

Advanced Data Structures

Lecture 05: Predecessor and Range Minimum Query Data Structures

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (a) (a) www.creativecommons.org/licenses/by-sa/4.0 | commit 366d2d4 compiled at 2022-05-20-18:36

Recap

Succinct Planar Graphs

- using spanning tree of graph and
- special spanning tree of dual graph
- both represented succinctly
- represent planar graph succinctly
- remember whether edge is in spanning tree or not

Recap

Succinct Planar Graphs

- using spanning tree of graph and
- special spanning tree of dual graph
- both represented succinctly
- represent planar graph succinctly
- remember whether edge is in spanning tree or not

(Dynamic) Range Min-Max Trees

- use dynamic balanced binary tree
- updating rang min-max tree similar to bit vector
- additionally, information in nodes has to be updated
- same dynamic balanced binary tree can be used as foundation for dynamic bit vector and range min-max tree
- Gonzalo Navarro. Compact Data Structures A Practical Approach. Cambridge University
 Press, 2016. ISBN: 978-1-10-715238-0

Setting

- assume universe $\mathcal{U} = [0, u)$
- let $u = 2^w$
- sorted array of *n* integers $A \subseteq \mathcal{U}$
- $\log n \le w$ since $n \le u$

Setting

- assume universe $\mathcal{U} = [0, u)$
- \blacksquare let $u=2^w$
- sorted array of *n* integers $A \subseteq \mathcal{U}$
- $\log n \le w$ since $n \le u$

Definition: Predecessor & Successor

- $pred(A, x) = \max\{y \in A : y \le x\}$
- $succ(A, x) = min\{y \in A: y \ge x\}$

Setting

- assume universe $\mathcal{U} = [0, u)$
- \blacksquare let $u=2^w$
- sorted array of *n* integers $A \subseteq \mathcal{U}$
- $\log n \le w$ since $n \le u$

•	1		_	-	•	•	-	•	•
0	1	2	4	7	10	20	21	22	32

Definition: Predecessor & Successor

- $pred(A, x) = \max\{y \in A : y \le x\}$
- $succ(A, x) = min\{y \in A: y \ge x\}$

Setting

- assume universe $\mathcal{U} = [0, u)$
- \blacksquare let $\mu = 2^w$
- sorted array of *n* integers $A \subseteq \mathcal{U}$
- $\log n \le w$ since $n \le u$

0 1 2 3 4 5 6 7 8 9 0 1 2 4 7 10 20 21 22 32

• pred(3) = 2

Definition: Predecessor & Successor

- $pred(A, x) = \max\{y \in A : y \le x\}$
- $succ(A, x) = min\{y \in A: y \ge x\}$

Setting

- assume universe $\mathcal{U} = [0, u)$
- $let u = 2^w$
- sorted array of *n* integers $A \subseteq \mathcal{U}$
- $\log n \le w$ since $n \le u$

Definition: Predecessor & Successor

$$extbf{pred}(A, x) = \max\{y \in A : y \leq x\}$$

•
$$succ(A, x) = min\{y \in A: y \ge x\}$$

_	-	_	_	-	_	_	_	8	_
0	1	2	4	7	10	20	21	22	32

- pred(3) = 2
- *pred*(10) = 10

Setting

- assume universe $\mathcal{U} = [0, u)$
- \blacksquare let $u=2^w$
- sorted array of *n* integers $A \subseteq \mathcal{U}$
- $\log n \le w$ since $n \le u$

Definition: Predecessor & Successor

$$pred(A, x) = \max\{y \in A : y \le x\}$$

•
$$succ(A, x) = min\{y \in A: y \ge x\}$$

	1								
0	1	2	4	7	10	20	21	22	32

- pred(3) = 2
- pred(10) = 10
- succ(23) = 32

Setting

- assume universe $\mathcal{U} = [0, u)$
- \blacksquare let $u=2^w$
- sorted array of *n* integers $A \subseteq \mathcal{U}$
- $\log n \le w$ since $n \le u$

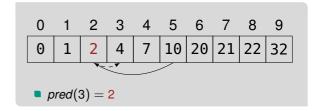
Definition: Predecessor & Successor

- $pred(A, x) = \max\{y \in A : y \le x\}$
- $succ(A, x) = min\{y \in A: y \ge x\}$

