
Text Indexing

Lecture 06: Wavelet Trees

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit 224e27c compiled at 2022-12-05-13:02

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

https://pingo.scc.kit.edu/345678

2/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

PINGO

https://pingo.scc.kit.edu/345678
https://pingo.scc.kit.edu/345678

for a bit vector of size n

blocks of size s = ⌊ lg n
2 ⌋

super blocks of size s′ = s2 = Θ(lg2 n)

information for 0s or 1s enough
 rank1(i) = i − rank0(i)

for all ⌊ n
s′ ⌋ super blocks, store number of 0s

from beginning of bit vector to end of
super-block

n/s′ · lg n = O(n
lg n) = o(n) bits of space

for all ⌊ n
s ⌋ blocks, store number of 0s from

beginning of super block to end of block

n/s · lg s′ = O(n lg lg n
lg n) = o(n) bits of space

for all length-s bit vectors, for every position i
store number of 0s up to i

2
lg n

2 · s · lg s = O(
√

n lg n lg lg n) = o(n) bits of
space

query in O(1) time using three subqueries
one in super-block
one in block
one for remaining bitvector smaller than s

3/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Recap: Rank-Queries

for a bit vector of size n

blocks of size s = ⌊ lg n
2 ⌋

super blocks of size s′ = s2 = Θ(lg2 n)

information for 0s or 1s enough
 rank1(i) = i − rank0(i)

for all ⌊ n
s′ ⌋ super blocks, store number of 0s

from beginning of bit vector to end of
super-block

n/s′ · lg n = O(n
lg n) = o(n) bits of space

for all ⌊ n
s ⌋ blocks, store number of 0s from

beginning of super block to end of block

n/s · lg s′ = O(n lg lg n
lg n) = o(n) bits of space

for all length-s bit vectors, for every position i
store number of 0s up to i

2
lg n

2 · s · lg s = O(
√

n lg n lg lg n) = o(n) bits of
space

query in O(1) time using three subqueries
one in super-block
one in block
one for remaining bitvector smaller than s

3/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Recap: Rank-Queries

for a bit vector of size n

blocks of size s = ⌊ lg n
2 ⌋

super blocks of size s′ = s2 = Θ(lg2 n)

information for 0s or 1s enough
 rank1(i) = i − rank0(i)

for all ⌊ n
s′ ⌋ super blocks, store number of 0s

from beginning of bit vector to end of
super-block

n/s′ · lg n = O(n
lg n) = o(n) bits of space

for all ⌊ n
s ⌋ blocks, store number of 0s from

beginning of super block to end of block

n/s · lg s′ = O(n lg lg n
lg n) = o(n) bits of space

for all length-s bit vectors, for every position i
store number of 0s up to i

2
lg n

2 · s · lg s = O(
√

n lg n lg lg n) = o(n) bits of
space

query in O(1) time using three subqueries
one in super-block
one in block
one for remaining bitvector smaller than s

3/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Recap: Rank-Queries

for a bit vector of size n

blocks of size s = ⌊ lg n
2 ⌋

super blocks of size s′ = s2 = Θ(lg2 n)

information for 0s or 1s enough
 rank1(i) = i − rank0(i)

for all ⌊ n
s′ ⌋ super blocks, store number of 0s

from beginning of bit vector to end of
super-block

n/s′ · lg n = O(n
lg n) = o(n) bits of space

for all ⌊ n
s ⌋ blocks, store number of 0s from

beginning of super block to end of block

n/s · lg s′ = O(n lg lg n
lg n) = o(n) bits of space

for all length-s bit vectors, for every position i
store number of 0s up to i

2
lg n

2 · s · lg s = O(
√

n lg n lg lg n) = o(n) bits of
space

query in O(1) time using three subqueries
one in super-block
one in block
one for remaining bitvector smaller than s

3/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Recap: Rank-Queries

for a bit vector of size n

blocks of size s = ⌊ lg n
2 ⌋

super blocks of size s′ = s2 = Θ(lg2 n)

information for 0s or 1s enough
 rank1(i) = i − rank0(i)

for all ⌊ n
s′ ⌋ super blocks, store number of 0s

from beginning of bit vector to end of
super-block

n/s′ · lg n = O(n
lg n) = o(n) bits of space

for all ⌊ n
s ⌋ blocks, store number of 0s from

beginning of super block to end of block

n/s · lg s′ = O(n lg lg n
lg n) = o(n) bits of space

for all length-s bit vectors, for every position i
store number of 0s up to i

2
lg n

2 · s · lg s = O(
√

n lg n lg lg n) = o(n) bits of
space

query in O(1) time using three subqueries
one in super-block
one in block
one for remaining bitvector smaller than s

3/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Recap: Rank-Queries

select0 in a bit vector of size n that contains k
zeros
naive solutions

scan bit vector: O(n) time and no space
overhead
store k solutions in S[1..k] and
select0(i) = S[i] if k ∈ O(n/lgn) this suffice

better: k/b variable-sized super-blocks Bi , such
that super-block contains b = lg2 n zeros

select0(i) =∑⌊i/b⌋−1
j=0 |Bj |+ select0(B⌊i/b⌋, j − (⌊i/b⌋b))

storing all possible results for the (prefix) sum

O((k lg n)/b) = o(n) bits of space

select on block depends on size of block

|B⌊i/b⌋| ≥ lg4 n: store answers naively

requires O(b lg n) = O(lg3 n) bits of space
there are at most O(n/ lg4 n) such blocks
total O(n/ lg n) = o(n) bits of space

|B⌊i/b⌋| < lg4 n: divide super-block into blocks
same idea: variable-sized blocks containing
b′ =

√
lg n zeros

(prefix) sum O((k lg lg n)/b′) = o(n) bits
if size ≥ lg n store all answers
if size < lg n store lookup table

4/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Select in o(n) Space and O(1) Time

select0 in a bit vector of size n that contains k
zeros
naive solutions

scan bit vector: O(n) time and no space
overhead
store k solutions in S[1..k] and
select0(i) = S[i] if k ∈ O(n/lgn) this suffice

better: k/b variable-sized super-blocks Bi , such
that super-block contains b = lg2 n zeros

select0(i) =∑⌊i/b⌋−1
j=0 |Bj |+ select0(B⌊i/b⌋, j − (⌊i/b⌋b))

storing all possible results for the (prefix) sum

O((k lg n)/b) = o(n) bits of space

select on block depends on size of block

|B⌊i/b⌋| ≥ lg4 n: store answers naively

requires O(b lg n) = O(lg3 n) bits of space
there are at most O(n/ lg4 n) such blocks
total O(n/ lg n) = o(n) bits of space

|B⌊i/b⌋| < lg4 n: divide super-block into blocks
same idea: variable-sized blocks containing
b′ =

