGO ® search requires O(log n + k)
Ok
® requiring O(w[n/k]) bits of space
® sum can be answered in O(1) time using
O(wn) bits of space
® using S[i] = sum(A, i)
® search can be answered in O(log n) time on S

16/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

KIT

Theoretical Dynamic Rank and Select Data Structure
® for £ = 1 partial sums is rank and select on bit ® nHy(BV) + o(n) bits of space with optimal
vectors query [HM14; NS14]
® O(log n/ loglog n) query time [RRRO1] a Hy, means 0-th order empirical entropy [KM99]
® n+ o(n) bits of space ® more on measurements for compressibility in
m amortized update times lecture Text-Indexierung

17/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

KIT

What is a Dynamic Succinct Tree
deletenode(T, v) insertchild(T, v, i, k)

@ deletes node v such that & insert new i-th child of node v such that

® v’s children are now children of v’s parent @ the new node becomes parent of

® cannot delete the root ® the previously i-th to (i + k — 1)-th child of v

® jnsertchild(T, v, i,0) inserts new leaf

® jnsertchild(T, v, i, 1) inserts new parent of only
the previously i-th child

® jnsertchild(T, v,1,6(v)) inserts new parent of
all v’s children

18/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

KIT

Example of insertchild

msertchlld T,r,2, 1 insertchild(T,r,3,0 !
o) ,Bw% 3)

TR

Bt

&4 PINGO

® which one is the hardest representation to insert and delete

19/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org
https://kurpicz.org
https://kurpicz.org

Ui

Dynamic LOUDS
Definition: LOUDS deletenode(T, v)
Starting at the root, all nodes on the same depth ® remove 0 representing leaf

® are visited from left to right and = remove 1 representing edge/child

® for node v, d(v) 1’s followed by a 0 are ® only works efficiently with leaves £

appended to the bit vector that contains an initial 10

insertchild(T, v, i, k)
® add 1 to node
® add o at next level accordingly
= only works efficiently with leaves £/

20/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Ui

.
Dynamic BP

Definition: BP deletenode(T, v)

Starting at the I’OOt, traverse the tree in depth-first ® remove both parentheses be|onging to node
order and append a

@ |eft parenthesis if a node is visited the first time
@ right parenthesis if a node is visited the last time

to the bit vector

insertchild(T, v, i, k)
a find parentheses representing subtree under
new node
® can be empty if new leaf is inserted
® enclose these parentheses to add new node

21/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Dynamic DFUDS ﬂIT

Definition: DFUDS insertchild(T, v, i, k)

Starting at the root, traverse tree in depth-first order ® find position where node is inserted
and append

® for node v, §(v) left parentheses and

m if j = §(v) + 1 insert at end of subtree
® insert (¥) ® O(w) time if k = O(w?)

® a right parenthesis if v is visited the first time ® if k > 1 remove k — 1 left parentheses from v

to the bit vector that initially contains a left
parenthesis @ to make them balanced de/etenode(T, v)

® find node v to delete and remove it from bit
vector

® update arity of parent by inserting (°(*)~1
before v’s parent

a if v is leaf remove one left parenthesis instead

22/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

KIT

Update Times and Dependencies
® L OUDS and BP can be updated in time
O(tupdate), Where ® range min-max trees needed for BP and
® fndate iS the time to update the bit vector DFUDS
® | OUDS can be updated in the same time, if the ® support operations in O(log n) time
dynamic bit vector supports updates of blocks ® now range min-max trees must be dynamic

oif 6725 6l() {97 £y moeks 7 ® we will see this later when introducing range

min-max trees

23/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

KIT

Conclusion and Outlook

This Lecture Advanced Data Structures

& dynamic bit vectors with rank and select support) ,))
static/dynamic static/dynamic

@ dynamic succinct trees BV succ. trees

® partial sum
& theoretical results for dynamic bit vectors

Next Lecture

® succinct graphs

® range min-max trees

® concluding succinct data structures
® introducing the project tasks

24/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

KIT

Bibliography |

[HM14] Meng He and J. lan Munro. “Space efficient data structures for dynamic orthogonal range counting”.
In: Comput. Geom. 47.2 (2014), pages 268—281. DOI: 10.1016/j . comgeo.2013.08.007.

[KM99] S. Rao Kosaraju and Giovanni Manzini. “Compression of Low Entropy Strings with Lempel-Ziv
Algorithms”. In: SIAM J. Comput. 29.3 (1999), pages 893-911. DOI: 10.1137/50097539797331105.

[Nav16] Gonzalo Navarro. Compact Data Structures - A Practical Approach. Cambridge University Press,
2016. ISBN: 978-1-10-715238-0.

[NS14] Gonzalo Navarro and Kunihiko Sadakane. “Fully Functional Static and Dynamic Succinct Trees”. In:
ACM Trans. Algorithms 10.3 (2014), 16:1-16:39. DOI: 10.1145/2601073.

[RRR0O1] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. “Succinct Dynamic Data Structures”. In:
WADS. Volume 2125. Lecture Notes in Computer Science. Springer, 2001, pages 426—437. DOI:
10.1007/3-540-44634-6_39.

25/24 2022-05-09 Florian Kurpicz | Advanced Data Structures | 03 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

https://doi.org/10.1016/j.comgeo.2013.08.007
https://doi.org/10.1137/S0097539797331105
https://doi.org/10.1145/2601073
https://doi.org/10.1007/3-540-44634-6_39

	Appendix

