
Advanced Data Structures

Lecture 05: Predecessor and Range Minimum Query Data Structures

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit 3c6d2d4 compiled at 2022-05-20-18:36

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

Succinct Planar Graphs
using spanning tree of graph and

special spanning tree of dual graph

both represented succinctly

represent planar graph succinctly

remember whether edge is in spanning tree or
not

(Dynamic) Range Min-Max Trees
use dynamic balanced binary tree

updating rang min-max tree similar to bit vector

additionally, information in nodes has to be
updated

same dynamic balanced binary tree can be
used as foundation for dynamic bit vector and
range min-max tree

Gonzalo Navarro. Compact Data Structures - A
Practical Approach. Cambridge University
Press, 2016. ISBN: 978-1-10-715238-0

2/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Recap

Succinct Planar Graphs
using spanning tree of graph and

special spanning tree of dual graph

both represented succinctly

represent planar graph succinctly

remember whether edge is in spanning tree or
not

(Dynamic) Range Min-Max Trees
use dynamic balanced binary tree

updating rang min-max tree similar to bit vector

additionally, information in nodes has to be
updated

same dynamic balanced binary tree can be
used as foundation for dynamic bit vector and
range min-max tree

Gonzalo Navarro. Compact Data Structures - A
Practical Approach. Cambridge University
Press, 2016. ISBN: 978-1-10-715238-0

2/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Recap

Setting
assume universe U = [0, u)

let u = 2w

sorted array of n integers A ⊆ U
log n ≤ w since n ≤ u

Definition: Predecessor & Successor
Given an array A of n integers from an universe U
and an integer x ∈ U , the predecessor and
successor of x in A are

pred(A, x) = max{y ∈ A : y ≤ x}
succ(A, x) = min{y ∈ A : y ≥ x}

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

pred(3) = 2

pred(10) = 10

succ(23) = 32

in what time and space can we solve this using
bit vectors? PINGO

3/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Predecessor and Successor

https://kurpicz.org

Setting
assume universe U = [0, u)

let u = 2w

sorted array of n integers A ⊆ U
log n ≤ w since n ≤ u

Definition: Predecessor & Successor
Given an array A of n integers from an universe U
and an integer x ∈ U , the predecessor and
successor of x in A are

pred(A, x) = max{y ∈ A : y ≤ x}
succ(A, x) = min{y ∈ A : y ≥ x}

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

pred(3) = 2

pred(10) = 10

succ(23) = 32

in what time and space can we solve this using
bit vectors? PINGO

3/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Predecessor and Successor

https://kurpicz.org

Setting
assume universe U = [0, u)

let u = 2w

sorted array of n integers A ⊆ U
log n ≤ w since n ≤ u

Definition: Predecessor & Successor
Given an array A of n integers from an universe U
and an integer x ∈ U , the predecessor and
successor of x in A are

pred(A, x) = max{y ∈ A : y ≤ x}
succ(A, x) = min{y ∈ A : y ≥ x}

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

pred(3) = 2

pred(10) = 10

succ(23) = 32

in what time and space can we solve this using
bit vectors? PINGO

3/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Predecessor and Successor

https://kurpicz.org

Setting
assume universe U = [0, u)

let u = 2w

sorted array of n integers A ⊆ U
log n ≤ w since n ≤ u

Definition: Predecessor & Successor
Given an array A of n integers from an universe U
and an integer x ∈ U , the predecessor and
successor of x in A are

pred(A, x) = max{y ∈ A : y ≤ x}
succ(A, x) = min{y ∈ A : y ≥ x}

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

pred(3) = 2

pred(10) = 10

succ(23) = 32

in what time and space can we solve this using
bit vectors? PINGO

3/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Predecessor and Successor

https://kurpicz.org

Setting
assume universe U = [0, u)

let u = 2w

sorted array of n integers A ⊆ U
log n ≤ w since n ≤ u

Definition: Predecessor & Successor
Given an array A of n integers from an universe U
and an integer x ∈ U , the predecessor and
successor of x in A are

pred(A, x) = max{y ∈ A : y ≤ x}
succ(A, x) = min{y ∈ A : y ≥ x}

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

pred(3) = 2

pred(10) = 10

succ(23) = 32

in what time and space can we solve this using
bit vectors? PINGO

3/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Predecessor and Successor

https://kurpicz.org

Setting
assume universe U = [0, u)