√
lg n zeros

(prefix) sum O((k lg lg n)/b′) = o(n) bits
if size ≥ lg n store all answers
if size < lg n store lookup table

4/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Select in o(n) Space and O(1) Time

select0 in a bit vector of size n that contains k
zeros
naive solutions

scan bit vector: O(n) time and no space
overhead
store k solutions in S[1..k] and
select0(i) = S[i] if k ∈ O(n/lgn) this suffice

better: k/b variable-sized super-blocks Bi , such
that super-block contains b = lg2 n zeros

select0(i) =∑⌊i/b⌋−1
j=0 |Bj |+ select0(B⌊i/b⌋, j − (⌊i/b⌋b))

storing all possible results for the (prefix) sum

O((k lg n)/b) = o(n) bits of space

select on block depends on size of block

|B⌊i/b⌋| ≥ lg4 n: store answers naively

requires O(b lg n) = O(lg3 n) bits of space
there are at most O(n/ lg4 n) such blocks
total O(n/ lg n) = o(n) bits of space

|B⌊i/b⌋| < lg4 n: divide super-block into blocks
same idea: variable-sized blocks containing
b′ =

√
lg n zeros

(prefix) sum O((k lg lg n)/b′) = o(n) bits
if size ≥ lg n store all answers
if size < lg n store lookup table

4/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Select in o(n) Space and O(1) Time

select0 in a bit vector of size n that contains k
zeros
naive solutions

scan bit vector: O(n) time and no space
overhead
store k solutions in S[1..k] and
select0(i) = S[i] if k ∈ O(n/lgn) this suffice

better: k/b variable-sized super-blocks Bi , such
that super-block contains b = lg2 n zeros

select0(i) =∑⌊i/b⌋−1
j=0 |Bj |+ select0(B⌊i/b⌋, j − (⌊i/b⌋b))

storing all possible results for the (prefix) sum

O((k lg n)/b) = o(n) bits of space

select on block depends on size of block

|B⌊i/b⌋| ≥ lg4 n: store answers naively

requires O(b lg n) = O(lg3 n) bits of space
there are at most O(n/ lg4 n) such blocks
total O(n/ lg n) = o(n) bits of space

|B⌊i/b⌋| < lg4 n: divide super-block into blocks
same idea: variable-sized blocks containing
b′ =

√
lg n zeros

(prefix) sum O((k lg lg n)/b′) = o(n) bits
if size ≥ lg n store all answers
if size < lg n store lookup table

4/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Select in o(n) Space and O(1) Time

select0 in a bit vector of size n that contains k
zeros
naive solutions

scan bit vector: O(n) time and no space
overhead
store k solutions in S[1..k] and
select0(i) = S[i] if k ∈ O(n/lgn) this suffice

better: k/b variable-sized super-blocks Bi , such
that super-block contains b = lg2 n zeros

select0(i) =∑⌊i/b⌋−1
j=0 |Bj |+ select0(B⌊i/b⌋, j − (⌊i/b⌋b))

storing all possible results for the (prefix) sum

O((k lg n)/b) = o(n) bits of space

select on block depends on size of block
|B⌊i/b⌋| ≥ lg4 n: store answers naively

requires O(b lg n) = O(lg3 n) bits of space
there are at most O(n/ lg4 n) such blocks
total O(n/ lg n) = o(n) bits of space

|B⌊i/b⌋| < lg4 n: divide super-block into blocks
same idea: variable-sized blocks containing
b′ =

√
lg n zeros

(prefix) sum O((k lg lg n)/b′) = o(n) bits
if size ≥ lg n store all answers
if size < lg n store lookup table

4/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Select in o(n) Space and O(1) Time

select0 in a bit vector of size n that contains k
zeros
naive solutions

scan bit vector: O(n) time and no space
overhead
store k solutions in S[1..k] and
select0(i) = S[i] if k ∈ O(n/lgn) this suffice

better: k/b variable-sized super-blocks Bi , such
that super-block contains b = lg2 n zeros

select0(i) =∑⌊i/b⌋−1
j=0 |Bj |+ select0(B⌊i/b⌋, j − (⌊i/b⌋b))

storing all possible results for the (prefix) sum

O((k lg n)/b) = o(n) bits of space

select on block depends on size of block
|B⌊i/b⌋| ≥ lg4 n: store answers naively

requires O(b lg n) = O(lg3 n) bits of space
there are at most O(n/ lg4 n) such blocks
total O(n/ lg n) = o(n) bits of space

|B⌊i/b⌋| < lg4 n: divide super-block into blocks
same idea: variable-sized blocks containing
b′ =

√
lg n zeros

(prefix) sum O((k lg lg n)/b′) = o(n) bits
if size ≥ lg n store all answers
if size < lg n store lookup table

4/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Select in o(n) Space and O(1) Time

Lemma: Binary Rank- and Select-Queries
Given a bit vector of size n, there exists data
structures that can be computed in time O(n) of size
o(n) bits that can answer rank and select queries on
the bit vector in O(1) time

5/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Rank- and Select-Queries on Bit Vectors

Definition: Bit Representation
Given a text T over an alphabet of size σ, each
character can be represented using ⌈lg σ⌉ bits.

the leftmost bit is the most significant bit and

the rightmost bit is the least significant bit

0 1 2 3 4 5 6 7

(0 (0 (0 (0 (1 (1 (1 (1

0 0 1 1 0 0 1 1

0
)2

1
)2

0
)2

1
)2

0
)2

1
)2

0
)2

1
)2

MSB

LSB

for simplicity characters are integers

bit representation is integer in binary

Definition: Bit Prefix
A bit prefix of length k are the k MSBs of a
characters bit representation

6/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Preliminaries

Definition: Bit Representation
Given a text T over an alphabet of size σ, each
character can be represented using ⌈lg σ⌉ bits.

the leftmost bit is the most significant bit and

the rightmost bit is the least significant bit

0 1 2 3 4 5 6 7

(0 (0 (0 (0 (1 (1 (1 (1

0 0 1 1 0 0 1 1

0
)2

1
)2

0
)2

1
)2

0
)2

1
)2

0
)2

1
)2

MSB

LSB

for simplicity characters are integers

bit representation is integer in binary

Definition: Bit Prefix
A bit prefix of length k are the k MSBs of a
characters bit representation

6/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Preliminaries

Definition: Bit Representation
Given a text T over an alphabet of size σ, each
character can be represented using ⌈lg σ⌉ bits.