•	-	_	_	-	5	•	-	_	•
0	1	2	4	7	10	20	21	22	32

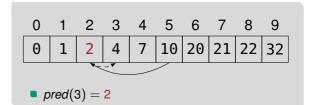
- pred(3) = 2
- *pred*(10) = 10
- succ(23) = 32
- in what time and space can we solve this using bit vectors? PINGO

- binary search
- $O(\log n)$ query time
- no space overhead



Predecessor and Successor: Simple Solutions

- binary search
- $O(\log n)$ query time
- no space overhead
- using bit vector
- O(1) query time
- u + o(u) bits space



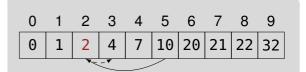
111010010010000000001110000000001

Predecessor and Successor: Simple Solutions

- binary search
- $O(\log n)$ query time
- no space overhead
- using bit vector
- O(1) query time
- = u + o(u) bits space

Predecessor of x in Bit Vector

- $z = rank_1(x + 2)$
- predecessor is select₁(z)



111010010010000000001110000000001

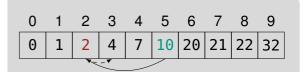
- $rank_1(21) = 6$
- *select*₁(6) = 10
- pred(19) = 10

Predecessor and Successor: Simple Solutions

- binary search
- $O(\log n)$ query time
- no space overhead
- using bit vector
- O(1) query time
- u + o(u) bits space

Predecessor of x in Bit Vector

- $z = rank_1(x + 2)$
- predecessor is select₁(z)



111010010010000000001110000000001

- $rank_1(21) = 6$
- *select*₁(6) = 10
- pred(19) = 10

- *n* integers from universe $\mathcal{U} = [0, u)$
- split number in upper and lower halves
- upper half: [log n] most significant bits
- lower half: $\lceil \log u \log n \rceil$ remaining bits

- *n* integers from universe $\mathcal{U} = [0, u)$
- split number in upper and lower halves
- upper half: \[\log n \right] \] most significant bits
- lower half: $\lceil \log u \log n \rceil$ remaining bits

Upper Half

- monotonous sequence of [log n] bit integers
- not strictly monotonous
- let p_0, \ldots, p_{n-1} be sequence
- use bit vector of length 2n + 1 bits
- represent p_i with a 1 at position $i + p_i$
- \blacksquare rank and select support requires o(n) bits

Elias-Fano Coding [Eli74; Fan71] (1/3)

- *n* integers from universe $\mathcal{U} = [0, u)$
- split number in upper and lower halves
- upper half: [log n] most significant bits
- lower half: $\lceil \log u \log n \rceil$ remaining bits

Upper Half

- monotonous sequence of \[\log n \] bit integers
- not strictly monotonous
- let p_0, \ldots, p_{n-1} be sequence
- use bit vector of length 2n + 1 bits
- represent p_i with a 1 at position $i + p_i$
- \blacksquare rank and select support requires o(n) bits

Lower Half

- store lower half plain using $\lceil \log \frac{u}{n} \rceil$ bits
- $n \log \lceil \frac{u}{n} \rceil$ bits for lower half

Elias-Fano Coding [Eli74; Fan71] (1/3)

- *n* integers from universe $\mathcal{U} = [0, u)$
- split number in upper and lower halves
- upper half: [log n] most significant bits
- lower half: $\lceil \log u \log n \rceil$ remaining bits

Upper Half

- monotonous sequence of [log n] bit integers
- not strictly monotonous
- \blacksquare let p_0, \ldots, p_{n-1} be sequence
- use bit vector of length 2n + 1 bits
- \blacksquare represent p_i with a 1 at position $i + p_i$
- \blacksquare rank and select support requires o(n) bits

Lower Half

- store lower half plain using $\lceil \log \frac{u}{n} \rceil$ bits
- $n \log \left[\frac{u}{n} \right]$ bits for lower half

~	•	_		•	5	•	•	_	
0	1	2	4	7	10	20	21	22	32

0: 000000

10: 001010

1: 000001

20: 010100

2: 000010

21: 010101

4: 000100

22: 010110

7: 000111

30: 100000

0	1	2	3	4	5	6	7	8	9
0	1	2	4	7	10	20	21	22	32
• 0	: 000	000			•	10:	0016	10	
1	: 000	001			•	20:	0101	L00	
2	000	010			•	21:	0101	L01	
4	: 000	1 00			•	22:	0101	L10	
- 7	: 000	111			•	30:	1000	000	
					9 1 000				