let u = 2w

sorted array of n integers A ⊆ U
log n ≤ w since n ≤ u

Definition: Predecessor & Successor
Given an array A of n integers from an universe U
and an integer x ∈ U , the predecessor and
successor of x in A are

pred(A, x) = max{y ∈ A : y ≤ x}
succ(A, x) = min{y ∈ A : y ≥ x}

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

pred(3) = 2

pred(10) = 10

succ(23) = 32

in what time and space can we solve this using
bit vectors? PINGO

3/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Predecessor and Successor

https://kurpicz.org

Setting
assume universe U = [0, u)

let u = 2w

sorted array of n integers A ⊆ U
log n ≤ w since n ≤ u

Definition: Predecessor & Successor
Given an array A of n integers from an universe U
and an integer x ∈ U , the predecessor and
successor of x in A are

pred(A, x) = max{y ∈ A : y ≤ x}
succ(A, x) = min{y ∈ A : y ≥ x}

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

pred(3) = 2

pred(10) = 10

succ(23) = 32

in what time and space can we solve this using
bit vectors? PINGO

3/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Predecessor and Successor

https://kurpicz.org

binary search

O(log n) query time

no space overhead

using bit vector

O(1) query time

u + o(u) bits space

Predecessor of x in Bit Vector
z = rank1(x + 2)

predecessor is select1(z)

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

pred(3) = 2

111010010010000000001110000000001

rank1(21) = 6

select1(6) = 10

pred(19) = 10

4/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Predecessor and Successor: Simple Solutions

binary search

O(log n) query time

no space overhead

using bit vector

O(1) query time

u + o(u) bits space

Predecessor of x in Bit Vector
z = rank1(x + 2)

predecessor is select1(z)

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

pred(3) = 2

111010010010000000001110000000001

rank1(21) = 6

select1(6) = 10

pred(19) = 10

4/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Predecessor and Successor: Simple Solutions

binary search

O(log n) query time

no space overhead

using bit vector

O(1) query time

u + o(u) bits space

Predecessor of x in Bit Vector
z = rank1(x + 2)

predecessor is select1(z)

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

pred(3) = 2

111010010010000000001110000000001

rank1(21) = 6

select1(6) = 10

pred(19) = 10

4/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Predecessor and Successor: Simple Solutions

binary search

O(log n) query time

no space overhead

using bit vector

O(1) query time

u + o(u) bits space

Predecessor of x in Bit Vector
z = rank1(x + 2)

predecessor is select1(z)

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

pred(3) = 2

111010010010000000001110000000001

rank1(21) = 6

select1(6) = 10

pred(19) = 10

4/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Predecessor and Successor: Simple Solutions

n integers from universe U = [0, u)

split number in upper and lower halves

upper half: ⌈log n⌉ most significant bits

lower half: ⌈log u − log n⌉ remaining bits

Upper Half
monotonous sequence of ⌈log n⌉ bit integers

not strictly monotonous

let p0, . . . , pn−1 be sequence

use bit vector of length 2n + 1 bits

represent pi with a 1 at position i + pi

rank and select support requires o(n) bits

Lower Half
store lower half plain using ⌈log u

n ⌉ bits

n log⌈ u
n ⌉ bits for lower half

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

0: 000000

1: 000001

2: 000010

4: 000100

7: 000111

10: 001010

20: 010100

21: 010101

22: 010110

30: 100000

5/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Elias-Fano Coding [Eli74; Fan71] (1/3)

n integers from universe U = [0, u)

split number in upper and lower halves

upper half: ⌈log n⌉ most significant bits

lower half: ⌈log u − log n⌉ remaining bits

Upper Half
monotonous sequence of ⌈log n⌉ bit integers

not strictly monotonous

let p0, . . . , pn−1 be sequence

use bit vector of length 2n + 1 bits

represent pi with a 1 at position i + pi

rank and select support requires o(n) bits

Lower Half
store lower half plain using ⌈log u

n ⌉ bits

n log⌈ u
n ⌉ bits for lower half

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

0: 000000

1: 000001

2: 000010

4: 000100

7: 000111

10: 001010

20: 010100

21: 010101

22: 010110

30: 100000

5/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Elias-Fano Coding [Eli74; Fan71] (1/3)