the leftmost bit is the most significant bit and

the rightmost bit is the least significant bit

0 1 2 3 4 5 6 7

(0 (0 (0 (0 (1 (1 (1 (1

0 0 1 1 0 0 1 1

0
)2

1
)2

0
)2

1
)2

0
)2

1
)2

0
)2

1
)2

MSB

LSB

for simplicity characters are integers

bit representation is integer in binary

Definition: Bit Prefix
A bit prefix of length k are the k MSBs of a
characters bit representation

6/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Preliminaries

Definition: Wavelet Tree
Given a text T of length n over an alphabet
Σ = [1, σ], a wavelet tree is a binary tree, where

each node represents characters in
[ℓ, r] ⊆ [1, σ],

if a node represents characters in [ℓ, r], then its
left and right child

represent characters in [ℓ, (ℓ+ r)/2) and
[(ℓ+ r)/2, r]

a node is a leaf if ℓ+ 2 ≥ r

characters are represented using a bit vector

an entry is 1 if the character is represented in
the right child and 0 otherwise

Definition: Level-wise Wavelet Tree
A wavelet tree, where all bit vectors on the same
depth in the tree are concatenated is called
level-wise wavelet tree

in practice, level-wise wavelet trees have less
overhead

navigation still easy

7/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Trees [GGV03] (1/2)

Definition: Wavelet Tree
Given a text T of length n over an alphabet
Σ = [1, σ], a wavelet tree is a binary tree, where

each node represents characters in
[ℓ, r] ⊆ [1, σ],

if a node represents characters in [ℓ, r], then its
left and right child

represent characters in [ℓ, (ℓ+ r)/2) and
[(ℓ+ r)/2, r]

a node is a leaf if ℓ+ 2 ≥ r

characters are represented using a bit vector

an entry is 1 if the character is represented in
the right child and 0 otherwise

Definition: Level-wise Wavelet Tree
A wavelet tree, where all bit vectors on the same
depth in the tree are concatenated is called
level-wise wavelet tree

in practice, level-wise wavelet trees have less
overhead

navigation still easy

7/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Trees [GGV03] (1/2)

Definition: Wavelet Tree
Given a text T of length n over an alphabet
Σ = [1, σ], a wavelet tree is a binary tree, where

each node represents characters in
[ℓ, r] ⊆ [1, σ],

if a node represents characters in [ℓ, r], then its
left and right child

represent characters in [ℓ, (ℓ+ r)/2) and
[(ℓ+ r)/2, r]

a node is a leaf if ℓ+ 2 ≥ r

characters are represented using a bit vector

an entry is 1 if the character is represented in
the right child and 0 otherwise

Definition: Level-wise Wavelet Tree
A wavelet tree, where all bit vectors on the same
depth in the tree are concatenated is called
level-wise wavelet tree

in practice, level-wise wavelet trees have less
overhead

navigation still easy

7/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Trees [GGV03] (1/2)

0 1 6 7 1 5 4 2 6 3
0 0 1 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 0 1 1 1 0 0 0 1

→

→
→

[0, 7]

0 1 6 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 1 0

[0, 3]

0 1 1 2 3

0 0 0 1 1

[4, 7]

6 7 5 4 6

1 1 0 0 1

[0, 1]

0 1 1

0 1 1

[2, 3]

2 3

0 1

[4, 5]

5 4

1 0

[6, 7]

6 7 6

0 1 0

8/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Trees (2/2)

0 1 6 7 1 5 4 2 6 3
0 0 1 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 0 1 1 1 0 0 0 1

→

→
→

[0, 7]

0 1 6 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 1 0

[0, 3]

0 1 1 2 3

0 0 0 1 1

[4, 7]

6 7 5 4 6

1 1 0 0 1

[0, 1]

0 1 1

0 1 1

[2, 3]

2 3

0 1

[4, 5]

5 4

1 0

[6, 7]

6 7 6

0 1 0

8/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Trees (2/2)

0 1 6 7 1 5 4 2 6 3
0 0 1 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 0 1 1 1 0 0 0 1

→

→

→

[0, 7]

0 1 6 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 1 0

[0, 3]

0 1 1 2 3

0 0 0 1 1

[4, 7]

6 7 5 4 6

1 1 0 0 1

[0, 1]

0 1 1

0 1 1

[2, 3]

2 3

0 1

[4, 5]

5 4

1 0

[6, 7]

6 7 6

0 1 0

8/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Trees (2/2)

0 1 6 7 1 5 4 2 6 3
0 0 1 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 0 1 1 1 0 0 0 1

→

→

→

[0, 7]

0 1 6 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 1 0

[0, 3]

0 1 1 2 3

0 0 0 1 1

[4, 7]

6 7 5 4 6

1 1 0 0 1

[0, 1]

0 1 1

0 1 1

[2, 3]

2 3

0 1

[4, 5]

5 4

1 0

[6, 7]

6 7 6

0 1 0

8/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Trees (2/2)

0 1 6 7 1 5 4 2 6 3
0 0 1 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 0 1 1 1 0 0 0 1

→

→

→

[0, 7]

0 1 6 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 1 0

[0, 3]

0 1 1 2 3

0 0 0 1 1

[4, 7]

6 7 5 4 6

1 1 0 0 1

[0, 1]

0 1 1

0 1 1

[2, 3]

2 3

0 1

[4, 5]

5 4

1 0

[6, 7]

6 7 6

0 1 0

8/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Trees (2/2)

0 1 6 7 1 5 4 2 6 3
0 0 1 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 0 1 1 1 0 0 0 1

→
→

→
[0, 7]

0 1 6 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 1 0

[0, 3]

0 1 1 2 3

0 0 0 1 1

[4, 7]

6 7 5 4 6

1 1 0 0 1

[0, 1]

0 1 1

0 1 1

[2, 3]

2 3

0 1

[4, 5]

5 4

1 0

[6, 7]

6 7 6

0 1 0

8/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Trees (2/2)

0 1 6 7 1 5 4 2 6 3
0 0 1 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 0 1 1 1 0 0 0 1

→
→

→
[0, 7]

0 1 6 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 1 0

[0, 3]

0 1 1 2 3

0 0 0 1 1

[4, 7]

6 7 5 4 6

1 1 0 0 1

[0, 1]

0 1 1

0 1 1

[2, 3]

2 3

0 1

[4, 5]

5 4

1 0

[6, 7]

6 7 6

0 1 0

8/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Trees (2/2)

0 1 6 7 1 5 4 2 6 3
0 0 1 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 0 1 1 1 0 0 0 1

→
→
→

[0, 7]

0 1 6 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 1 0

[0, 3]

0 1 1 2 3

0 0 0 1 1

[4, 7]

6 7 5 4 6

1 1 0 0 1

[0, 1]

0 1 1

0 1 1

[2, 3]

2 3

0 1

[4, 5]