6/17

Elias-Fano Coding (2/3)

Access i-th Element

• upper: $select_1(i) - i$

lower: corresponding bits from lower bit vector

0	1	2	3	4	5	6	7	8	9		
0	1	2	4	7	10	20	21	22	32		
• 0	: 000	000			•	10:	0010	10			
1	: 000	001			•	20:	0101	00			
1: 00000120: 0101002: 00001021: 010101											
4	: 000	100			•	22:	0101	10			
7	: 000	111			•	30:	1000	00			
upper: 11101101000111000100											
	lc	wer:	000	1 10 0	0111	10 00	9110	00			

Elias-Fano Coding (2/3)

Access i-th Element

- upper: $select_1(i) i$
- lower: corresponding bits from lower bit vector

Predecessor x

- let x' be $\lceil \log n \rceil$ MSB of x
- scan corresponding values in lower till predecessor is found
- how many elements do we have to scan?
 PINGO

0	1	2	3	4	5	6	7	8	9
0	1	2	4	7	10	20	21	22	32
• 0	: 000	000			•	10:	0016	10	
1	: 000	001			•	20:	0101	00	
2	: 000	010			•	21:	0101	01	
4	: 000	1 00			•	22:	0101	10	
7	: 000	111			•	30:	1000	00	
		uppe	r: 11	1011	9 <mark>1</mark> 006	1110	0010	0	

lower: 00 01 10 00 11 10 00 01 10 00

Elias-Fano Coding (2/3)

Access i-th Element

- upper: $select_1(i) i$
- lower: corresponding bits from lower bit vector

Predecessor x

- let x' be $\lceil \log n \rceil$ MSB of x
- $p = select_0(x')$ $select_0(0)$ returns 0
- scan corresponding values in lower till predecessor is found
- how many elements do we have to scan?
 PINGO
- scanning at most $O(\log \frac{u}{n})$ elements

0	1	2	3	4	5	6	7	8	9		
0	1	2	4	7	10	20	21	22	32		
• 0	: 000	000			•	10:	0016	10			
0: 000000 10: 001010 1: 000001 20: 010100											
2	: 000	010			•	21:	0101	01			
4	: 000	1 00			•	22:	0101	10			
7	: 000	1 11			•	30:	1000	00			
	,	uppe	r: 11	1011	9 <mark>1</mark> 006	1110	0010	0			

lower: 00 01 10 00 11 10 00 01 10 00

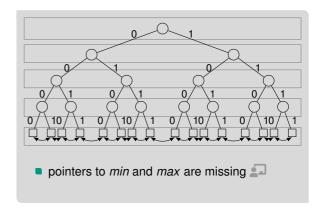
Lemma: Elias-Fano Coding

Given an array containing n distinct integers from a universe $\mathcal{U} = [0, n)$, the array can be represented using

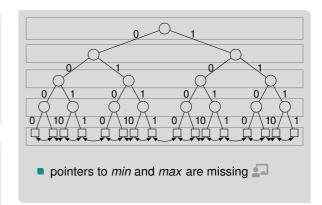
$$n(2 + \log \lceil \frac{u}{n} \rceil)$$
 bits

while allowing O(1) access time and $O(\log \frac{u}{n})$ predecessor/successor time

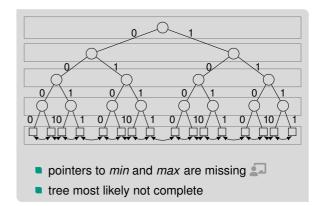
- each number has w bits
- build binary tree where leaves represent numbers
- edges are labeled 0 or 1
- labels on path from root to leaf are value represented in leaf



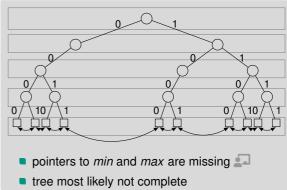
- each number has w bits
- build binary tree where leaves represent numbers
- edges are labeled 0 or 1
- labels on path from root to leaf are value represented in leaf
- store nodes in hash tables with bit prefix as key
- also store pointer to min and max in right and left subtree
- leaves are stored in doubly linked list
- using perfect hashing on each level requires O(wn) space