n integers from universe U = [0, u)

split number in upper and lower halves

upper half: ⌈log n⌉ most significant bits

lower half: ⌈log u − log n⌉ remaining bits

Upper Half
monotonous sequence of ⌈log n⌉ bit integers

not strictly monotonous

let p0, . . . , pn−1 be sequence

use bit vector of length 2n + 1 bits

represent pi with a 1 at position i + pi

rank and select support requires o(n) bits

Lower Half
store lower half plain using ⌈log u

n ⌉ bits

n log⌈ u
n ⌉ bits for lower half

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

0: 000000

1: 000001

2: 000010

4: 000100

7: 000111

10: 001010

20: 010100

21: 010101

22: 010110

30: 100000

5/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Elias-Fano Coding [Eli74; Fan71] (1/3)

n integers from universe U = [0, u)

split number in upper and lower halves

upper half: ⌈log n⌉ most significant bits

lower half: ⌈log u − log n⌉ remaining bits

Upper Half
monotonous sequence of ⌈log n⌉ bit integers

not strictly monotonous

let p0, . . . , pn−1 be sequence

use bit vector of length 2n + 1 bits

represent pi with a 1 at position i + pi

rank and select support requires o(n) bits

Lower Half
store lower half plain using ⌈log u

n ⌉ bits

n log⌈ u
n ⌉ bits for lower half

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

0: 000000

1: 000001

2: 000010

4: 000100

7: 000111

10: 001010

20: 010100

21: 010101

22: 010110

30: 100000

5/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Elias-Fano Coding [Eli74; Fan71] (1/3)

Access i-th Element
upper: select1(i)− i

lower: corresponding bits from lower bit vector

Predecessor x
let x ′ be ⌈log n⌉ MSB of x

p = select0(x ′) select0(0) returns 0

scan corresponding values in lower till
predecessor is found

how many elements do we have to scan?
PINGO

scanning at most O(log u
n) elements

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

0: 000000

1: 000001

2: 000010

4: 000100

7: 000111

10: 001010

20: 010100

21: 010101

22: 010110

30: 100000

upper: 11101101000111000100
lower: 00011000111000011000

6/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Elias-Fano Coding (2/3)

https://kurpicz.org

Access i-th Element
upper: select1(i)− i

lower: corresponding bits from lower bit vector

Predecessor x
let x ′ be ⌈log n⌉ MSB of x

p = select0(x ′) select0(0) returns 0

scan corresponding values in lower till
predecessor is found

how many elements do we have to scan?
PINGO

scanning at most O(log u
n) elements

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

0: 000000

1: 000001

2: 000010

4: 000100

7: 000111

10: 001010

20: 010100

21: 010101

22: 010110

30: 100000

upper: 11101101000111000100
lower: 00011000111000011000

6/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Elias-Fano Coding (2/3)

https://kurpicz.org

Access i-th Element
upper: select1(i)− i

lower: corresponding bits from lower bit vector

Predecessor x
let x ′ be ⌈log n⌉ MSB of x

p = select0(x ′) select0(0) returns 0

scan corresponding values in lower till
predecessor is found

how many elements do we have to scan?
PINGO

scanning at most O(log u
n) elements

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

0: 000000

1: 000001

2: 000010

4: 000100

7: 000111

10: 001010

20: 010100

21: 010101

22: 010110

30: 100000

upper: 11101101000111000100
lower: 00011000111000011000

6/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Elias-Fano Coding (2/3)

https://kurpicz.org

Access i-th Element
upper: select1(i)− i

lower: corresponding bits from lower bit vector

Predecessor x
let x ′ be ⌈log n⌉ MSB of x

p = select0(x ′) select0(0) returns 0

scan corresponding values in lower till
predecessor is found

how many elements do we have to scan?
PINGO

scanning at most O(log u
n) elements

0 1 2 3 4 5 6 7 8 9

0 1 2 4 7 10 20 21 22 32

0: 000000

1: 000001

2: 000010

4: 000100

7: 000111

10: 001010

20: 010100

21: 010101

22: 010110

30: 100000

upper: 11101101000111000100
lower: 00011000111000011000

6/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Elias-Fano Coding (2/3)

