
Advanced Data Structures

Lecture 04: Succinct Planar Graphs and Range Min-Max Trees

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit 3c6d2d4 compiled at 2022-05-16-08:57

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

https://pingo.scc.kit.edu/685523

2/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

PINGO

https://pingo.scc.kit.edu/685523
https://pingo.scc.kit.edu/685523

dynamic bit vector

dynamic succinct trees

which was the easiest representation for
dynamic trees PINGO

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

3/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Recap: Succinct (Dynamic) Graphs

https://kurpicz.org

preliminaries planar graph

succinct planar graph representation

range min-max trees

project

4/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Today’s Plan

Definition: Planar Graph
A graph G = (V ,E) is planar, if it

can be drawn on the plane such that

no edges cross each other

drawing (planar) embedding of the graph

not unique

a graph is planar if it has no minor �

K3,3

K5

0
1

2

3

4

5
6

7

5/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Planar Graphs (1/2)

embedding is defined by order of neighbors

this defines faces

must specify outer face

Now Consider Only
connected planar graphs with embedding,

multi-edges, and

self-loops appear twice in list of edges

0
1

2

3

4

5
6

7

f0

f1

f2

f3

f4

f5

f6

f7

6/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Planar Graphs (2/2)

Definition: Dual Graph
Given an embedding of a planar graph G, the dual
graph G∗ of G has

one node for each face of G and

one edge e′ for each edge e in G such that e′

crosses e and is incident to the faces separated
by e

dual graph is unique for the embedding

dual graph is planar 0
1

2

3

4

5
6

7

f0

f1

f2

f3

f4

f5

f6

f7

7/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Dual Graph of Planar Graph

Definition: Spanning Tree
Given a connected graph G = (V ,E), a spanning
tree is a tree T = (V ,E ′) with E ′ ⊆ E

consider spanning tree of planar graph and

its dual graph

trees can be represented succinctly

0
1

2

3

4

5
6

7

f0

f1

f2

f3

f4

f5

f6

f7

8/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Spanning Trees

Definition: BP
Starting at the root, traverse the tree in depth-first
order and append a

left parenthesis if a node is visited the first time

right parenthesis if a node is visited the last time

to the bit vector

ab cd ef g h ij k

(()(()(()()))()(()()))

excess(i) = rank“(”(i)− rank“)”(i)

fwd_search(i, d) =
min{j > i : excess(j)− excess(i − 1) = d}

bwd_search(i, d) =
max{j < i : excess(i)− excess(j − 1) = d}

findclose(i) = fwd_search(i, 0)

findopen(i) = bwd_search(i, 0)

enclose(i) = bwd_search(i, 2)

9/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Recap: Balanced Parentheses

given connected planar graph G and its dual G∗

let T be spanning tree of G

construct complementary spanning tree T ∗ of
G∗ using only edges not crossing edges in T

edges are stored in adjacency lists

Definition: Incidence
Given a face f and a vertex v , an incidence of f in v
is a pair of edges e, e′, such that v is part of f and
e, e′ are incident of f and consecutive in the
adjacency list of v

0
1

2

3

4

5
6

7

f0

f1

f2

f3

f4

f5

f6

f7

10/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Succinct Planar Graph: General Idea [Fer+20; Tur84]

given connected planar graph G and its dual G∗

let T be spanning tree of G

construct complementary spanning tree T ∗ of
G∗ using only edges not crossing edges in T

edges are stored in adjacency lists

Definition: Incidence
Given a face f and a vertex v , an incidence of f in v
is a pair of edges e, e′, such that v is part of f and
e, e′ are incident of f and consecutive in the
adjacency list of v

0
1

2

3

4

5
6

7

f0

f1

f2

f3

f4

f5

f6

f7

10/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Succinct Planar Graph: General Idea [Fer+20; Tur84]

Lemma: Graph-Tree-Traversal
Given an embedding of G, a spanning tree T of G,
and its complementary spanning tree T ∗ of the dual
of G. When

traversing T depth-first, starting at any node on
the outer face

processing edges in counter-clockwise order

(for the root choose an arbitrary incidence of the
outer face),

each edge not in T corresponds to the next edge
visited in a depth-first traversal of T ∗

0
1

2

3

4

5
6

7

f0

f1

f2

f3

f4

f5

f6

f7

11/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Traversal of the Graph gives Traversal of Trees (1/2)

Proof Graph-Tree-Traversal
proof by induction

correct in the beginning

processed i edges, (i + 1)-th edge is (v ,w)

if (v ,w) is in T , nothing changes

example on the board �

Proof Graph-Tree-Traversal
proof by induction

correct in the beginning

processed i edges, (i + 1)-th edge is (v ,w)

if (v ,w) is in not T , then

visit new edge in T ′

due to counter-clockwise visiting of nodes in G,
going deeper in T ∗

example on the board �

12/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Traversal of the Graph gives Traversal of Trees (2/2)

