
Advanced Data Structures

Lecture 08: Temporal Data Structures

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit 3c6d2d4 compiled at 2022-06-20-09:20

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

example inputs are online

bv: size of initial bit vector

tree: full tree with depth d and c children

outputs next week(?)

representation of nodes

insertchild(T , v , i, k)
insert new i-th child of node v such that

the new node becomes parent of

the previously i-th to (i + k − 1)-th child of v

boost’s dynamic bit_set? yes

for competition: space in bits and time in ms

ab cd ef g h ij k

(()(()(()()))()(()()))

a

i

kj

hc

e

gf

d

b

2/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

The Project

https://pingo.scc.kit.edu/311809

3/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

PINGO

https://pingo.scc.kit.edu/311809
https://pingo.scc.kit.edu/311809

Lemma: Decoding Time Improved CSA
An SA value can be decoded in O(log log n) time
using the improved CSA

Proof (Sketch)
on each level, odd SA values can be decoded
using the recursive SA

there are at most log log n levels

on each level, even SA values can be decoded
in one step, as the next SA value is odd

requires rank and select data structures

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

Ψ - 1 8 9 10 11 2 6 7 12 13 4 5

NEW 13 1 9 3 11 7 5 1 10 6 7 13 4

BV 1 0 1 1 0 1 1 0 0 1 0 0 1

4/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Recap: Improving Compressed Suffix Arrays

data structure that allows updates

queries only on the newest version

what happens to old versions

keep old versions around

in a “clever” way

lecture based on: http://courses.csail.mit.
edu/6.851/spring12/lectures/L01

Persistence
change in the past creates new branch

similar to version control

everything old/new remains the same

Retroactivity
change in the past affects future

make change in earlier version changes all later
versions

5/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Temporal Data Structures

http://courses.csail.mit.edu/6.851/spring12/lectures/L01
http://courses.csail.mit.edu/6.851/spring12/lectures/L01

data structure that allows updates

queries only on the newest version

what happens to old versions

keep old versions around

in a “clever” way

lecture based on: http://courses.csail.mit.
edu/6.851/spring12/lectures/L01

Persistence
change in the past creates new branch

similar to version control

everything old/new remains the same

Retroactivity
change in the past affects future

make change in earlier version changes all later
versions

5/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Temporal Data Structures

http://courses.csail.mit.edu/6.851/spring12/lectures/L01
http://courses.csail.mit.edu/6.851/spring12/lectures/L01

data structure that allows updates

queries only on the newest version

what happens to old versions

keep old versions around

in a “clever” way

lecture based on: http://courses.csail.mit.
edu/6.851/spring12/lectures/L01

Persistence
change in the past creates new branch

similar to version control

everything old/new remains the same

Retroactivity
change in the past affects future

make change in earlier version changes all later
versions

5/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Temporal Data Structures

http://courses.csail.mit.edu/6.851/spring12/lectures/L01
http://courses.csail.mit.edu/6.851/spring12/lectures/L01

data structure that allows updates

queries only on the newest version

what happens to old versions

keep old versions around

in a “clever” way

lecture based on: http://courses.csail.mit.
edu/6.851/spring12/lectures/L01

Persistence
change in the past creates new branch

similar to version control

everything old/new remains the same

Retroactivity
change in the past affects future

make change in earlier version changes all later
versions

5/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Temporal Data Structures

http://courses.csail.mit.edu/6.851/spring12/lectures/L01
http://courses.csail.mit.edu/6.851/spring12/lectures/L01

Definition: Pointer Machine
nodes containing d = O(1) fields

one root node
operations in O(1) time

new node
x = y.field
x.field = y
x =y+z

access nodes by root.x.y.. . .

example on the board �

add additional functionality to existing data
structures

is this a “useful” model? PINGO

balanced binary search tree

linked list

. . .

6/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Model of Computation

https://kurpicz.org

Definition: Pointer Machine
nodes containing d = O(1) fields

one root node
operations in O(1) time

new node
x = y.field
x.field = y
x =y+z

access nodes by root.x.y.. . .

example on the board �

add additional functionality to existing data
structures

is this a “useful” model? PINGO

balanced binary search tree

linked list

. . .

