Advanced Data Structures

Lecture 01: Bit Vectors
Florian Kurpicz
Bit Vectors

Succinct Data Structures
- represent data structures space efficient
- close to their information theoretical minimum
- using every bit becomes necessary

Succinct Trees
- represent a tree with n nodes using only $2n$ bits
- navigation is possible with additional $o(n)$ bits

- storing a bit vector in practice is tricky
- 11011101 should require only a single byte
Efficient Bit Vectors in Practice (1/3)

std::vector<char/int/...>

- easy access
- very big: 1, 4, ... bytes per bit
std::vector<char/int/...>
- easy access
- very big: 1, 4, ... bytes per bit

std::vector<bool>
- bit vector in C++ (1 bit per byte)
- easy access
- layout depending on implementation
Efficient Bit Vectors in Practice (1/3)

<table>
<thead>
<tr>
<th>std::vector<char/int/...></th>
<th>std::vector<uint64_t></th>
</tr>
</thead>
<tbody>
<tr>
<td>- easy access</td>
<td>- requires 8 bytes per bit(?)</td>
</tr>
<tr>
<td>- very big: 1, 4, ... bytes per bit</td>
<td>- store 64 bits in 8 bytes</td>
</tr>
<tr>
<td></td>
<td>- how to access bits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>std::vector<bool></th>
</tr>
</thead>
<tbody>
<tr>
<td>- bit vector in C++ (1 bit per byte)</td>
</tr>
<tr>
<td>- easy access</td>
</tr>
<tr>
<td>- layout depending on implementation</td>
</tr>
</tbody>
</table>
Efficient Bit Vectors in Practice (1/3)

std::vector<char/int/...>
- easy access
- very big: 1, 4, ... bytes per bit

std::vector<bool>
- bit vector in C++ (1 bit per byte)
- easy access
- layout depending on implementation

std::vector<uint64_t>
- requires 8 bytes per bit(?)
- store 64 bits in 8 bytes
- how to access bits

- $i/64$ is position of 64-bit word
- $i\%64$ is position in 64-bit word
Efficient Bit Vectors in Practice (1/3)

\textbf{std::vector<char/int/\ldots>}

- easy access
- very big: 1, 4, \ldots bytes per bit

\textbf{std::vector<bool>}

- bit vector in C++ (1 bit per byte)
- easy access
- layout depending on implementation

\textbf{std::vector<uint64_t>}

- requires 8 bytes per bit(?)
- store 64 bits in 8 bytes
- how to access bits

\begin{align*}
0 & & 1 & & 2 & & 3 & & 4 & & 5 & & 6 & & 7 & & 8 & & 9 \\
64 \text{ bits} & & 64 \text{ bits} \\
\vdots & & 63 & & 0 & & 1 & & 2 & & 3 & & 4 & & 5 & & \ldots & & 62 & & 63 & & 0 \\
0 & & 1 & & 1 & & 1 & & 0 & & 1 & & 0 & & \ldots & & 1 & & 0 & & 0 & & \ldots
\end{align*}
// There is a bit vector
std::vector<uint64_t> bit_vector;

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> (63 - (i % 64))) & 1ULL;
// There is a bit vector
std::vector<uint64_t> bit_vector;

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> (63 - (i % 64))) & 1ULL;

shift bits right

0 1 2 3 4 5 ... 62 63
1 1 1 0 1 0 ... 1 0
// There is a bit vector
std::vector<uint64_t> bit_vector;

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> (63 - (i % 64))) & 1ULL;

// shift bits right
// # bits

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
<th>62</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\gg 60 \]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
<th>62</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
// There is a bit vector
std::vector<uint64_t> bit_vector;

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> (63 - (i % 64))) & 1ULL;

shift bits right # bits logical and 1

0 1 2 3 4 5 ... 62 63
1 1 1 0 1 0 ... 1 0

0 1 2 3 4 5 ... 62 63
0 0 0 0 0 0 ... 1 0

and 1
Efficient Bit Vectors in Practice (3/3)

(block >> (63-(i%64))) & 1ULL;

- fill bit vector from left to right

```
0 1 2 3 4 5 ... 62 63
1 1 1 0 1 0 ... 1 0
```

```
0 0 0 0 0 0 ... 1 0
```

(block >> (i%64)) & 1ULL;

- fill blocks in bit vector right to left

```
63 62 ... 5 4 3 2 1 0
0 1 ... 0 1 0 1 1 1
```

```
0 0 ... 1 1 0 0 1 0
```
Efficient Bit Vectors in Practice (3/3)

fill bit vector from left to right

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
<th>62</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

| 0 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 0 |

fill blocks in bit vector right to left

<table>
<thead>
<tr>
<th>63</th>
<th>62</th>
<th>...</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

| 0 | 0 | ... | 1 | 1 | 0 | 0 | 1 | 0 |
Efficient Bit Vectors in Practice (3/3)