5 4

1 0

[6, 7]

6 7 6

0 1 0

rank6(9)

110

8/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Trees (2/2)

0 1 6 7 1 5 4 2 6 3
0 0 1 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 0 1 1 1 0 0 0 1

→
→
→

[0, 7]

0 1 6 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 1 0

[0, 3]

0 1 1 2 3

0 0 0 1 1

[4, 7]

6 7 5 4 6

1 1 0 0 1

[0, 1]

0 1 1

0 1 1

[2, 3]

2 3

0 1

[4, 5]

5 4

1 0

[6, 7]

6 7 6

0 1 0

rank6(9)

110

8/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Trees (2/2)

0 1 6 7 1 5 4 2 6 3
0 0 1 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 0 1 1 1 0 0 0 1

→
→
→

[0, 7]

0 1 6 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 1 0

[0, 3]

0 1 1 2 3

0 0 0 1 1

[4, 7]

6 7 5 4 6

1 1 0 0 1

[0, 1]

0 1 1

0 1 1

[2, 3]

2 3

0 1

[4, 5]

5 4

1 0

[6, 7]

6 7 6

0 1 0

rank6(9)

110

8/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Trees (2/2)

0 1 6 7 1 5 4 2 6 3
0 0 1 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 0 1 1 1 0 0 0 1

→
→
→

[0, 7]

0 1 6 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 1 0

[0, 3]

0 1 1 2 3

0 0 0 1 1

[4, 7]

6 7 5 4 6

1 1 0 0 1

[0, 1]

0 1 1

0 1 1

[2, 3]

2 3

0 1

[4, 5]

5 4

1 0

[6, 7]

6 7 6

0 1 0

rank6(9)

110

8/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Trees (2/2)

0 1 6 7 1 5 4 2 6 3
0 0 1 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 0 1 1 1 0 0 0 1

→
→
→

[0, 7]

0 1 6 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 1 0

[0, 3]

0 1 1 2 3

0 0 0 1 1

[4, 7]

6 7 5 4 6

1 1 0 0 1

[0, 1]

0 1 1

0 1 1

[2, 3]

2 3

0 1

[4, 5]

5 4

1 0

[6, 7]

6 7 6

0 1 0

8/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Trees (2/2)

0 1 6 7 1 5 4 2 6 3
0 0 1 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 0 1 1 1 0 0 0 1

→
→
→

[0, 7]

0 1 6 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 1 0

[0, 3]

0 1 1 2 3

0 0 0 1 1

[4, 7]

6 7 5 4 6

1 1 0 0 1

[0, 1]

0 1 1

0 1 1

[2, 3]

2 3

0 1

[4, 5]

5 4

1 0

[6, 7]

6 7 6

0 1 0

8/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Trees (2/2)

in each node, all represented characters share
a bit prefix

on depth ℓ the longest common bit prefix has
length ℓ− 1

the bit prefixes form intervals

(ϵ)2

(0)2 (1)2

(00)2 (012) (10)2 (11)2

finding characters in the wavelet tree requires
finding the correct interval

finding the position of a character requires
finding the position in the last interval

9/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

The Intervals of a Wavelet Tree

in each node, all represented characters share
a bit prefix

on depth ℓ the longest common bit prefix has
length ℓ− 1

the bit prefixes form intervals

(ϵ)2

(0)2 (1)2

(00)2 (012) (10)2 (11)2

finding characters in the wavelet tree requires
finding the correct interval

finding the position of a character requires
finding the position in the last interval

9/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

The Intervals of a Wavelet Tree

in each node, all represented characters share
a bit prefix

on depth ℓ the longest common bit prefix has
length ℓ− 1

the bit prefixes form intervals

(ϵ)2

(0)2 (1)2

(00)2 (012) (10)2 (11)2

finding characters in the wavelet tree requires
finding the correct interval

finding the position of a character requires
finding the position in the last interval

9/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

The Intervals of a Wavelet Tree

Rank-Queries
use rank queries on bit
vectors

at depth ℓ as for ℓ-th MSB

follow through tree
according to bit

as seen on a previous slide

PINGO what is the
query time of rank queries in
wavelet trees?

Select-Queries
identify leaf containing
character

select corresponding
occurrence in leaf

backtrack position up the
tree to the root

requires up and down
traversal of the wavelet tree

see example on the board
�

Access-Queries
follow bits through the
wavelet tree

return read bits

same as rank but returning
bit pattern instead of final
rank

see example on the board
�

10/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Rank-, Select-, and Access-Queries in Wavelet Trees (1/2)

https://kurpicz.org

Rank-Queries
use rank queries on bit
vectors

at depth ℓ as for ℓ-th MSB

follow through tree
according to bit

as seen on a previous slide

PINGO what is the
query time of rank queries in
wavelet trees?

Select-Queries
identify leaf containing
character

select corresponding
occurrence in leaf

backtrack position up the
tree to the root

requires up and down
traversal of the wavelet tree

see example on the board
�

Access-Queries
follow bits through the
wavelet tree

return read bits

same as rank but returning
bit pattern instead of final
rank

see example on the board
�

10/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Rank-, Select-, and Access-Queries in Wavelet Trees (1/2)

https://kurpicz.org

Rank-Queries
use rank queries on bit
vectors

at depth ℓ as for ℓ-th MSB

follow through tree
according to bit

as seen on a previous slide

PINGO what is the
query time of rank queries in
wavelet trees?

Select-Queries
identify leaf containing
character

select corresponding
occurrence in leaf

backtrack position up the
tree to the root

requires up and down
traversal of the wavelet tree

see example on the board
�

Access-Queries
follow bits through the
wavelet tree

return read bits

same as rank but returning
bit pattern instead of final
rank

see example on the board
�

10/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Rank-, Select-, and Access-Queries in Wavelet Trees (1/2)

https://kurpicz.org

Rank-Queries
use rank queries on bit
vectors

at depth ℓ as for ℓ-th MSB

follow through tree
according to bit

as seen on a previous slide

PINGO what is the
query time of rank queries in
wavelet trees?