https://kurpicz.org

Lemma: Elias-Fano Coding
Given an array containing n distinct integers from a
universe U = [0, n), the array can be represented
using

n(2 + log⌈u
n
⌉) bits

while allowing O(1) access time and O(log u
n)

predecessor/successor time

7/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Elias-Fano Coding (3/3)

each number has w bits

build binary tree where leaves represent
numbers

edges are labeled 0 or 1

labels on path from root to leaf are value
represented in leaf

store nodes in hash tables with bit prefix as key

also store pointer to min and max in right and
left subtree

leaves are stored in doubly linked list

using perfect hashing on each level requires
O(wn) space

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 10 1 0 10 1 0 10 1 0 10 1

pointers to min and max are missing �

tree most likely not complete

8/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

x-Fast Tries

each number has w bits

build binary tree where leaves represent
numbers

edges are labeled 0 or 1

labels on path from root to leaf are value
represented in leaf

store nodes in hash tables with bit prefix as key

also store pointer to min and max in right and
left subtree

leaves are stored in doubly linked list

using perfect hashing on each level requires
O(wn) space

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 10 1 0 10 1 0 10 1 0 10 1

pointers to min and max are missing �

tree most likely not complete

8/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

x-Fast Tries

each number has w bits

build binary tree where leaves represent
numbers

edges are labeled 0 or 1

labels on path from root to leaf are value
represented in leaf

store nodes in hash tables with bit prefix as key

also store pointer to min and max in right and
left subtree

leaves are stored in doubly linked list

using perfect hashing on each level requires
O(wn) space

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 10 1 0 10 1 0 10 1 0 10 1

pointers to min and max are missing �

tree most likely not complete

8/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

x-Fast Tries

each number has w bits

build binary tree where leaves represent
numbers

edges are labeled 0 or 1

labels on path from root to leaf are value
represented in leaf

store nodes in hash tables with bit prefix as key

also store pointer to min and max in right and
left subtree

leaves are stored in doubly linked list

using perfect hashing on each level requires
O(wn) space

0 1

0

1

0 1

0 1

0 1

0

1

0 1

0 10 1

0 10 1

0 1

0 1

0 10 1

pointers to min and max are missing �

tree most likely not complete

8/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

x-Fast Tries

traversing tree requires O(w) time

using binary search on levels requires O(logw)
time

if value not found go to min or max depending
on query

if value is found use doubly linked list to find
predecessor or successor

example on the board �

9/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

x-Fast Tries: Queries

x-fast trie requires O(wn) space

group w consecutive objects into one block Bi

for each block Bi choose maximum mi as
representative

build x-fast trie for representatives

store blocks in balanced binary trees

x-fast trie requires O(n) space

search in x-fast trie requires O(log log n
w) time

search in balanced binary tree requires
O(logw) = O(log log n) time

example on the board �

Dynamic y-Fast Trie
use cuckoo hashing

representative does not have to be maximum

any element separating groups suffices

merge and split blocks that are too small/too big

query time only expected

10/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

y-Fast Tries

x-fast trie requires O(wn) space

group w consecutive objects into one block Bi

for each block Bi choose maximum mi as
representative

build x-fast trie for representatives

store blocks in balanced binary trees

x-fast trie requires O(n) space

search in x-fast trie requires O(log log n
w) time

search in balanced binary tree requires
O(logw) = O(log log n) time

example on the board �

Dynamic y-Fast Trie
use cuckoo hashing

representative does not have to be maximum

any element separating groups suffices

merge and split blocks that are too small/too big

query time only expected

10/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

y-Fast Tries

x-fast trie requires O(wn) space

group w consecutive objects into one block Bi

for each block Bi choose maximum mi as
representative

build x-fast trie for representatives

store blocks in balanced binary trees

x-fast trie requires O(n) space

search in x-fast trie requires O(log log n
w) time

search in balanced binary tree requires
O(logw) = O(log log n) time

example on the board �

Dynamic y-Fast Trie
use cuckoo hashing

representative does not have to be maximum

any element separating groups suffices

merge and split blocks that are too small/too big

query time only expected

10/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

y-Fast Tries

Setting
array of n integers

not necessarily sorted

Definition: Range Minimum Queries
Given an array of A of n integers

rmq(A, s, e) = argmin
s≤i≤e

A[i]

returns the position of minimum in A[s, e]