(block >> (63-(i%64))) & 1ULL;
- fill bit vector from left to right

0 1 2 3 4 5 ... 62 63

1 1 1 0 1 0 ... 1 0

0 0 0 0 0 0 ... 1 0

assembler code: mov ecx, edi
not ecx
shr rsi, cl
mov eax, esi
and eax, 1

(block >> (i%64)) & 1ULL;
- fill blocks in bit vector right to left

63 62 ... 5 4 3 2 1 0

0 1 ... 0 1 0 1 1 1

0 0 ... 1 1 0 0 1 0
Efficient Bit Vectors in Practice (3/3)

[block >> (63-(i%64))] & 1ULL;

- fill bit vector from left to right

0 1 2 3 4 5 ... 62 63
1 1 1 0 1 0 ... 1 0

0 0 0 0 0 0 0 ... 1 0

- assembler code:
 mov ecx, edi
 not ecx
 shr rsi, cl
 mov eax, esi
 and eax, 1

[block >> (i%64)] & 1ULL;

- fill blocks in bit vector right to left

63 62 ... 5 4 3 2 1 0
0 1 ... 0 1 0 1 1 1

0 0 ... 1 1 0 0 1 0

- assembler code:
 mov ecx, edi
 shr rsi, cl
 mov eax, esi
 and eax, 1
Rank Queries on Bit Vectors (1/2)

\[\text{rank}_{\alpha}(i) \] # of \(\alpha \)'s before \(i \)

\[\text{select}_{\alpha}(j) \] position of \(j \)-th \(\alpha \)
Rank Queries on Bit Vectors (1/2)

\[\text{rank}_\alpha(i) \] # of \(\alpha \)'s before \(i \)
\[\text{select}_\alpha(j) \] position of \(j \)-th \(\alpha \)

\[\text{rank}_0(5) \]
Rank Queries on Bit Vectors (1/2)

\(\text{rank}_\alpha(i) \) # of \(\alpha \)s before \(i \)
\(\text{select}_\alpha(j) \) position of \(j \)-th \(\alpha \)

\[\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
\end{array}\]
Rank Queries on Bit Vectors (1/2)

\(\text{rank}_\alpha(i) \) \# of \(\alpha \)s before \(i \)

\(\text{select}_\alpha(j) \) position of \(j \)-th \(\alpha \)

\(\text{rank}_0(5) \)
Rank Queries on Bit Vectors (1/2)

- \(\text{rank}_\alpha(i) \): \# of \(\alpha \)s before \(i \)
- \(\text{select}_\alpha(j) \): position of \(j \)-th \(\alpha \)

```
0 1 1 1 0 1 1 0 1 0 0
```

- \(\text{rank}_0(5) \)
- \(\text{select}_1(5) \)

2
Rank Queries on Bit Vectors (1/2)

- \(\text{rank}_\alpha(i) \) \# of \(\alpha \)s before \(i \)
- \(\text{select}_\alpha(j) \) position of \(j \)-th \(\alpha \)

Example Diagram:

```
0 1 2 3 4 5 6 7 8 9
0 1 1 0 1 1 0 1 0 0
```

- \(\text{rank}_0(5) = 2 \)
- \(\text{select}_1(5) \)
Rank Queries on Bit Vectors (1/2)

\[\text{rank}_\alpha(i) \] # of \(\alpha \)'s before \(i \)
\[\text{select}_\alpha(j) \] position of \(j \)-th \(\alpha \)

PINGO-Frage

\[\text{rank}_0(5) \]
Rank Queries on Bit Vectors (1/2)

- \(\text{rank}_\alpha(i) \) # of \(\alpha \)s before \(i \)
- \(\text{select}_\alpha(j) \) position of \(j \)-th \(\alpha \)

Diagram:

- 0 1 2 3 4 5 6 7 8 9
- 0 1 1 0 1 1 0 1 0 0

- \(\text{rank}_0(5) \)
- \(\text{super-block} \)
- \(\# \) of 0s w.r.t. BV
Rank Queries on Bit Vectors (1/2)

\[\text{rank}_\alpha(i) \] \# of \(\alpha \)'s before \(i \)

\[\text{select}_\alpha(j) \] position of \(j \)-th \(\alpha \)

\[\text{rank}_0(5) \]

of 0s w.r.t. BV

of 0s w.r.t. super-block

block

super-block

0 1 1 0 1 1 0 1 0 0
Rank Queries on Bit Vectors (1/2)

\[
\text{rank}_\alpha(i) \quad \# \text{ of } \alpha \text{s before } i
\]
\[
\text{select}_\alpha(j) \quad \text{position of } j\text{-th } \alpha
\]
Rank Queries on Bit Vectors (2/2)

