Advanced Data Structures

Lecture 11: BSP Trees and Recap

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ©(1)(0): www.creativecommons.org/licenses/by-sa/4.0 | commit 3c6d2d4 compiled at 2022-07-18-09:14

Recap: 2-Dimensional Rectangular Range Searching

Important

- assume now two points have the same x - or y-coordinate
- generalize 1-dimensional idea
- 1-dimensional
- split number of points in half at each node
- points consist of one value
- 2-dimensional
- points consist of two values
- split number of points in half w.r.t. one value
- switch between values depending on depth

Motivation

- hidden surface removal
- which pixel is visible
- important for rendering

z-Buffer Algorithm

- transform scene such that viewing direction is positive z-direction
- consider objects in scene in arbitrary order
- maintain two buffers
- frame buffer (i) currently shown pixel
- z-buffer (i) z-coordinate of object shown
- compare z-coordinate of z-buffer and object
- first sort object in depth-order

- depth-order may not always exist \because
- how to efficiently sort objects?

BSP Trees (1/2)

- partition space using hyperplanes
- binary partition © similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments
- $h^{+}=\left\{\left(x_{1}, \ldots, x_{d}\right): a_{1} x_{1}+\cdots+a_{d} x_{d}>0\right\}$
- $h^{-}=\left\{\left(x_{1}, \ldots, x_{d}\right): a_{1} x_{1}+\cdots+a_{d} x_{d}<0\right\}$
- each split creates two nodes in a tree
- if number of objects in space is one: leaf

- otherwise: inner node

BSP Trees (2/2)

- for leaf: store object/fragment
- for inner node v : store hyperplane h_{v} and the objects contained in h_{v}
- left child represents objects in upper half-space h^{+}
- right child represents objects in lower half-space h^{-}
- space of BSP tree is number of objects stored at all nodes
- what about fragments?
- too many fragments can make the tree big

Auto-Partitioning

- sorting points for kd-trees worked well
- BSP-tree is used to sort objects in dept-order
- auto-partitioning uses splitters through objects
- 2-dimensional: line through line segments
- 3-dimensional: half-plane through polygons

Painter's Algorithm

- consider view point $p_{\text {view }}$
- traverse through tree and always recurse on half-space that does not contain $p_{\text {view }}$ first
- then scan-convert object contained in node
- then recurse on half-space that contains $p_{\text {view }}$

Constructing Planar BSP Trees (1/3)

- use auto-partitioning
- construction similar to construction of kd-tree
- store all necessary information
- hyperplane
- objects in hyperplane
- how to determine next hyperplane?
- creating fragments increases size of BSP tree
- let s be object and $\ell(s)$ line through object
- order matters

Constructing Planar BSP Trees (2/3)

Lemma: Number Line Fragments

The expected number of fragments generated when iterating through the line segments using a random permutation is $O(n \log n)$

Proof (Sketch)

- distance of lines $\operatorname{dist}_{s_{i}}\left(s_{j}\right)=$ $\begin{cases}\text { \# segments inters. } \ell\left(s_{i}\right) & \\ \text { between } s_{i} \text { and } s_{j} & \ell\left(s_{i}\right) \text { inters. } s_{j} \\ \infty & \text { otherwise }\end{cases}$
- example on the board

Proof (Sketch, cnt.)

- let $\operatorname{dist}_{s_{i}}\left(s_{j}\right)=k$ and $s_{j_{1}}, \ldots, s_{j_{k}}$ be segments between s_{i} and s_{j}
- what is the probability that $\ell\left(s_{i}\right)$ cuts s_{j} ?
- this happens if no $s_{j_{x}}$ is processed before s_{i}
- since order is random

$$
\mathbb{P}\left[\ell\left(s_{i}\right) \text { cuts } s_{j}\right] \leq \frac{1}{\operatorname{dist}_{s_{i}}\left(s_{j}\right)+2}
$$

Constructing Planar BSP Trees (3/3)

Proof (Sketch, cnt.)

- expected number of cuts

$$
\mathbb{E}\left[\# \text { cuts generated by } s_{i}\right] \leq \sum_{j \neq i} \frac{1}{\operatorname{dist} s_{i}\left(s_{j}\right)+2} \leq 2 \sum_{k=0}^{n-2} \frac{1}{k+2} \leq 2 \ln n
$$

- all lines generate at most $2 n \ln n$ fragments

Lemma: BSP Construction

A BSP tree of size $O(n \log n)$ can be computed in expected time $O\left(n^{2} \log n\right)$

Proof (Sketch)

- computing permutation in linear time
- construction is linear in number of fragments to be considered
- number of fragments in subtree is bounded by n
- number of recursions is $n \log n$

Conclusion and Outlook

This Lecture

- BSP trees

Next Lecture

- your presentations

Advanced Data Structures

Recap

- bit vectors
- succint trees
- dynamic bit vectors and trees
- predecessor and RMQ queries
- suffix array and string B-tree
- compressed suffix array
- persistent data structures
- retroactive data structures
- orthogonal range search
- binary space partitions