Proof Graph-Tree-Traversal
proof by induction

correct in the beginning

processed i edges, (i + 1)-th edge is (v ,w)

if (v ,w) is in T , nothing changes

example on the board �

Proof Graph-Tree-Traversal
proof by induction

correct in the beginning

processed i edges, (i + 1)-th edge is (v ,w)

if (v ,w) is in not T , then

visit new edge in T ′

due to counter-clockwise visiting of nodes in G,
going deeper in T ∗

example on the board �

12/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Traversal of the Graph gives Traversal of Trees (2/2)

Succinct Graphs (n = |V | and m = |E |)
bit vector A[0..2m) with A[i] = 1 ⇐⇒ the i-th
edge processed is in T

bit vector B[0..2(n − 1)) with B[i] = ”(”
⇐⇒ i-th time an edge in T is processed is the
first time that edge is processed

bit vector B∗[0..2(m − n + 1)) with B∗[i] = ”(”
⇐⇒ i-th time an edge not in T is processed is
the first time that edge is processed

A = 0110110101110010110100010100

B = (()())(())(())

B∗ = ()(()(()))()()

0
1

2

3

4

5
6

7

f0

f1

f2

f3

f4

f5

f6

f7

13/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Succinct Planar Graph Representation

Succinct Graphs (n = |V | and m = |E |)
bit vector A[0..2m) with A[i] = 1 ⇐⇒ the i-th
edge processed is in T

bit vector B[0..2(n − 1)) with B[i] = ”(”
⇐⇒ i-th time an edge in T is processed is the
first time that edge is processed

bit vector B∗[0..2(m − n + 1)) with B∗[i] = ”(”
⇐⇒ i-th time an edge not in T is processed is
the first time that edge is processed

A = 0110110101110010110100010100

B = (()())(())(())

B∗ = ()(()(()))()()

0
1

2

3

4

5
6

7

f0

f1

f2

f3

f4

f5

f6

f7

13/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Succinct Planar Graph Representation

Succinct Graphs (n = |V | and m = |E |)
bit vector A[0..2m) with A[i] = 1 ⇐⇒ the i-th
edge processed is in T

bit vector B[0..2(n − 1)) with B[i] = ”(”
⇐⇒ i-th time an edge in T is processed is the
first time that edge is processed

bit vector B∗[0..2(m − n + 1)) with B∗[i] = ”(”
⇐⇒ i-th time an edge not in T is processed is
the first time that edge is processed

A = 0110110101110010110100010100

B = (()())(())(())

B∗ = ()(()(()))()()

0
1

2

3

4

5
6

7

f0

f1

f2

f3

f4

f5

f6

f7

13/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Succinct Planar Graph Representation

Succinct Graphs (n = |V | and m = |E |)
bit vector A[0..2m) with A[i] = 1 ⇐⇒ the i-th
edge processed is in T

bit vector B[0..2(n − 1)) with B[i] = ”(”
⇐⇒ i-th time an edge in T is processed is the
first time that edge is processed

bit vector B∗[0..2(m − n + 1)) with B∗[i] = ”(”
⇐⇒ i-th time an edge not in T is processed is
the first time that edge is processed

A = 0110110101110010110100010100

B = (()())(())(())

B∗ = ()(()(()))()()

0
1

2

3

4

5
6

7

f0

f1

f2

f3

f4

f5

f6

f7

13/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Succinct Planar Graph Representation

Succinct Graphs (n = |V | and m = |E |)
bit vector A[0..2m) with A[i] = 1 ⇐⇒ the i-th
edge processed is in T

bit vector B[0..2(n − 1)) with B[i] = ”(”
⇐⇒ i-th time an edge in T is processed is the
first time that edge is processed

bit vector B∗[0..2(m − n + 1)) with B∗[i] = ”(”
⇐⇒ i-th time an edge not in T is processed is
the first time that edge is processed

A = 0110110101110010110100010100

B = (()())(())(())

B∗ = ()(()(()))()()

0
1

2

3

4

5
6

7

f0

f1

f2

f3

f4

f5

f6

f7

13/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Succinct Planar Graph Representation

Succinct Graphs (n = |V | and m = |E |)
bit vector A[0..2m) with A[i] = 1 ⇐⇒ the i-th
edge processed is in T

bit vector B[0..2(n − 1)) with B[i] = ”(”
⇐⇒ i-th time an edge in T is processed is the
first time that edge is processed

bit vector B∗[0..2(m − n + 1)) with B∗[i] = ”(”
⇐⇒ i-th time an edge not in T is processed is
the first time that edge is processed

A = 0110110101110010110100010100

B = (()())(())(())

B∗ = ()(()(()))()()