6/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Model of Computation

https://kurpicz.org

Definition: Pointer Machine
nodes containing d = O(1) fields

one root node
operations in O(1) time

new node
x = y.field
x.field = y
x =y+z

access nodes by root.x.y.. . .

example on the board �

add additional functionality to existing data
structures

is this a “useful” model? PINGO

balanced binary search tree

linked list

. . .

6/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Model of Computation

https://kurpicz.org

Definition: Pointer Machine
nodes containing d = O(1) fields

one root node
operations in O(1) time

new node
x = y.field
x.field = y
x =y+z

access nodes by root.x.y.. . .

example on the board �

add additional functionality to existing data
structures

is this a “useful” model? PINGO

balanced binary search tree

linked list

. . .

6/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Model of Computation

https://kurpicz.org

keep all versions of data structure

never forget an old version

updates create new versions e.g.,
insert/delete

all operations are relative to specific version

Definition: Partial Persistence
Only the latest version can be updated

versions are linearly ordered

old versions can still be queries

Definition: Full Persistence
Any version can be updated

versions form a tree

updates on old versions create branch

Definition: Confluent Persistence
Like full persistence, but two versions can be
combined to a new version

Definition: Functional
Nodes cannot be modified, only new nodes can be
created

7/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Persistence

keep all versions of data structure

never forget an old version

updates create new versions e.g.,
insert/delete

all operations are relative to specific version

Definition: Partial Persistence
Only the latest version can be updated

versions are linearly ordered

old versions can still be queries

Definition: Full Persistence
Any version can be updated

versions form a tree

updates on old versions create branch

Definition: Confluent Persistence
Like full persistence, but two versions can be
combined to a new version

Definition: Functional
Nodes cannot be modified, only new nodes can be
created

7/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Persistence

keep all versions of data structure

never forget an old version

updates create new versions e.g.,
insert/delete

all operations are relative to specific version

Definition: Partial Persistence
Only the latest version can be updated

versions are linearly ordered

old versions can still be queries

Definition: Full Persistence
Any version can be updated

versions form a tree

updates on old versions create branch

Definition: Confluent Persistence
Like full persistence, but two versions can be
combined to a new version

Definition: Functional
Nodes cannot be modified, only new nodes can be
created

7/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Persistence

Lemma: Making DS Partially Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made partially persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to latest version
store ≤ 2p modifications to fields

modification = (version, field , value)

version v : apply modification with version ≤ v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
if node n is full

create new node n′

copy latest version to data fields
copy back pointers to n′

for every node x such that n points to x redirect
its pack pointers to n′

for every node x pointing to n call recursive
change of pointer to n′

8/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (1/3)

Lemma: Making DS Partially Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made partially persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to latest version
store ≤ 2p modifications to fields

modification = (version, field , value)

version v : apply modification with version ≤ v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
if node n is full

create new node n′

copy latest version to data fields
copy back pointers to n′

for every node x such that n points to x redirect
its pack pointers to n′

for every node x pointing to n call recursive
change of pointer to n′

8/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (1/3)

Lemma: Making DS Partially Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made partially persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to latest version
store ≤ 2p modifications to fields

modification = (version, field , value)

version v : apply modification with version ≤ v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
if node n is full

create new node n′

copy latest version to data fields
copy back pointers to n′

for every node x such that n points to x redirect
its pack pointers to n′

for every node x pointing to n call recursive
change of pointer to n′

8/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (1/3)

Lemma: Making DS Partially Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made partially persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to latest version
store ≤ 2p modifications to fields

modification = (version, field , value)

version v : apply modification with version ≤ v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
if node n is full

create new node n′

copy latest version to data fields
copy back pointers to n′

for every node x such that n points to x redirect
its pack pointers to n′

for every node x pointing to n call recursive
change of pointer to n′

8/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (1/3)

Proof (Sketch: Space)
adding only constant number of back pointers

adding only constant number of modifications

total additional space is O(1)