- for a bit vector of size n
- blocks of size $s = \left\lfloor \frac{\lg n}{2} \right\rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$
Rank Queries on Bit Vectors (2/2)

- for a bit vector of size \(n \)
 - blocks of size \(s = \lfloor \frac{\lg n}{2} \rfloor \)
 - super blocks of size \(s' = s^2 = \Theta(\lg^2 n) \)

- for all \(\lfloor \frac{n}{s'} \rfloor \) super blocks, store number of 0s from beginning of bit vector to end of super-block
- \(n/s' \cdot \lg n = O(\frac{n}{\lg n}) = o(n) \) bits of space
Rank Queries on Bit Vectors (2/2)

- for a bit vector of size n
- blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$

- for all $\lfloor \frac{n}{s'} \rfloor$ super blocks, store number of 0s from beginning of bit vector to end of super-block
- $n/s' \cdot \lg s' = O(\frac{n \lg \lg n}{\lg n}) = o(n)$ bits of space

- for all $\lfloor \frac{n}{s} \rfloor$ blocks, store number of 0s from beginning of super block to end of block
- $n/s \cdot \lg s = O(\frac{n \lg \lg n}{\lg n}) = o(n)$ bits of space

- query in $O(1)$ time
Rank Queries on Bit Vectors (2/2)

- for a bit vector of size n
 - blocks of size $s = \left\lfloor \frac{\lg n}{2} \right\rfloor$
 - super blocks of size $s' = s^2 = \Theta(\lg^2 n)$

- for all $\left\lfloor \frac{n}{s'} \right\rfloor$ super blocks, store number of 0s from beginning of super block to end of block
 - $n/s' \cdot \lg s' = O\left(\frac{n \lg n}{\lg n}\right) = o(n)$ bits of space

- for all length-s bit vectors, for every position i
 - store number of 0s up to i
 - $2^{\frac{\lg n}{2}} \cdot s \cdot \lg s = O\left(\sqrt{n \lg n \lg \lg n}\right) = o(n)$ bits of space
Rank Queries on Bit Vectors (2/2)

- for a bit vector of size \(n \)
 - blocks of size \(s = \left\lfloor \frac{\lg n}{2} \right\rfloor \)
 - super blocks of size \(s' = s^2 = \Theta(\lg^2 n) \)

- for all \(\left\lfloor \frac{n}{s'} \right\rfloor \) super blocks, store number of 0s from beginning of super block to end of block
 - \(n/s \cdot \lg s' = O(\frac{n \lg n}{\lg n}) = o(n) \) bits of space

- for all length-\(s \) bit vectors, for every position \(i \)
 - store number of 0s up to \(i \)
 - \(2^{\frac{\lg n}{2}} \cdot s \cdot \lg s = O(\sqrt{n} \lg n \lg \lg n) = o(n) \) bits of space

- query in \(O(1) \) time

- \(\text{rank}_0(i) = i - \text{rank}_1(i) \)
Rank Queries on Bit Vectors (1/2)

rank_{\alpha}(i) \# of \alpha s before i
select_{\alpha}(j) \text{ position of } j\text{-th } \alpha
Select in \(o(n) \) Space and \(O(1) \) Time

- \(\text{select}_0 \) in a bit vector of size \(n \) that contains \(k \) zeros
- \text{PINGO-Frage}
Select in $o(n)$ Space and $O(1)$ Time

- $select_0$ in a bit vector of size n that contains k zeros
- **PINGO-Frage**
- naive solutions
 - scan bit vector: $O(n)$ time and no space overhead
 - store k solutions in $S[1..k]$ and $select_0(i) = S[i] \text{ if } k \in O(n/\log n)$ this suffice
Select in $o(n)$ Space and $O(1)$ Time

- $select_0$ in a bit vector of size n that contains k zeros
- **PINGO-Frage**
- naive solutions
 - scan bit vector: $O(n)$ time and no space overhead
 - store k solutions in $S[1..k]$ and $select_0(i) = S[i]$ if $k \in O(n/\lg n)$ this suffice

- better: k/b variable-sized super-blocks B_i, such that super-block contains $b = \lg^2 n$ zeros
 - $select_0(i) = \sum_{j=0}^{[i/b]-1} |B_j| + select_0(B_{[i/b]}, j - ([i/b]b))$
Select in \(o(n)\) Space and \(O(1)\) Time