Select-Queries
identify leaf containing
character

select corresponding
occurrence in leaf

backtrack position up the
tree to the root

requires up and down
traversal of the wavelet tree

see example on the board
�

Access-Queries
follow bits through the
wavelet tree

return read bits

same as rank but returning
bit pattern instead of final
rank

see example on the board
�

10/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Rank-, Select-, and Access-Queries in Wavelet Trees (1/2)

https://kurpicz.org

Lemma: Query Times Wavelet Tree
Given a text T over an alphabet of size σ, the
wavelet tree of the text can answer rank , select, and
access queries in O(lg σ) time

Proof (Sketch)
All queries require

just a constant number of rank and select
queries on the bit vectors and

at most one traversals from the root of the tree
to a leaf and

one traversal from a leaf to the root of the tree

11/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Rank-, Select-, and Access-Queries in Wavelet Trees (2/2)

given a bit representation of a character α

reverse(α) reverses the bits

the MSB becomes the least significant bit

Definition: Bit-Reversal Permutation
The bit-reversal permutation ρk is a permutation of
the numbers [0, 2k) with

ρk(i) = reverse(i)

for i ∈ [0, 2k)

ρ2 = (0, 2, 1, 3) = ((00)2, (10)2, (01)2, (11)2)

ρk+1 = (2ρk(0), . . . , 2ρk(2k − 1),
2ρk(0) + 1, . . . , 2ρk(2k − 1) + 1) �

same intervals as a wavelet tree

used in the wavelet matrix

12/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Bit Reversal Permutation

given a bit representation of a character α

reverse(α) reverses the bits

the MSB becomes the least significant bit

Definition: Bit-Reversal Permutation
The bit-reversal permutation ρk is a permutation of
the numbers [0, 2k) with

ρk(i) = reverse(i)

for i ∈ [0, 2k)

ρ2 = (0, 2, 1, 3) = ((00)2, (10)2, (01)2, (11)2)

ρk+1 = (2ρk(0), . . . , 2ρk(2k − 1),
2ρk(0) + 1, . . . , 2ρk(2k − 1) + 1) �

same intervals as a wavelet tree

used in the wavelet matrix

12/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Bit Reversal Permutation

given a bit representation of a character α

reverse(α) reverses the bits

the MSB becomes the least significant bit

Definition: Bit-Reversal Permutation
The bit-reversal permutation ρk is a permutation of
the numbers [0, 2k) with

ρk(i) = reverse(i)

for i ∈ [0, 2k)

ρ2 = (0, 2, 1, 3) = ((00)2, (10)2, (01)2, (11)2)

ρk+1 = (2ρk(0), . . . , 2ρk(2k − 1),
2ρk(0) + 1, . . . , 2ρk(2k − 1) + 1) �

same intervals as a wavelet tree

used in the wavelet matrix

12/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Bit Reversal Permutation

alternative representation of wavelet trees

removing tree structure

only two areas per level the intervals
discussed before still exist

better suited for large alphabets

seemingly less structure

retaining all important properties

Definition: Wavelet Matrix [CNP15]
Given a text T of length n over an alphabet of size σ
a wavelet matrix consists of

bit vectors BVℓ for ℓ ∈ [1, ⌈lg σ⌉] of size n and

an array Z [1..⌈lg σ⌉]
Such that

Z [ℓ] contains the number of zero bits in BVℓ

BV1 contains all MSBs in text order
BVℓ contains the ℓ-th MSB the character at
position i in BVℓ−1 at position

rank0(i) if BVℓ−1 = 0 and
Z [ℓ− 1] + rank1(i) if BVℓ−1 = 1

13/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Alternative Representation

alternative representation of wavelet trees

removing tree structure

only two areas per level the intervals
discussed before still exist

better suited for large alphabets

seemingly less structure

retaining all important properties

Definition: Wavelet Matrix [CNP15]
Given a text T of length n over an alphabet of size σ
a wavelet matrix consists of

bit vectors BVℓ for ℓ ∈ [1, ⌈lg σ⌉] of size n and

an array Z [1..⌈lg σ⌉]
Such that

Z [ℓ] contains the number of zero bits in BVℓ

BV1 contains all MSBs in text order
BVℓ contains the ℓ-th MSB the character at
position i in BVℓ−1 at position

rank0(i) if BVℓ−1 = 0 and
Z [ℓ− 1] + rank1(i) if BVℓ−1 = 1

13/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Alternative Representation

alternative representation of wavelet trees

removing tree structure

only two areas per level the intervals
discussed before still exist

better suited for large alphabets

seemingly less structure

retaining all important properties

Definition: Wavelet Matrix [CNP15]
Given a text T of length n over an alphabet of size σ
a wavelet matrix consists of

bit vectors BVℓ for ℓ ∈ [1, ⌈lg σ⌉] of size n and

an array Z [1..⌈lg σ⌉]
Such that

Z [ℓ] contains the number of zero bits in BVℓ

BV1 contains all MSBs in text order
BVℓ contains the ℓ-th MSB the character at
position i in BVℓ−1 at position

rank0(i) if BVℓ−1 = 0 and
Z [ℓ− 1] + rank1(i) if BVℓ−1 = 1

13/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Alternative Representation

(ϵ)2

(0)2 (1)2

(00)2 (10)2 (012) (11)2

a wavelet matrix has the same intervals a
wavelet tree has

intervals not bounded by parent no tree
structure

(ϵ)2

(0)2 (1)2

(00)2 (012) (10)2 (11)2

intervals of a wavelet tree (for comparison)

PINGO is answering queries with a wavelet
matrix as simple as with a wavelet tree?

14/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Intervals of a Wavelet Matrix

https://kurpicz.org

(ϵ)2

(0)2 (1)2

(00)2 (10)2 (012) (11)2

a wavelet matrix has the same intervals a
wavelet tree has

intervals not bounded by parent no tree
structure

(ϵ)2

(0)2 (1)2

(00)2 (012) (10)2 (11)2

intervals of a wavelet tree (for comparison)

PINGO is answering queries with a wavelet
matrix as simple as with a wavelet tree?

14/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Intervals of a Wavelet Matrix

https://kurpicz.org

(ϵ)2

(0)2 (1)2

(00)2 (10)2 (012) (11)2

a wavelet matrix has the same intervals a
wavelet tree has

intervals not bounded by parent no tree
structure

(ϵ)2

(0)2 (1)2

(00)2 (012) (10)2 (11)2

intervals of a wavelet tree (for comparison)

PINGO is answering queries with a wavelet
matrix as simple as with a wavelet tree?