- each number has w bits
- build binary tree where leaves represent numbers
- edges are labeled 0 or 1
- labels on path from root to leaf are value represented in leaf
- store nodes in hash tables with bit prefix as key
- also store pointer to min and max in right and left subtree
- leaves are stored in doubly linked list
- using perfect hashing on each level requires O(wn) space



- each number has w bits
- build binary tree where leaves represent numbers
- edges are labeled 0 or 1
- labels on path from root to leaf are value represented in leaf
- store nodes in hash tables with bit prefix as key
- also store pointer to min and max in right and left subtree
- leaves are stored in doubly linked list
- using perfect hashing on each level requires O(wn) space



x-Fast Tries: Queries

- traversing tree requires O(w) time
- using binary search on levels requires O(log w) time
- if value not found go to min or max depending on query
- if value is found use doubly linked list to find predecessor or successor
- example on the board 💷

- x-fast trie requires O(wn) space
- group w consecutive objects into one block B_i
- for each block B_i choose maximum m_i as representative
- build x-fast trie for representatives
- store blocks in balanced binary trees

example on the board

- x-fast trie requires O(wn) space
- group w consecutive objects into one block B_i
- for each block B_i choose maximum m_i as representative
- build x-fast trie for representatives
- store blocks in balanced binary trees
- x-fast trie requires O(n) space
- search in x-fast trie requires $O(\log \log \frac{n}{w})$ time
- search in balanced binary tree requires $O(\log w) = O(\log \log n)$ time

example on the board 💷

- x-fast trie requires O(wn) space
- group w consecutive objects into one block B_i
- for each block B_i choose maximum m_i as representative
- build x-fast trie for representatives
- store blocks in balanced binary trees
- \blacksquare x-fast trie requires O(n) space
- search in x-fast trie requires $O(\log \log \frac{n}{w})$ time
- search in balanced binary tree requires $O(\log w) = O(\log \log n)$ time

example on the board

Dynamic y-Fast Trie

- use cuckoo hashing
- representative does not have to be maximum
- any element separating groups suffices
- merge and split blocks that are too small/too big
- query time only expected

Range Minimum Queries

Setting

- array of n integers
- not necessarily sorted

Definition: Range Minimum Queries

Given an array of A of n integers

$$rmq(A, s, e) = \underset{s \le i \le e}{arg \min} A[i]$$

returns the position of minimum in A[s, e]

0	_	_	_	-	•	•	-	8	_
8	2	5	1	9	11	10	20	22	4

- rmq(0,9) = 3
- rmq(0,2) = 1
- rmq(4,8) = 4

Range Minimum Queries

Setting

- array of n integers
- not necessarily sorted

Definition: Range Minimum Queries

Given an array of A of n integers

$$rmq(A, s, e) = \underset{s \le i \le e}{arg \min} A[i]$$

returns the position of minimum in A[s, e]

_	1	_	_	-	_	_	-	_	9
8	2	5	1	9	11	10	20	22	4

- rmq(0,9) = 3
- rmq(0,2) = 1
- rmq(4,8) = 4
- naive in *O*(1) time
- how much space does a naive O(1)-time solution need PINGO

Range Minimum Queries

Setting

- array of n integers
- not necessarily sorted

Definition: Range Minimum Queries

Given an array of A of n integers

$$rmq(A, s, e) = \underset{s \le i \le e}{\arg \min} A[i]$$

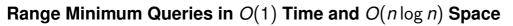
returns the position of minimum in A[s, e]

_	1	_	_	-	_	_	_	_	_	
8	2	5	1	9	11	10	20	22	4	

- rmq(0,9) = 3
- rmq(0,2) = 1
- rmq(4,8) = 4
- naive in *O*(1) time
- how much space does a naive O(1)-time solution need PINGO
- using $O(n^2)$ space rmq(s, e) = M[s][e]

Range Minimum Queries in O(1) Time and $O(n \log n)$ Space

- instead of storing all solutions
- store solutions for intervals of length 2^k for every k
- $\bullet M[0..n)[0..\lfloor \log n \rfloor)$



- instead of storing all solutions
- store solutions for intervals of length 2^k for every k
- $\blacksquare M[0..n)[0..\lfloor \log n \rfloor)$