0 1 2 3 4 5 6 7 8 9

8 2 5 1 9 11 10 20 22 4

rmq(0, 9) = 3

rmq(0, 2) = 1

rmq(4, 8) = 4

naive in O(1) time

how much space does a naive O(1)-time
solution need PINGO

using O(n2) space rmq(s, e) = M[s][e]

11/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Range Minimum Queries

https://kurpicz.org

Setting
array of n integers

not necessarily sorted

Definition: Range Minimum Queries
Given an array of A of n integers

rmq(A, s, e) = argmin
s≤i≤e

A[i]

returns the position of minimum in A[s, e]

0 1 2 3 4 5 6 7 8 9

8 2 5 1 9 11 10 20 22 4

rmq(0, 9) = 3

rmq(0, 2) = 1

rmq(4, 8) = 4

naive in O(1) time

how much space does a naive O(1)-time
solution need PINGO

using O(n2) space rmq(s, e) = M[s][e]

11/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Range Minimum Queries

https://kurpicz.org

Setting
array of n integers

not necessarily sorted

Definition: Range Minimum Queries
Given an array of A of n integers

rmq(A, s, e) = argmin
s≤i≤e

A[i]

returns the position of minimum in A[s, e]

0 1 2 3 4 5 6 7 8 9

8 2 5 1 9 11 10 20 22 4

rmq(0, 9) = 3

rmq(0, 2) = 1

rmq(4, 8) = 4

naive in O(1) time

how much space does a naive O(1)-time
solution need PINGO

using O(n2) space rmq(s, e) = M[s][e]

11/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Range Minimum Queries

https://kurpicz.org

instead of storing all solutions

store solutions for intervals of length 2k for
every k

M[0..n)[0..⌊log n⌋)

Queries
query rmq(A, s, e) is answered using two
subqueries

let ℓ = ⌊log(e − s − 1)⌋
m1 = rmq(A, s, s + 2ℓ − 1) and
m2 = rmq(A, e − 2ℓ + 1, e)

rmq(A, s, e) = argminm∈{m1,m2} A[m]

Construction

M[x][ℓ] = rmq(A, x , x + 2ℓ − 1)

= argmin{A[i] : i ∈ [x , x + 2ℓ)}

= argmin{A[i] : i ∈ {rmq(A, x , x + 2ℓ−1 − 1),

= rmq(A, x + 2ℓ−1, x + 2ℓ − 1)}}
= argmin{A[i] : i ∈ {M[x][ℓ− 1],

= M[x + 2ℓ−1][ℓ− 1]}}

how much time do we need to fill the table?
PINGO

dynamic programming in O(n log n) time

12/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Range Minimum Queries in O(1) Time and O(n log n) Space

https://kurpicz.org

instead of storing all solutions

store solutions for intervals of length 2k for
every k

M[0..n)[0..⌊log n⌋)

Queries
query rmq(A, s, e) is answered using two
subqueries

let ℓ = ⌊log(e − s − 1)⌋
m1 = rmq(A, s, s + 2ℓ − 1) and
m2 = rmq(A, e − 2ℓ + 1, e)

rmq(A, s, e) = argminm∈{m1,m2} A[m]

Construction

M[x][ℓ] = rmq(A, x , x + 2ℓ − 1)

= argmin{A[i] : i ∈ [x , x + 2ℓ)}

= argmin{A[i] : i ∈ {rmq(A, x , x + 2ℓ−1 − 1),

= rmq(A, x + 2ℓ−1, x + 2ℓ − 1)}}
= argmin{A[i] : i ∈ {M[x][ℓ− 1],

= M[x + 2ℓ−1][ℓ− 1]}}

how much time do we need to fill the table?
PINGO

dynamic programming in O(n log n) time

12/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Range Minimum Queries in O(1) Time and O(n log n) Space

https://kurpicz.org

instead of storing all solutions

store solutions for intervals of length 2k for
every k

M[0..n)[0..⌊log n⌋)

Queries
query rmq(A, s, e) is answered using two
subqueries

let ℓ = ⌊log(e − s − 1)⌋
m1 = rmq(A, s, s + 2ℓ − 1) and
m2 = rmq(A, e − 2ℓ + 1, e)

rmq(A, s, e) = argminm∈{m1,m2} A[m]