Proof (Sketch: Time)
read is constant time

write requires amortized analysis

potential function Φ

amortizes_cost(n) = cost(n) + ∆Φ

Proof (Sketch: Time cnt.)
potential
Φ = c ·

∑
#modifications in latest version

change of potential by adding new modification

change of potential by creating new node

combined:

amortized_cost ≤ c + c − 2cp + p · recursion

first c: constant time checking

second c: adding new modification

remaining part if new node is created

total amortized time: O(1)

9/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (2/3)

Proof (Sketch: Space)
adding only constant number of back pointers

adding only constant number of modifications

total additional space is O(1)

Proof (Sketch: Time)
read is constant time

write requires amortized analysis

potential function Φ

amortizes_cost(n) = cost(n) + ∆Φ

Proof (Sketch: Time cnt.)
potential
Φ = c ·

∑
#modifications in latest version

change of potential by adding new modification

change of potential by creating new node

combined:

amortized_cost ≤ c + c − 2cp + p · recursion

first c: constant time checking

second c: adding new modification

remaining part if new node is created

total amortized time: O(1)

9/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (2/3)

Proof (Sketch: Space)
adding only constant number of back pointers

adding only constant number of modifications

total additional space is O(1)

Proof (Sketch: Time)
read is constant time

write requires amortized analysis

potential function Φ

amortizes_cost(n) = cost(n) + ∆Φ

Proof (Sketch: Time cnt.)
potential
Φ = c ·

∑
#modifications in latest version

change of potential by adding new modification

change of potential by creating new node

combined:

amortized_cost ≤ c + c − 2cp + p · recursion

first c: constant time checking

second c: adding new modification

remaining part if new node is created

total amortized time: O(1)

9/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (2/3)

Proof (Sketch: Space)
adding only constant number of back pointers

adding only constant number of modifications

total additional space is O(1)

Proof (Sketch: Time)
read is constant time

write requires amortized analysis

potential function Φ

amortizes_cost(n) = cost(n) + ∆Φ

Proof (Sketch: Time cnt.)
potential
Φ = c ·

∑
#modifications in latest version

change of potential by adding new modification

change of potential by creating new node

combined:

amortized_cost ≤ c + c − 2cp + p · recursion

first c: constant time checking

second c: adding new modification

remaining part if new node is created

total amortized time: O(1)

9/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (2/3)

Lemma: Making DS Partially Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made partially persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

possible in O(1) worst case time [Bro96]

also possible for full persistence? PINGO

10/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (3/3)

https://kurpicz.org

Lemma: Making DS Partially Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made partially persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

possible in O(1) worst case time [Bro96]

also possible for full persistence? PINGO

10/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (3/3)

https://kurpicz.org

Lemma: Making DS Partially Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made partially persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

possible in O(1) worst case time [Bro96]

also possible for full persistence? PINGO

10/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (3/3)

https://kurpicz.org

Differences
versions are no longer numbers

versions are nodes in a tree

can we represent versions in a linear fashion?
PINGO

ab cd ef g h ij k

(()(()(()()))()(()()))

babbebbcbded . . .

a

i

kj

hc

e

gf

d

b

versions change

update in constant time?

11/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (1/4)

https://kurpicz.org

Differences
versions are no longer numbers

versions are nodes in a tree

can we represent versions in a linear fashion?
PINGO

ab cd ef g h ij k

(()(()(()()))()(()()))

babbebbcbded . . .

a

i

kj

hc

e

gf

d

b

versions change

update in constant time?

11/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (1/4)

https://kurpicz.org

Differences
versions are no longer numbers

versions are nodes in a tree

can we represent versions in a linear fashion?
PINGO

ab cd ef g h ij k

(()(()(()()))()(()()))

babbebbcbded . . .

a

i

kj

hc

e

gf

d

b

versions change

update in constant time?

11/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (1/4)

https://kurpicz.org

Differences
versions are no longer numbers

versions are nodes in a tree

can we represent versions in a linear fashion?
PINGO

ab cd ef g h ij k

(()(()(()()))()(()()))

babbebbcbded . . .

a

i

kj

hc

e

gf

d

b

versions change

update in constant time?