Queries

- query rmq(A, s, e) is answered using two subqueries
- let $\ell = |log(e-s-1)|$
- $m_1 = rmq(A, s, s + 2^{\ell} 1)$ and $m_2 = rmq(A, e 2^{\ell} + 1, e)$
- $rmq(A, s, e) = arg min_{m \in \{m_1, m_2\}} A[m]$

Range Minimum Queries in O(1) Time and $O(n \log n)$ Space

- instead of storing all solutions
- store solutions for intervals of length 2^k for every k
- $M[0..n)[0..\lfloor \log n \rfloor)$

Queries

- query rmq(A, s, e) is answered using two subqueries
- let $\ell = |log(e-s-1)|$
- $m_1 = rmq(A, s, s + 2^{\ell} 1)$ and $m_2 = rmq(A, e 2^{\ell} + 1, e)$
- $rmq(A, s, e) = \operatorname{arg\,min}_{m \in \{m_1, m_2\}} A[m]$

Construction

$$M[x][\ell] = rmq(A, x, x + 2^{\ell} - 1)$$

$$= \arg \min\{A[i] : i \in [x, x + 2^{\ell})\}$$

$$= \arg \min\{A[i] : i \in \{rmq(A, x, x + 2^{\ell-1} - 1),$$

$$= rmq(A, x + 2^{\ell-1}, x + 2^{\ell} - 1)\}\}$$

$$= \arg \min\{A[i] : i \in \{M[x][\ell - 1],$$

$$= M[x + 2^{\ell-1}][\ell - 1]\}\}$$

how much time do we need to fill the table?
PINGO

Range Minimum Queries in O(1) Time and $O(n \log n)$ Space

- instead of storing all solutions
- \blacksquare store solutions for intervals of length 2^k for every k
- $M[0..n)[0..|\log n|)$

Queries

- \blacksquare query rmq(A, s, e) is answered using two subqueries
- \blacksquare let $\ell = |\log(e-s-1)|$
- $m_1 = rmg(A, s, s + 2^{\ell} 1)$ and $m_2 = rmq(A, e - 2^{\ell} + 1, e)$
- $ightharpoonup rmq(A, s, e) = \operatorname{arg\,min}_{m \in \{m_1, m_2\}} A[m]$

Construction

$$M[x][\ell] = rmq(A, x, x + 2^{\ell} - 1)$$

$$= \arg \min\{A[i] : i \in [x, x + 2^{\ell})\}$$

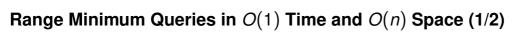
$$= \arg \min\{A[i] : i \in \{rmq(A, x, x + 2^{\ell-1} - 1),$$

$$= rmq(A, x + 2^{\ell-1}, x + 2^{\ell} - 1)\}\}$$

$$= \arg \min\{A[i] : i \in \{M[x][\ell - 1],$$

$$= M[x + 2^{\ell-1}][\ell - 1]\}\}$$

- how much time do we need to fill the table? PINGO
- dynamic programming in $O(n \log n)$ time



- divide *A* into blocks of size $s = \frac{\log n}{4}$
- blocks B_1, \ldots, B_m with $m = \lceil n/s \rceil$
- query rmq(A, s, e) is answered using at most three subqueries
- one query spanning multiple block
- at most two queries within a block each
- example on the board <a>

Range Minimum Queries in O(1) Time and O(n) Space (1/2)

- divide *A* into blocks of size $s = \frac{\log n}{4}$
- blocks B_1, \ldots, B_m with $m = \lceil n/s \rceil$
- query rmq(A, s, e) is answered using at most three subqueries
- one query spanning multiple block
- at most two queries within a block each
- example on the board <a>П

Query Spanning Blocks

- use array B containing minimum within each block
- B has m entries
- use $O(n \log n)$ data structure for B
- $O(m \log m) = O(\frac{n}{s} \log \frac{n}{s}) = O(\frac{n}{\log n} \log \frac{n}{\log n}) = O(n)$
- use additional array B' storing position of minimum in each block

Range Minimum Queries in O(1) Time and O(n) Space (1/2)

- divide *A* into blocks of size $s = \frac{\log n}{4}$
- blocks B_1, \ldots, B_m with $m = \lceil n/s \rceil$
- query rmq(A, s, e) is answered using at most three subqueries
- one query spanning multiple block
- at most two queries within a block each
- example on the board <a>П