0
1

2

3

4

5
6

7

f0

f1

f2

f3

f4

f5

f6

f7

13/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Succinct Planar Graph Representation

first(v) return i such that the first edge
processed when visiting v is processed i-th
during traversal

next(i) return j such that next edge that is
processed when visiting v by i-th edge is
processed j-th during traversal

mate(i) return j such that edge is processed
i-th and j-th during traversal

vertex(i) return node v that is visited when
processing i-th edge during traversal

14/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Simple Planar Succinct Graph Operations (1/2)

all operations work in O(1) time

using rank and select queries on A

using BP representation of T and T ∗

A = 0110110101110010110100010100

B = (()())(())(())

B∗ = ()(()(()))()()

first(0) = 0 mate(0) = 3 vertex(3) = 2
next(0) = 1 mate(1) = 9 vertex(9) = 1
next(1) = 10 mate(10) = 16 vertex(16) = 4
next(10) = 17 mate(17) = 25 vertex(25) = 6

example on the board �

0
1

2

3

4

5
6

7

f0

f1

f2

f3

f4

f5

f6

f7

15/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Simple Planar Succinct Graph Operations (2/2)

all operations work in O(1) time

using rank and select queries on A

using BP representation of T and T ∗

A = 0110110101110010110100010100

B = (()())(())(())

B∗ = ()(()(()))()()

first(0) = 0 mate(0) = 3 vertex(3) = 2
next(0) = 1 mate(1) = 9 vertex(9) = 1
next(1) = 10 mate(10) = 16 vertex(16) = 4
next(10) = 17 mate(17) = 25 vertex(25) = 6

example on the board �

0
1

2

3

4

5
6

7

f0

f1

f2

f3

f4

f5

f6

f7

15/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Simple Planar Succinct Graph Operations (2/2)

while node has next

increase counter and go to next

return counter

running time depends of degree of node

better running time preferable

speed up queries using o(m) additional bits

let f (m) ∈ ω(m)

mark in D[0..m) nodes with degree > f (m)
 at most m/f (m) ones (sparse)

for these nodes store degree unary in E [0..2m)
 also sparse

compressed sparse bit vectors require o(m)
space

degree queries require only O(f (m)) time

example on the board �

16/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Getting the Degree

while node has next

increase counter and go to next

return counter

running time depends of degree of node

better running time preferable

speed up queries using o(m) additional bits

let f (m) ∈ ω(m)

mark in D[0..m) nodes with degree > f (m)
 at most m/f (m) ones (sparse)

for these nodes store degree unary in E [0..2m)
 also sparse

compressed sparse bit vectors require o(m)
space

degree queries require only O(f (m)) time

example on the board �

16/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Getting the Degree

while node has next

increase counter and go to next

return counter

running time depends of degree of node

better running time preferable

speed up queries using o(m) additional bits

let f (m) ∈ ω(m)

mark in D[0..m) nodes with degree > f (m)
 at most m/f (m) ones (sparse)

for these nodes store degree unary in E [0..2m)
 also sparse

compressed sparse bit vectors require o(m)
space

degree queries require only O(f (m)) time

example on the board �

16/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Getting the Degree

while node has next

increase counter and go to next

return counter

running time depends of degree of node

better running time preferable

speed up queries using o(m) additional bits

let f (m) ∈ ω(m)

mark in D[0..m) nodes with degree > f (m)
 at most m/f (m) ones (sparse)

for these nodes store degree unary in E [0..2m)
 also sparse

compressed sparse bit vectors require o(m)
space

degree queries require only O(f (m)) time

example on the board �

16/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Getting the Degree

Lemma: Succinct Planar Graphs
Storing an embedding of a connected planar graph
with m edges requires 4m + o(m) bits and all nodes
incident to a node can be iterated over in
(counter-)clockwise order in constant time per edge.
Finding the degree of a node can be done in
O(f (m)) time for any function f (m) ∈ ω(1)

17/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Conclusion Succinct Planar Graphs

Definition: Range Min-Max Tree
Given a bit vector B of length n and a block size b,
store for each consecutive block (from s to e) of BV

total excess in block:
excess(e)− excess(s − 1)

minimum left-to-right excess in block:
min{excess(p)− excess(s − 1) : p ∈ [s, e)}

and build a binary tree over these blocks, where
each node stores the same total information for
blocks in all its leaves

example on the board �

Lemma: Range Min-Max Tree Space
A range min-max tree with block size b for a bit vector
of size n requires n + O((n/b) log n) bits of space

18/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Min-Max Trees (1/2)