11/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (1/4)

https://kurpicz.org

Differences
versions are no longer numbers

versions are nodes in a tree

can we represent versions in a linear fashion?
PINGO

ab cd ef g h ij k

(()(()(()()))()(()()))

babbebbcbded . . .

a

i

kj

hc

e

gf

d

b

versions change

update in constant time?

11/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (1/4)

https://kurpicz.org

Linked List
insert before or after element in O(1) time

check if u is predecessor of v in n time

Balanced Search Tree
insert before or after element in O(log n) time

check if u is predecessor of v in O(log n) time

Order-Maintenance DS [DS87]
insert before or after element in O(1) time

check if u is predecessor of v in O(1) time

how is

linearized version tree in order-maintenance DS
insert in O(1) time

new version v of u
after bu

before eu

check order of versions in O(1) time

maintain and check linearized version tree in
O(1) time

important for applying modifications to fields

12/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Order-Maintenance Data Structure

Linked List
insert before or after element in O(1) time

check if u is predecessor of v in n time

Balanced Search Tree
insert before or after element in O(log n) time

check if u is predecessor of v in O(log n) time

Order-Maintenance DS [DS87]
insert before or after element in O(1) time

check if u is predecessor of v in O(1) time

how is

linearized version tree in order-maintenance DS
insert in O(1) time

new version v of u
after bu

before eu

check order of versions in O(1) time

maintain and check linearized version tree in
O(1) time

important for applying modifications to fields

12/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Order-Maintenance Data Structure

Linked List
insert before or after element in O(1) time

check if u is predecessor of v in n time

Balanced Search Tree
insert before or after element in O(log n) time

check if u is predecessor of v in O(log n) time

Order-Maintenance DS [DS87]
insert before or after element in O(1) time

check if u is predecessor of v in O(1) time

how is

linearized version tree in order-maintenance DS
insert in O(1) time

new version v of u
after bu

before eu

check order of versions in O(1) time

maintain and check linearized version tree in
O(1) time

important for applying modifications to fields

12/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Order-Maintenance Data Structure

Linked List
insert before or after element in O(1) time

check if u is predecessor of v in n time

Balanced Search Tree
insert before or after element in O(log n) time

check if u is predecessor of v in O(log n) time

Order-Maintenance DS [DS87]
insert before or after element in O(1) time

check if u is predecessor of v in O(1) time

how is

linearized version tree in order-maintenance DS
insert in O(1) time

new version v of u
after bu

before eu

check order of versions in O(1) time

maintain and check linearized version tree in
O(1) time

important for applying modifications to fields

12/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Order-Maintenance Data Structure

Lemma: Making DS Fully Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made fully persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to all versions
store ≤ 2(d + p + 1) modifications to fields

modification = (version, field , value)

version v : look at ancestors of v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
the same if node is full? PINGO

if node n is full
split node into two
each new node contains half of modifications
modifications are tree
partition tree �
apply all modifications to “subtree”
recursively update pointers

13/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (2/4)

https://kurpicz.org

Lemma: Making DS Fully Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made fully persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to all versions
store ≤ 2(d + p + 1) modifications to fields

modification = (version, field , value)

version v : look at ancestors of v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
the same if node is full? PINGO

if node n is full
split node into two
each new node contains half of modifications
modifications are tree
partition tree �
apply all modifications to “subtree”
recursively update pointers

13/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (2/4)

https://kurpicz.org

Lemma: Making DS Fully Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made fully persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to all versions
store ≤ 2(d + p + 1) modifications to fields

modification = (version, field , value)

version v : look at ancestors of v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
the same if node is full? PINGO

if node n is full
split node into two
each new node contains half of modifications
modifications are tree
partition tree �
apply all modifications to “subtree”
recursively update pointers

13/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (2/4)

https://kurpicz.org

Lemma: Making DS Fully Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made fully persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to all versions
store ≤ 2(d + p + 1) modifications to fields

modification = (version, field , value)

version v : look at ancestors of v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
the same if node is full? PINGO

if node n is full
split node into two
each new node contains half of modifications
modifications are tree
partition tree �
apply all modifications to “subtree”
recursively update pointers