Query Spanning Blocks

- use array B containing minimum within each block
- B has m entries
- use $O(n \log n)$ data structure for B
- $O(m \log m) = O(\frac{n}{s} \log \frac{n}{s}) = O(\frac{n}{\log n} \log \frac{n}{\log n}) = O(n)$
- use additional array B' storing position of minimum in each block
- for queries within block use Cartesian trees

Definition: Cartesian Tree

Given an array A of length n, a Cartesian tree C(A) of a is a labeled binary tree with

- root r is labeled with $x = \arg \min\{A[i] : i \in [0, n)\}$
- left and right children of r are Cartesian trees C(A[0,x)) and C(A[x+1,n)) if interval exists

Definition: Cartesian Tree

Given an array A of length n, a Cartesian tree C(A) of a is a labeled binary tree with

- root r is labeled with $x = \arg \min\{A[i]: i \in [0, n)\}$
- left and right children of r are Cartesian trees C(A[0,x)) and C(A[x+1,n)) if interval exists

Lemma: Cartesian Tree Construction

A Cartesian tree for an array of size n can be computed in O(n) time

Cartesian Trees (1/2)

Definition: Cartesian Tree

Given an array A of length n, a Cartesian tree C(A) of a is a labeled binary tree with

- root r is labeled with $x = \arg \min\{A[i]: i \in [0, n)\}$
- left and right children of r are Cartesian trees C(A[0,x)) and C(A[x+1,n)) if interval exists

Lemma: Cartesian Tree Construction

A Cartesian tree for an array of size n can be computed in O(n) time

Proof (Sketch)

- scan array from left to right
- insert each element by
 - following rightmost path from leaf to root till element can be inserted
 - everything below becomes left child of new node
- each node is removed at most once from the rightmost path
- moving subtree to left child in constant time gives O(n) construction time

Cartesian Trees (1/2)

Definition: Cartesian Tree

Given an array A of length n, a Cartesian tree C(A) of a is a labeled binary tree with

- root r is labeled with $x = \arg\min\{A[i]: i \in [0, n)\}$
- left and right children of r are Cartesian trees C(A[0,x)) and C(A[x+1,n)) if interval exists

Lemma: Cartesian Tree Construction

A Cartesian tree for an array of size n can be computed in O(n) time

Proof (Sketch)

- scan array from left to right
- insert each element by
 - following rightmost path from leaf to root till element can be inserted
 - everything below becomes left child of new node
- each node is removed at most once from the rightmost path
- moving subtree to left child in constant time gives O(n) construction time
- example on the board

Lemma: Equality of Cartesian Trees

Given two arrays A and B of length n with equal Cartesian trees, then

$$rmq(A, s, e) = rmq(B, s, e)$$

for all
$$0 \le s < e < n$$

Lemma: Equality of Cartesian Trees

Given two arrays A and B of length n with equal Cartesian trees, then

$$rmq(A, s, e) = rmq(B, s, e)$$

for all 0 < s < e < n

- proof by induction over the size of the array
- if the array has size one, this is true
- assuming this is correct for arrays of size n, showing this for arrays of size n + 1 uses recursive definition of Cartesian trees

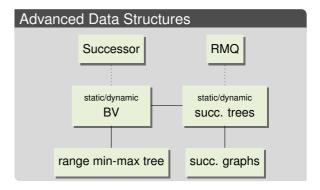
Range Minimum Queries in O(1) Time and O(n) Space (2/2)

Query Within a Block

- consider every possible Cartesian tree for arrays of size $s = \frac{\log n}{4}$
- tree can be represented using 2s + 1 bits
- store bit representation of Cartesian tree for every block
- for every possible Cartesian tree and every start and end position store position of minimum
- $O(2^{2s+1} \cdot s \cdot s) = O(\sqrt{n} \log^2 n) = O(n)$ space

This Lecture

- successor and predecessor data structures
- range minimum query data structures



Bibliography I

- [Eli74] Peter Elias. "Efficient Storage and Retrieval by Content and Address of Static Files". In: *J. ACM* 21.2 (1974), pages 246–260. DOI: 10.1145/321812.321820.
- [Fan71] Robert Mario Fano. On the Number of Bits Required to Implement an Associative Memory. 1971.
- [Nav16] Gonzalo Navarro. *Compact Data Structures A Practical Approach*. Cambridge University Press, 2016. ISBN: 978-1-10-715238-0.