14/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Intervals of a Wavelet Matrix

https://kurpicz.org

0 1 3 7 1 5 4 2 6 3

0 0 0 1 0 1 1 0 1 0
0 1 3 1 2 3 7 5 4 6

0 0 1 0 1 1 1 0 0 1
0 1 1 3 2 3 5 4 7 6

0 1 1 1 0 1 1 0 1 0

BV0

BV1

BV2

queries on the wavelet matrix work similar

example on the board �

0 1 3 7 1 5 4 2 6 3

0 0 0 1 0 1 1 0 1 0

0 1 3 1 2 3 7 5 4 6

0 0 1 0 1 1 1 0 0 1

0 1 1 5 4 3 2 3 7 6

0 1 1 1 0 1 0 1 1 0

Z [0] = 6 Z [1] = 5 Z [2] = 4

BV0

BV1

BV2

15/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Example Wavelet Tree and Wavelet Matrix

0 1 3 7 1 5 4 2 6 3

0 0 0 1 0 1 1 0 1 0
0 1 3 1 2 3 7 5 4 6

0 0 1 0 1 1 1 0 0 1
0 1 1 3 2 3 5 4 7 6

0 1 1 1 0 1 1 0 1 0

BV0

BV1

BV2

Wavelet Tree
first level are MSBs of characters of text
for each level ℓ > 1

stably sort text using Radix sort by bit prefixes
of length ℓ− 1
take ℓ-th MSB of sorted sequence
sorted sequence is new text

0 1 3 7 1 5 4 2 6 3

0 0 0 1 0 1 1 0 1 0

0 1 3 1 2 3 7 5 4 6

0 0 1 0 1 1 1 0 0 1

0 1 1 5 4 3 2 3 7 6

0 1 1 1 0 1 0 1 1 0

Z [0] = 6 Z [1] = 5 Z [2] = 4

BV0

BV1

BV2

Wavelet Matrix
first level are MSBs of characters of text
for each level ℓ > 1

stably sort text by ℓ− 1 MSB
take ℓ-th MSB of sorted sequence
sorted sequence is new text

16/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Naive Wavelet Tree and Wavelet Matrix Construction (1/2)

0 1 3 7 1 5 4 2 6 3

0 0 0 1 0 1 1 0 1 0
0 1 3 1 2 3 7 5 4 6

0 0 1 0 1 1 1 0 0 1
0 1 1 3 2 3 5 4 7 6

0 1 1 1 0 1 1 0 1 0

BV0

BV1

BV2

Wavelet Tree
first level are MSBs of characters of text
for each level ℓ > 1

stably sort text using Radix sort by bit prefixes
of length ℓ− 1
take ℓ-th MSB of sorted sequence
sorted sequence is new text

0 1 3 7 1 5 4 2 6 3

0 0 0 1 0 1 1 0 1 0

0 1 3 1 2 3 7 5 4 6

0 0 1 0 1 1 1 0 0 1

0 1 1 5 4 3 2 3 7 6

0 1 1 1 0 1 0 1 1 0

Z [0] = 6 Z [1] = 5 Z [2] = 4

BV0

BV1

BV2

Wavelet Matrix
first level are MSBs of characters of text
for each level ℓ > 1

stably sort text by ℓ− 1 MSB
take ℓ-th MSB of sorted sequence
sorted sequence is new text

16/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Naive Wavelet Tree and Wavelet Matrix Construction (1/2)

to make both fully functional bit vectors are
augmented with binary rank and select support

Lemma: Running Time and Memory
Requirements Wavelet Tree and Wavelet
Matrix
Given a text T over an alphabet of size σ, the
wavelet tree and wavelet matrix require
(1 + o(1))n⌈lg σ⌉ bits of space and can be
constructed in O(n lg σ) time

PINGO is there a asymptotically faster
construction method?

17/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Tree and Wavelet Matrix Construction (2/2)

https://kurpicz.org

to make both fully functional bit vectors are
augmented with binary rank and select support

Lemma: Running Time and Memory
Requirements Wavelet Tree and Wavelet
Matrix
Given a text T over an alphabet of size σ, the
wavelet tree and wavelet matrix require
(1 + o(1))n⌈lg σ⌉ bits of space and can be
constructed in O(n lg σ) time

PINGO is there a asymptotically faster
construction method?

17/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Wavelet Tree and Wavelet Matrix Construction (2/2)

https://kurpicz.org

using requires broadword programming

every τ -th level is a big level

big levels contain enough information to
compute small levels below

small levels computed by splitting big levels

O(b/ lg n) characters at a time with b = o(lg n)

sketch on board �

Lemma: Better Wavelet Tree Construction
Given a text T over an alphabet of size σ, the
wavelet tree and wavelet matrix require
(1 + o(1))n⌈lg σ⌉ bits of space and can be
constructed in O(n lg σ/

√
lg n) time

can be implemented using AVX/SSE
instructions [Kan18]

18/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Better Wavelet Tree Construction [Bab+15; MNV16]

using requires broadword programming

every τ -th level is a big level

big levels contain enough information to
compute small levels below

small levels computed by splitting big levels

O(b/ lg n) characters at a time with b = o(lg n)

sketch on board �

Lemma: Better Wavelet Tree Construction
Given a text T over an alphabet of size σ, the
wavelet tree and wavelet matrix require
(1 + o(1))n⌈lg σ⌉ bits of space and can be
constructed in O(n lg σ/

√
lg n) time

can be implemented using AVX/SSE
instructions [Kan18]

18/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Better Wavelet Tree Construction [Bab+15; MNV16]

using requires broadword programming

every τ -th level is a big level

big levels contain enough information to
compute small levels below

small levels computed by splitting big levels

O(b/ lg n) characters at a time with b = o(lg n)

sketch on board �

Lemma: Better Wavelet Tree Construction
Given a text T over an alphabet of size σ, the
wavelet tree and wavelet matrix require
(1 + o(1))n⌈lg σ⌉ bits of space and can be
constructed in O(n lg σ/

√
lg n) time

can be implemented using AVX/SSE
instructions [Kan18]

18/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Better Wavelet Tree Construction [Bab+15; MNV16]

wavelet trees can be compressed

more precise: the text can be compressed

use Huffman codes

wavelet trees cannot handle holes

use canonical Huffman codes

Canonical Huffman Codes (Recap)
start with Huffman codes, code word 0, and
length 1

to get canonical code for current length, then
add 1 to code word

to update length add 1 and append required
amount of zeros to code word

Huffman Codes (Recap)
idea is to create a binary tree

each character α is a leaf and has weight
Hist[α]

create node for two nodes without parent with
smallest weight

give new node total weight of children

repeat until only one node without parent
remains
label edges:

left edge: 0
right edge: 1

path to children gives code for character

19/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Huffman-shaped Wavelet Trees

wavelet trees can be compressed

more precise: the text can be compressed

use Huffman codes

wavelet trees cannot handle holes

use canonical Huffman codes

Canonical Huffman Codes (Recap)
start with Huffman codes, code word 0, and
length 1

to get canonical code for current length, then
add 1 to code word

to update length add 1 and append required
amount of zeros to code word

Huffman Codes (Recap)
idea is to create a binary tree

each character α is a leaf and has weight
Hist[α]

create node for two nodes without parent with
smallest weight

give new node total weight of children

repeat until only one node without parent
remains
label edges:

left edge: 0
right edge: 1

path to children gives code for character

19/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Huffman-shaped Wavelet Trees

wavelet trees can be compressed

more precise: the text can be compressed

use Huffman codes

wavelet trees cannot handle holes

use canonical Huffman codes

Canonical Huffman Codes (Recap)
start with Huffman codes, code word 0, and
length 1

to get canonical code for current length, then
add 1 to code word

to update length add 1 and append required
amount of zeros to code word

Huffman Codes (Recap)
idea is to create a binary tree

each character α is a leaf and has weight
Hist[α]

create node for two nodes without parent with
smallest weight

give new node total weight of children

repeat until only one node without parent
remains
label edges:

left edge: 0
right edge: 1

path to children gives code for character

19/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Huffman-shaped Wavelet Trees