Construction

M[x][ℓ] = rmq(A, x , x + 2ℓ − 1)

= argmin{A[i] : i ∈ [x , x + 2ℓ)}

= argmin{A[i] : i ∈ {rmq(A, x , x + 2ℓ−1 − 1),

= rmq(A, x + 2ℓ−1, x + 2ℓ − 1)}}
= argmin{A[i] : i ∈ {M[x][ℓ− 1],

= M[x + 2ℓ−1][ℓ− 1]}}

how much time do we need to fill the table?
PINGO

dynamic programming in O(n log n) time

12/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Range Minimum Queries in O(1) Time and O(n log n) Space

https://kurpicz.org

instead of storing all solutions

store solutions for intervals of length 2k for
every k

M[0..n)[0..⌊log n⌋)

Queries
query rmq(A, s, e) is answered using two
subqueries

let ℓ = ⌊log(e − s − 1)⌋
m1 = rmq(A, s, s + 2ℓ − 1) and
m2 = rmq(A, e − 2ℓ + 1, e)

rmq(A, s, e) = argminm∈{m1,m2} A[m]

Construction

M[x][ℓ] = rmq(A, x , x + 2ℓ − 1)

= argmin{A[i] : i ∈ [x , x + 2ℓ)}

= argmin{A[i] : i ∈ {rmq(A, x , x + 2ℓ−1 − 1),

= rmq(A, x + 2ℓ−1, x + 2ℓ − 1)}}
= argmin{A[i] : i ∈ {M[x][ℓ− 1],

= M[x + 2ℓ−1][ℓ− 1]}}

how much time do we need to fill the table?
PINGO

dynamic programming in O(n log n) time

12/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Range Minimum Queries in O(1) Time and O(n log n) Space

https://kurpicz.org

divide A into blocks of size s = log n
4

blocks B1, . . . ,Bm with m = ⌈n/s⌉
query rmq(A, s, e) is answered using at most
three subqueries

one query spanning multiple block

at most two queries within a block each

example on the board �

Query Spanning Blocks
use array B containing minimum within each
block

B has m entries

use O(n log n data structure for B

O(m logm) = O(n
s log

n
s) =

O(n
log n log

n
log n) = O(n)

use additional array B′ storing position of
minimum in each block

for queries within block use Cartesian trees

13/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Range Minimum Queries in O(1) Time and O(n) Space (1/2)

divide A into blocks of size s = log n
4

blocks B1, . . . ,Bm with m = ⌈n/s⌉
query rmq(A, s, e) is answered using at most
three subqueries

one query spanning multiple block

at most two queries within a block each

example on the board �

Query Spanning Blocks
use array B containing minimum within each
block

B has m entries

use O(n log n data structure for B

O(m logm) = O(n
s log

n
s) =

O(n
log n log

n
log n) = O(n)

use additional array B′ storing position of
minimum in each block

for queries within block use Cartesian trees

13/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Range Minimum Queries in O(1) Time and O(n) Space (1/2)

divide A into blocks of size s = log n
4

blocks B1, . . . ,Bm with m = ⌈n/s⌉
query rmq(A, s, e) is answered using at most
three subqueries

one query spanning multiple block

at most two queries within a block each

example on the board �

Query Spanning Blocks
use array B containing minimum within each
block

B has m entries

use O(n log n data structure for B

O(m logm) = O(n
s log

n
s) =

O(n
log n log

n
log n) = O(n)

use additional array B′ storing position of
minimum in each block

for queries within block use Cartesian trees

13/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Range Minimum Queries in O(1) Time and O(n) Space (1/2)

Definition: Cartesian Tree
Given an array A of length n, a Cartesian tree C(A)
of a is a labeled binary tree with

root r is labeled with
x = argmin{A[i] : i ∈ [0, n)}
left and right children of r are Cartesian trees
C(A[0, x)) and C(A[x + 1, n)) if interval
exists

Lemma: Cartesian Tree Construction
A Cartesian tree for an array of size n can be
computed in O(n) time

