

Advanced Data Structures

Lecture 00: Course Overview

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @⊕@: www.creativecommons.org/licenses/by-sa/4.0 | commit 3c6d2d4 compiled at 2023-04-17-09:10

Lectures

- Monday 14:00–15:30 (50.34, 236)
- lecture only

Lectures

- Monday 14:00–15:30 (50.34, 236)
- lecture only

Project (mandatory)

- topics will be handed out 08.05.2023
- coding project and small presentation
- 20 % of the final grade
- requires additional registration

Lectures

- Monday 14:00–15:30 (50.34, 236)
- lecture only

Project (mandatory)

- topics will be handed out 08.05.2023
- coding project and small presentation
- 20 % of the final grade
- requires additional registration

Oral Exam

- 20 minutes
- 80 % of the final grade
- pizza marks content not relevant for exam

2/5

Lectures

- Monday 14:00–15:30 (50.34, 236)
- lecture only

Project (mandatory)

- topics will be handed out 08.05.2023
- coding project and small presentation
- 20 % of the final grade
- requires additional registration

Oral Exam

- 20 minutes
- 80 % of the final grade
- pizza marks content not relevant for exam

Office Hours (Room 208)

- Monday 15:45–16:30 (lecture period)
- by appointment (otherwise)

Materials

Slides

- published before the lecture (https://algo2.iti.kit.edu/4521.php)
- before means like 10 to 15 minutes before

Recordings

- recordings exist online
 (https://youtube.com/@kurpicz)
- new topics will be recorded

Materials

Slides

- published before the lecture (https://algo2.iti.kit.edu/4521.php)
- before means like 10 to 15 minutes before

Recordings

- recordings exist online
 (https://youtube.com/@kurpicz)
- new topics will be recorded

Additional Material

- references to literature included
- most likely no script
- MIT course (some topics match)

```
https://ocw.mit.edu/courses/
6-851-advanced-data-structures-spring-2012/
```

Content

Trees/Grahps

- bit vectors and succinct trees
- dynamic bit vectors and succinct trees
- succinct graphs

External Memory

- cache-oblivious B-trees
- buffer trees and EM lookup

Integers

- range minimum queries (lowest common ancestor queries)
- predecessor queries
- vEB-tree and fusion trees

Strings

- string B-trees and suffix arrays
- compressed suffix array and suffix tree

Content

Trees/Grahps

- bit vectors and succinct trees
- dynamic bit vectors and succinct trees
- succinct graphs

External Memory

- cache-oblivious B-trees
- buffer trees and EM lookup

Integers

- range minimum queries (lowest common ancestor queries)
- predecessor queries
- vEB-tree and fusion trees

Strings

- string B-trees and suffix arrays
- compressed suffix array and suffix tree

Gap Between Theory and Practice (Lecture AE Sanders)

Different Viewpoints				
Theory				Practice
simple		application model		complex
simple		machine model		real
complex		algorithms	FOR	simple
advanced		data structures		arrays,
worst case	max	complexity measure		inputs
asymptotic	$\mathscr{O}(\cdot)$	efficiency	42%	constant factors

5/5