α hc(α) chc(α)

1 (11)2 (11)2

3 (01)2 (10)2

6 (100)2 (011)2

7 (101)2 (010)2

0 (0000)2 (0011)2

2 (0001)2 (0010)2

4 (0010)2 (0001)2

5 (0011)2 (0000)2

Huffman codes (hc)

canonical Huffman codes (chc) that are bit-wise
negated

0 1 3 7 1 5 4 2 6 3

0 1 1 0 1 0 0 0 0 1
0 7 5 4 2 6 1 3 1 3

0 1 0 0 0 1 1 0 1 0
0 5 4 2 7 6

1 0 0 1 0 1
5 4 0 2

0 1 1 0

intervals are only missing to the right (white
space)

no holes allow for easy querying

20/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Huffman-shaped Wavelet Trees

α hc(α) chc(α)

1 (11)2 (11)2

3 (01)2 (10)2

6 (100)2 (011)2

7 (101)2 (010)2

0 (0000)2 (0011)2

2 (0001)2 (0010)2

4 (0010)2 (0001)2

5 (0011)2 (0000)2

Huffman codes (hc)

canonical Huffman codes (chc) that are bit-wise
negated

0 1 3 7 1 5 4 2 6 3

0 1 1 0 1 0 0 0 0 1
0 7 5 4 2 6 1 3 1 3

0 1 0 0 0 1 1 0 1 0
0 5 4 2 7 6

1 0 0 1 0 1
5 4 0 2

0 1 1 0

intervals are only missing to the right (white
space)

no holes allow for easy querying

20/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Huffman-shaped Wavelet Trees

Bottom-Up Construction [FKL18]
scan the text and create histogram

while scanning compute first level

use histogram to compute borders of intervals

scan text again and fill bit vectors

example on the next slide

21/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Practical Sequential Wavelet Tree Construction

0 1 3 7 1 5 4 2 6 3
0 0 0 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 1 1 1 1 0 0 0 1

0 1 3 1 2 3
0 0 0 0 0 0

0 0 1 0 1 1

0 1 1 1 0 1

7 5 4 6
1 1 1 1

1 0 0 1

1 1 0 0

0 1 1
0 0 0

0 0 0

0 1 1

3 2 3
0 0 0

1 1 1

1 0 1

5 4
1 1

0 0

1 0

7 6
1 1

1 1

1 0

0 0 0 1 0 1 1 0 1 0

0 0 1 0 1 1 1 0 0 1

0 1 1 1 0 1 1 0 1 0

0 000 1
1 001 2
2 010 1
3 011 2
4 100 1
5 101 1
6 110 1
7 111 1

00 3
01 3
10 2
11 2

pr
efi

x
su

m

+

+
+

+

3
6
8

22/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

0 1 3 7 1 5 4 2 6 3
0 0 0 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 1 1 1 1 0 0 0 1

0 1 3 1 2 3
0 0 0 0 0 0

0 0 1 0 1 1

0 1 1 1 0 1

7 5 4 6
1 1 1 1

1 0 0 1

1 1 0 0

0 1 1
0 0 0

0 0 0

0 1 1

3 2 3
0 0 0

1 1 1

1 0 1

5 4
1 1

0 0

1 0

7 6
1 1

1 1

1 0

0 0 0 1 0 1 1 0 1 0

0 0 1 0 1 1 1 0 0 1

0 1 1 1 0 1 1 0 1 0

0 000 1
1 001 2
2 010 1
3 011 2
4 100 1
5 101 1
6 110 1
7 111 1

00 3
01 3
10 2
11 2

pr
efi

x
su

m

+

+
+

+

3
6
8

22/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

0 1 3 7 1 5 4 2 6 3
0 0 0 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 1 1 1 1 0 0 0 1

0 1 3 1 2 3
0 0 0 0 0 0

0 0 1 0 1 1

0 1 1 1 0 1

7 5 4 6
1 1 1 1

1 0 0 1

1 1 0 0

0 1 1
0 0 0

0 0 0

0 1 1

3 2 3
0 0 0

1 1 1

1 0 1

5 4
1 1

0 0

1 0

7 6
1 1

1 1

1 0

0 0 0 1 0 1 1 0 1 0

0 0 1 0 1 1 1 0 0 1

0 1 1 1 0 1 1 0 1 0

0 000 1
1 001 2
2 010 1
3 011 2
4 100 1
5 101 1
6 110 1
7 111 1

00 3
01 3
10 2
11 2

pr
efi

x
su

m

+

+
+

+

3
6
8

22/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

0 1 3 7 1 5 4 2 6 3
0 0 0 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 1 1 1 1 0 0 0 1

0 1 3 1 2 3
0 0 0 0 0 0

0 0 1 0 1 1

0 1 1 1 0 1

7 5 4 6
1 1 1 1

1 0 0 1

1 1 0 0

0 1 1
0 0 0

0 0 0

0 1 1

3 2 3
0 0 0

1 1 1

1 0 1

5 4
1 1

0 0

1 0

7 6
1 1

1 1

1 0

0 0 0 1 0 1 1 0 1 0

0 0 1 0 1 1 1 0 0 1

0 1 1 1 0 1 1 0 1 0

0 000 1
1 001 2
2 010 1
3 011 2
4 100 1
5 101 1
6 110 1
7 111 1

00 3
01 3
10 2
11 2

pr
efi

x
su

m

+

+
+

+

3
6
8

22/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

0 1 3 7 1 5 4 2 6 3
0 0 0 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 1 1 1 1 0 0 0 1

0 1 3 1 2 3
0 0 0 0 0 0

0 0 1 0 1 1

0 1 1 1 0 1

7 5 4 6
1 1 1 1

1 0 0 1

1 1 0 0

0 1 1
0 0 0

0 0 0

0 1 1

3 2 3
0 0 0

1 1 1

1 0 1

5 4
1 1

0 0

1 0

7 6
1 1

1 1

1 0

0 0 0 1 0 1 1 0 1 0

0 0 1 0 1 1 1 0 0 1

0 1 1 1 0 1 1 0 1 0

0 000 1
1 001 2
2 010 1
3 011 2
4 100 1
5 101 1
6 110 1
7 111 1

00 3
01 3
10 2
11 2

pr
efi

x
su

m

+

+
+

+

3
6
8

22/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

0 1 3 7 1 5 4 2 6 3
0 0 0 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 1 1 1 1 0 0 0 1