13/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (2/4)

https://kurpicz.org

Lemma: Making DS Fully Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made fully persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to all versions
store ≤ 2(d + p + 1) modifications to fields

modification = (version, field , value)

version v : look at ancestors of v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
the same if node is full? PINGO
if node n is full

split node into two
each new node contains half of modifications
modifications are tree
partition tree �
apply all modifications to “subtree”
recursively update pointers

13/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (2/4)

https://kurpicz.org

Proof (Sketch: Space)
if no split no additional memory

if split O(1) memory

Proof (Sketch: Time)
applying versions in O(1) time

there are ≤ 2(d + p) + 1 recursive pointer
updates

potential

Φ = −c ·
∑

#empty modification slots

Proof (Sketch: Time cnt.)
if node is split ∆Φ = −c · 2(d + p + 1)

if node is not split ∆Φ = c

combined:

amortized_cost = c + c

− 2c(d + p + 1)

+ (2(d + p) + 1) · recursions

if node is split constants cancel each other out

14/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (3/4)

Proof (Sketch: Space)
if no split no additional memory

if split O(1) memory

Proof (Sketch: Time)
applying versions in O(1) time

there are ≤ 2(d + p) + 1 recursive pointer
updates

potential

Φ = −c ·
∑

#empty modification slots

Proof (Sketch: Time cnt.)
if node is split ∆Φ = −c · 2(d + p + 1)

if node is not split ∆Φ = c

combined:

amortized_cost = c + c

− 2c(d + p + 1)

+ (2(d + p) + 1) · recursions

if node is split constants cancel each other out

14/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (3/4)

Proof (Sketch: Space)
if no split no additional memory

if split O(1) memory

Proof (Sketch: Time)
applying versions in O(1) time

there are ≤ 2(d + p) + 1 recursive pointer
updates

potential

Φ = −c ·
∑

#empty modification slots

Proof (Sketch: Time cnt.)
if node is split ∆Φ = −c · 2(d + p + 1)

if node is not split ∆Φ = c

combined:

amortized_cost = c + c

− 2c(d + p + 1)

+ (2(d + p) + 1) · recursions

if node is split constants cancel each other out

14/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (3/4)

Lemma: Making DS Fully Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made fully persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

versions are represented by tree

tree has pointers to order-maintenance DS

order-maintenance DS has pointers to tree

de-amortization is open problem

15/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (4/4)

Lemma: Making DS Fully Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made fully persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

versions are represented by tree

tree has pointers to order-maintenance DS

order-maintenance DS has pointers to tree

de-amortization is open problem

15/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (4/4)

Lemma: Making DS Fully Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made fully persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

versions are represented by tree

tree has pointers to order-maintenance DS

order-maintenance DS has pointers to tree

de-amortization is open problem

15/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (4/4)

hard because concatenation

linked list concatenate with itself

after u version length 2u

more information:
https://ocw.mit.edu/courses/

6-851-advanced-data-structures-spring-2012/

pages/calendar-and-notes/

16/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Confluent Persistence

https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/pages/calendar-and-notes/
https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/pages/calendar-and-notes/
https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/pages/calendar-and-notes/

This Lecture
partial and full persistent data structures

Next Lecture
retroactive data structures

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

Successor RMQ

SA & LCPString B-tree

CSA

17/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture
partial and full persistent data structures

Next Lecture
retroactive data structures

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

Successor RMQ

SA & LCPString B-tree

CSA

17/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

[Bro96] Gerth Stølting Brodal. “Partially Persistent Data Structures of Bounded Degree with Constant Update
Time”. In: Nord. J. Comput. 3.3 (1996), pages 238–255.

[DS87] Paul F. Dietz and Daniel Dominic Sleator. “Two Algorithms for Maintaining Order in a List”. In: STOC.
ACM, 1987, pages 365–372. DOI: 10.1145/28395.28434.

18/17 2022-06-20 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1145/28395.28434

	Appendix