Proof (Sketch)
scan array from left to right
insert each element by

following rightmost path from leaf to root till
element can be inserted
everything below becomes left child of new
node

each node is removed at most once from the
rightmost path

moving subtree to left child in constant time
gives O(n) construction time

example on the board �

14/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Cartesian Trees (1/2)

Definition: Cartesian Tree
Given an array A of length n, a Cartesian tree C(A)
of a is a labeled binary tree with

root r is labeled with
x = argmin{A[i] : i ∈ [0, n)}
left and right children of r are Cartesian trees
C(A[0, x)) and C(A[x + 1, n)) if interval
exists

Lemma: Cartesian Tree Construction
A Cartesian tree for an array of size n can be
computed in O(n) time

Proof (Sketch)
scan array from left to right
insert each element by

following rightmost path from leaf to root till
element can be inserted
everything below becomes left child of new
node

each node is removed at most once from the
rightmost path

moving subtree to left child in constant time
gives O(n) construction time

example on the board �

14/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Cartesian Trees (1/2)

Definition: Cartesian Tree
Given an array A of length n, a Cartesian tree C(A)
of a is a labeled binary tree with

root r is labeled with
x = argmin{A[i] : i ∈ [0, n)}
left and right children of r are Cartesian trees
C(A[0, x)) and C(A[x + 1, n)) if interval
exists

Lemma: Cartesian Tree Construction
A Cartesian tree for an array of size n can be
computed in O(n) time

Proof (Sketch)
scan array from left to right
insert each element by

following rightmost path from leaf to root till
element can be inserted
everything below becomes left child of new
node

each node is removed at most once from the
rightmost path

moving subtree to left child in constant time
gives O(n) construction time

example on the board �

14/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Cartesian Trees (1/2)

Definition: Cartesian Tree
Given an array A of length n, a Cartesian tree C(A)
of a is a labeled binary tree with

root r is labeled with
x = argmin{A[i] : i ∈ [0, n)}
left and right children of r are Cartesian trees
C(A[0, x)) and C(A[x + 1, n)) if interval
exists

Lemma: Cartesian Tree Construction
A Cartesian tree for an array of size n can be
computed in O(n) time

Proof (Sketch)
scan array from left to right
insert each element by

following rightmost path from leaf to root till
element can be inserted
everything below becomes left child of new
node

each node is removed at most once from the
rightmost path

moving subtree to left child in constant time
gives O(n) construction time

example on the board �

14/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Cartesian Trees (1/2)

Lemma: Equality of Cartesian Trees
Given two arrays A and B of length n with equal
Cartesian trees, then

rmq(A, s, e) = rmq(B, s, e)

for all 0 ≤ s < e < n

Proof (Sketch)
proof by induction over the size of the array

if the array has size one, this is true

assuming this is correct for arrays of size n,
showing this for arrays of size n + 1 uses
recursive definition of Cartesian trees

15/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Cartesian Trees (2/2)

Lemma: Equality of Cartesian Trees
Given two arrays A and B of length n with equal
Cartesian trees, then

rmq(A, s, e) = rmq(B, s, e)

for all 0 ≤ s < e < n

Proof (Sketch)
proof by induction over the size of the array

if the array has size one, this is true

assuming this is correct for arrays of size n,
showing this for arrays of size n + 1 uses
recursive definition of Cartesian trees

15/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Cartesian Trees (2/2)

Query Within a Block
consider every possible Cartesian tree for
arrays of size s = log n

4

tree can be represented using 2s + 1 bits

store bit representation of Cartesian tree for
every block

for every possible Cartesian tree and every start
and end position store position of minimum

O(22s+1 · s · s) = O(
√

n log2 n) = O(n) space

16/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Range Minimum Queries in O(1) Time and O(n) Space (2/2)

This Lecture
successor and predecessor data structures

range minimum query data structures

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

Successor RMQ

17/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

[Eli74] Peter Elias. “Efficient Storage and Retrieval by Content and Address of Static Files”. In: J. ACM 21.2
(1974), pages 246–260. DOI: 10.1145/321812.321820.

[Fan71] Robert Mario Fano. On the Number of Bits Required to Implement an Associative Memory. 1971.

[Nav16] Gonzalo Navarro. Compact Data Structures - A Practical Approach. Cambridge University Press,
2016. ISBN: 978-1-10-715238-0.

18/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1145/321812.321820

	Appendix