0 1 3 1 2 3
0 0 0 0 0 0

0 0 1 0 1 1

0 1 1 1 0 1

7 5 4 6
1 1 1 1

1 0 0 1

1 1 0 0

0 1 1
0 0 0

0 0 0

0 1 1

3 2 3
0 0 0

1 1 1

1 0 1

5 4
1 1

0 0

1 0

7 6
1 1

1 1

1 0

0 0 0 1 0 1 1 0 1 0

0 0 1 0 1 1 1 0 0 1

0 1 1 1 0 1 1 0 1 0

0 000 1
1 001 2
2 010 1
3 011 2
4 100 1
5 101 1
6 110 1
7 111 1

00 3
01 3
10 2
11 2

pr
efi

x
su

m

+

+
+

+

3
6
8

22/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

64 GB RAM

two Intel Xeon E5-2640v4 CPUs (10 cores at
2.4 GHz base frequency, 3.4 GHz maximum
turbo frequency, and cache sizes: 32 KB L1D
and L1I, 256 KB L2, 25.6 MB L3)

same texts as in chapter 04

results are average of 5 runs

23/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Experimental Setup

28 30 32 34

0

200

400

input size lg n (B)

th
ro

ug
hp

ut
(M

ib
it/

s)

Commoncrawl

28 30 32 34

200

400

input size lg n (B)

DNA

28 30 32 34

200

300

400

input size lg n (B)

Proteins

28 30 32 34
100

200

300

400

input size lg n (B)

Wikipedia

naive pc pc.ss ps sdsl.pc serialWT

24/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Experiments: Sequential Wavelet Tree Construction

Domain Decomposition [Fue+17]
create wavelet tree in parallel using p PEs

each PE gets a consecutive slice of text

each PE builds partial wavelet tree for its text

merge partial wavelet trees in parallel

can utilize any sequential algorithm

very fast in practice

O(n lg σ/
√
lg n) work and O(σ + lg n) time

[Shu20]

25/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Parallel Wavelet Tree Construction in Practice

T

pa
rt

ia
l

w
av

el
et

tre
es

fin
al

w
av

el
et

tre
e

. . .
PE 1 PE 2 . . . PE p

co
m

pu
te

w
av

el
et

tre
e

co
m

pu
te

w
av

el
et

tre
e

co
m

pu
te

w
av

el
et

tre
e

. . .

. . .

. . .

. . .

.
.

parallel merge

26/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

1 2 4 8 16 32 48

0.1

1

10

PEs p

C
om

m
on

cr
aw

l
th

ro
ug

hp
ut

(G
ib

it/
s)

256 MiB per PE

1 2 4 8 16 32 48

0.1

1

10

PEs p

512 MiB per PE

1 2 4 8 16 32 48

0.1

1

10

PEs p

1024 MiB per PE

ddWT dd.ps levelWT ppc.ss recWT
dd.pc dd.pc.ss ppc pps sortWT

27/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Experiments: Parallel Wavelet Tree Construction

This Lecture
wavelet tree and wavelet matrix

Huffman-shaped wavelet trees

select on bit vectors

practical algorithms for wavelet tree construction

Next Lecture
FM-index

r-Index

Linear Time Construction

ST SA WT

LCP BWTLZ

28/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture
wavelet tree and wavelet matrix

Huffman-shaped wavelet trees

select on bit vectors

practical algorithms for wavelet tree construction

Next Lecture
FM-index

r-Index

Linear Time Construction

ST SA WT

LCP BWTLZ

28/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture
wavelet tree and wavelet matrix

Huffman-shaped wavelet trees

select on bit vectors

practical algorithms for wavelet tree construction

Next Lecture
FM-index

r-Index

Linear Time Construction

ST SA WT

LCP BWTLZ

28/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

[Bab+15] Maxim A. Babenko, Pawel Gawrychowski, Tomasz Kociumaka, and Tatiana Starikovskaya. “Wavelet
Trees Meet Suffix Trees”. In: SODA. SIAM, 2015, pages 572–591. DOI:
10.1137/1.9781611973730.39.

[CNP15] Francisco Claude, Gonzalo Navarro, and Alberto Ordóñez Pereira. “The Wavelet Matrix: An Efficient
Wavelet Tree for Large Alphabets”. In: Inf. Syst. 47 (2015), pages 15–32. DOI:
10.1016/j.is.2014.06.002.

[FKL18] Johannes Fischer, Florian Kurpicz, and Marvin Löbel. “Simple, Fast and Lightweight Parallel
Wavelet Tree Construction”. In: ALENEX. SIAM, 2018, pages 9–20. DOI:
10.1137/1.9781611975055.2.

[Fue+17] José Fuentes-Sepúlveda, Erick Elejalde, Leo Ferres, and Diego Seco. “Parallel Construction of
Wavelet Trees on Multicore Architectures”. In: Knowl. Inf. Syst. 51.3 (2017), pages 1043–1066. DOI:
10.1007/s10115-016-1000-6.

29/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1137/1.9781611973730.39
https://doi.org/10.1016/j.is.2014.06.002
https://doi.org/10.1137/1.9781611975055.2
https://doi.org/10.1007/s10115-016-1000-6

[GGV03] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. “High-Order Entropy-Compressed Text
Indexes”. In: SODA. ACM/SIAM, 2003, pages 841–850.

[Kan18] Yusaku Kaneta. “Fast Wavelet Tree Construction in Practice”. In: SPIRE. Volume 11147. Lecture
Notes in Computer Science. Springer, 2018, pages 218–232. DOI:
10.1007/978-3-030-00479-8_18.

[MNV16] J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. “Fast construction of wavelet trees”. In: Theor.
Comput. Sci. 638 (2016), pages 91–97. DOI: 10.1016/j.tcs.2015.11.011.

[Shu20] Julian Shun. “Improved parallel construction of wavelet trees and rank/select structures”. In: Inf.
Comput. 273 (2020), page 104516. DOI: 10.1016/j.ic.2020.104516.

30/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees Institute for Theoretical Informatics, Algorithm Engineering

Bibliography II

https://doi.org/10.1007/978-3-030-00479-8_18
https://doi.org/10.1016/j.tcs.2015.11.011
https://doi.org/10.1016/j.ic.2020.104516

	Appendix