- \(select_0\) in a bit vector of size \(n\) that contains \(k\) zeros
- **PINGO-Frage**
- naive solutions
 - scan bit vector: \(O(n)\) time and no space overhead
 - store \(k\) solutions in \(S[1..k]\) and \(select_0(i) = S[i] \uparrow\) if \(k \in O(n/\log n)\) this suffice
- better: \(k/b\) variable-sized super-blocks \(B_i\), such that super-block contains \(b = \log^2 n\) zeros
- \(select_0(i) = \sum_{j=0}^{[i/b]-1} |B_j| + select_0(B_{[i/b]} \cdot j - ([i/b]b))\)
- storing all possible results for the (prefix) sum
- \(O((k \log n)/b) = o(n)\) bits of space
Select in $o(n)$ Space and $O(1)$ Time

- $select_0$ in a bit vector of size n that contains k zeros
 - PINGO-Frage
 - naive solutions
 - scan bit vector: $O(n)$ time and no space overhead
 - store k solutions in $S[1..k]$ and $select_0(i) = S[i]$ if $k \in O(n/lgn)$ this suffice
 - better: k/b variable-sized super-blocks B_i, such that super-block contains $b = \lg^2 n$ zeros
 - $select_0(i) = \sum_{j=0}^{\lfloor i/b \rfloor - 1} |B_j| + select_0(B_{\lfloor i/b \rfloor} \cdot j - (\lfloor i/b \rfloor b))$

- storing all possible results for the (prefix) sum
 - $O((k \lg n)/b) = o(n)$ bits of space

- select on block depends on size of block
 - $|B_{\lfloor i/b \rfloor}| \geq \lg^4 n$: store answers naively
 - requires $O(b \lg n) = O(\lg^3 n)$ bits of space
 - there are at most $O(n/\lg^4 n)$ such blocks
 - total $O(n/\lg n) = o(n)$ bits of space

better: k/b variable-sized super-blocks B_i, such that super-block contains $b = \lg^2 n$ zeros

select on block depends on size of block

- $|B_{\lfloor i/b \rfloor}| \geq \lg^4 n$: store answers naively
 - requires $O(b \lg n) = O(\lg^3 n)$ bits of space
 - there are at most $O(n/\lg^4 n)$ such blocks
 - total $O(n/\lg n) = o(n)$ bits of space
Select in $o(n)$ Space and $O(1)$ Time

- **select**$_0$ in a bit vector of size n that contains k zeros

 PINGO-Frage

- naive solutions
 - scan bit vector: $O(n)$ time and no space overhead
 - store k solutions in $S[1..k]$ and
 - select$_0(i) = S[i]$ ① if $k \in O(n/\log n)$ this suffice

- better: k/b variable-sized super-blocks B_i, such that super-block contains $b = \log^2 n$ zeros

 - select$_0(i) = \sum_{j=0}^{[i/b]-1} |B_j| + \text{select}_0(B_{[i/b]} \cdot j - ([i/b]b))$

- storing all possible results for the (prefix) sum
 - $O((k \log n)/b) = o(n)$ bits of space

- select on block depends on size of block
 - $|B_{[i/b]}| \geq \log^4 n$: store answers naively
 - requires $O(b \log n) = O(\log^3 n)$ bits of space
 - there are at most $O(n/ \log^4 n)$ such blocks
 - total $O(n/ \log n) = o(n)$ bits of space
 - $|B_{[i/b]}| < \log^4 n$: divide super-block into blocks
 - same idea: variable-sized blocks containing $b' = \sqrt{\log n}$ zeros
 - (prefix) sum $O((k \log n)/b') = o(n)$ bits
 - if size $\geq \log n$ store all answers
 - if size $< \log n$ store lookup table
Rank- and Select-Queries on Bit Vectors

Lemma: Binary Rank- and Select-Queries

Given a bit vector of size n, there exist data structures that can be computed in time $O(n)$ of size $o(n)$ bits that can answer rank and select queries on the bit vector in $O(1)$ time.
Conclusion and Outlook

This Lecture
- bit vectors
- rank and select on bit vectors

Advanced Data Structures
- BV
Conclusion and Outlook

This Lecture

- bit vectors
- rank and select on bit vectors
- efficient bit vectors in practice

Advanced Data Structures

BV
Conclusion and Outlook

This Lecture
- bit vectors
- rank and select on bit vectors
- efficient bit vectors in practice

Next Lecture
- succinct trees using bit vectors
- navigation in succinct trees

Advanced Data Structures

BV