Definition: Range Min-Max Tree
Given a bit vector B of length n and a block size b,
store for each consecutive block (from s to e) of BV

total excess in block:
excess(e)− excess(s − 1)

minimum left-to-right excess in block:
min{excess(p)− excess(s − 1) : p ∈ [s, e)}

and build a binary tree over these blocks, where
each node stores the same total information for
blocks in all its leaves

example on the board �

Lemma: Range Min-Max Tree Space
A range min-max tree with block size b for a bit vector
of size n requires n + O((n/b) log n) bits of space

18/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Min-Max Trees (1/2)

fwdsearch in a Range Min-Max Tree
scan block

if not found traverse tree

identify block in tree

scan block

process c bits at a time

first align with next c bits

requires O(c + b/c) time

going up and down tree in O(log(n/b)) time

scanning last block requires O(c + b/c) time

by choosing b = c log n this requires

O(log n) time and
n + O(n/(c log n)) = n + o(n) bits space

Improvements
two level approach

build range min-max trees for chunks of size
Θ(log3 n)

O(log log n) query time inside a chunk

can result in total query time of O(log log n)

19/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Min-Max Trees (2/2)

fwdsearch in a Range Min-Max Tree
scan block

if not found traverse tree

identify block in tree

scan block

process c bits at a time

first align with next c bits

requires O(c + b/c) time

going up and down tree in O(log(n/b)) time

scanning last block requires O(c + b/c) time

by choosing b = c log n this requires

O(log n) time and
n + O(n/(c log n)) = n + o(n) bits space

Improvements
two level approach

build range min-max trees for chunks of size
Θ(log3 n)

O(log log n) query time inside a chunk

can result in total query time of O(log log n)

19/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Min-Max Trees (2/2)

fwdsearch in a Range Min-Max Tree
scan block

if not found traverse tree

identify block in tree

scan block

process c bits at a time

first align with next c bits

requires O(c + b/c) time

going up and down tree in O(log(n/b)) time

scanning last block requires O(c + b/c) time

by choosing b = c log n this requires

O(log n) time and
n + O(n/(c log n)) = n + o(n) bits space

Improvements
two level approach

build range min-max trees for chunks of size
Θ(log3 n)

O(log log n) query time inside a chunk

can result in total query time of O(log log n)

19/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Min-Max Trees (2/2)

fwdsearch in a Range Min-Max Tree
scan block

if not found traverse tree

identify block in tree

scan block

process c bits at a time

first align with next c bits

requires O(c + b/c) time

going up and down tree in O(log(n/b)) time

scanning last block requires O(c + b/c) time

by choosing b = c log n this requires

O(log n) time and
n + O(n/(c log n)) = n + o(n) bits space

Improvements
two level approach

build range min-max trees for chunks of size
Θ(log3 n)

O(log log n) query time inside a chunk

can result in total query time of O(log log n)

19/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Min-Max Trees (2/2)

fwdsearch in a Range Min-Max Tree
scan block

if not found traverse tree

identify block in tree

scan block

process c bits at a time

first align with next c bits

requires O(c + b/c) time

going up and down tree in O(log(n/b)) time

scanning last block requires O(c + b/c) time

by choosing b = c log n this requires

O(log n) time and
n + O(n/(c log n)) = n + o(n) bits space

Improvements
two level approach

build range min-max trees for chunks of size
Θ(log3 n)

O(log log n) query time inside a chunk

can result in total query time of O(log log n)

19/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Min-Max Trees (2/2)

This Lecture
succinct planar graphs

range min-max trees

no live lecture next week

video only

will start half an hour earlier on 30.05. for
questions

Next Lecture
predecessor data structures

introduction to range minimum queries

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

20/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture
succinct planar graphs

range min-max trees

no live lecture next week

video only

will start half an hour earlier on 30.05. for
questions

Next Lecture
predecessor data structures

introduction to range minimum queries

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

20/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture
succinct planar graphs

range min-max trees

no live lecture next week

video only

will start half an hour earlier on 30.05. for
questions

Next Lecture
predecessor data structures

introduction to range minimum queries

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

20/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

detailed information on the homepage

implement dynamic bit vectors and BP

deadline: 15.07.2022

present results in 5 minutes on 25.07.2022

21/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Project

[Fer+20] Leo Ferres, José Fuentes-Sepúlveda, Travis Gagie, Meng He, and Gonzalo Navarro. “Fast and
Compact Planar Embeddings”. In: Comput. Geom. 89 (2020), page 101630. DOI:
10.1016/j.comgeo.2020.101630.

[Tur84] György Turán. “On the Succinct Representation of Graphs”. In: Discret. Appl. Math. 8.3 (1984),
pages 289–294. DOI: 10.1016/0166-218X(84)90126-4.

22/20 2022-05-16 Florian Kurpicz | Advanced Data Structures | 04 Succinct Planar Graphs & Range Min-Max Trees Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1016/j.comgeo.2020.101630
https://doi.org/10.1016/0166-218X(84)90126-4

	Appendix

