Advanced Data Structures

Lecture 02: Succinct Trees
Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (®)(1)(0): www.creativecommons.org/licenses/by-sa/4.0 |commit 3c6d2d4 compiled at 2023-04-24-09:00

PINGO

https://pingo.scc.kit.edu/306589

Recap: Rank Queries on Bit Vectors (1/2)

$\operatorname{rank}_{\alpha}(i)$ \# of α s before i
select $_{\alpha}(j)$ position of j-th α
block
super-block

Recap: Rank Queries on Bit Vectors (2/2)

Lemma: Binary Rank- and Select-Queries

Given a bit vector of size n, there exist data structures that can be computed in time $O(n)$ of size $o(n)$ bits that can answer rank and select queries on the bit vector in $O(1)$ time

Word RAM

- unlimited memory
- words of size w (3) $w=\Theta \log n$
- constant time load and store
- constant time bit operations on words

Plan for Today

- represent tree with n nodes using $2 n$ bits
- make succinct tree fully-functional using additional $O(n)$ bits
- trees are important
- searching for keys
- maintaining directories
- representations of parsings
- different representations
- supporting different operations

Handout

Preliminaries

- a tree is an acyclic connected graph $G=(V, E)$ with a root $r \in V$
- degree δ is the number of children
- leaves have degree 0
- depth of a node is the length of the path from the root to that node

Level Ordered Unary Degree Sequence (1/2) [Jac88]

- represent tree level-wise
- use ≤ 2 bits per node

Definition: LOUDS

Starting at the root, all nodes on the same depth

- are visited from left to right and
- for node $v, \delta(v) 1$'s followed by a 0 are appended to the bit vector that contains an initial 10

Lemma: Space Usage of LOUDS

Representing a tree with n nodes requires $2 n+1$ bits using LOUDS

- write down the LOUDS representation of this example tree

Level Ordered Unary Degree Sequence (2/2)

```
    ab ch id ejkfg
10111100110011001100000
```

- node start at pertinent 0

What is Fully-Functional?

Operations

- degree (3) is leaf
- i-th child
- parent
- subtree size
- depth
- lowest common ancestor
- rank (pre- or post-order)

Making LOUDS Fully-Functional

```
    ab ch id ejkfg
10111100110011001100000
```

- degree of $p: p-\operatorname{select}_{0}\left(\operatorname{rank}_{0}(p)\right)-1$
- i-th child of p :
$\operatorname{select}_{0}\left(\operatorname{rank}_{1}\left(\operatorname{select}_{0}\left(\operatorname{rank}_{0}(p)\right)\right)+i+1\right)$
- parent of p :
$\operatorname{select}_{0}\left(\operatorname{rank}_{0}\left(\right.\right.$ select $\left.\left._{1}\left(\operatorname{rank}_{0}(p)\right)\right)+1\right)$
- explanation on the board
- subtree size

From Bit Vectors to Parentheses

- instead of 0 and 1
- use (and)
- requires the same space
- can add relation between parentheses

Definition: Balanced String of Parentheses

A string of parentheses is balanced, if for each left parenthesis there exist unique right parenthesis to its right ㅇ.

- findclose(i): find the right parenthesis matching the left parenthesis at position i
- findopen(i): find the left parenthesis matching the right parenthesis at position i
- excess(i): find the difference between the number of left and right parentheses before position i
- enclose(i): given a parentheses pair with the left parenthesis at position i, return the position of the closest left parenthesis belonging to the parentheses pair enclosing it

From Bit Vectors to Parentheses

- all parentheses operations can be answered in $O(1)$ time using $o(n)$ bits space
- here, a little bit simpler
- excess $(i)=\operatorname{rank}_{\text {" }}$ " $\left.(i)-\operatorname{rank}_{\text {" }}\right)$ " (i)
- fwd_search $(i, d)=\min \{j>i: \operatorname{excess}(j)-\operatorname{excess}(i-1)=d\}$
- bwd_search $(i, d)=\max \{j<i: \operatorname{excess}(i)-\operatorname{excess}(j-1)=d\}$
- findclose $(i)=f w d _$search $(i, 0)$
- findopen $(i)=b w d _$search $(i, 0)$
- enclose $(i)=$ bwd_search $(i, 2)$
- can be answered with a min-max-tree

Range Min-Max Trees (1/2)

Definition: Range Min-Max Tree

Given a bit vector B of length n and a block size b, store for each consecutive block (from s to e) of $B V$

- total excess in block:

$$
\operatorname{excess}(e)-\operatorname{excess}(s-1)
$$

- minimum left-to-right excess in block:

$$
\min \{\operatorname{excess}(p)-\operatorname{excess}(s-1): p \in[s, e)\}
$$

and build a binary tree over these blocks, where each node stores the same total information for blocks in all its leaves

- example on the board

Lemma: Range Min-Max Tree Space

A range min-max tree with block size b for a bit vector of size n requires $n+O((n / b) \log n)$ bits of space

Range Min-Max Trees (2/2)

fwdsearch in a Range Min-Max Tree

- scan block
- if not found traverse tree
- identify block in tree
- scan block
- process c bits at a time
- first align with next c bits
- requires $O(c+b / c)$ time
- going up and down tree in $O(\log (n / b))$ time
- scanning last block requires $O(c+b / c)$ time
- by choosing $b=c \log n$ this requires
- $O(\log n)$ time and
$n+O(n /(c \log n))=n+o(n)$ bits space

Improvements

- two level approach
- build range min-max trees for chunks of size $\Theta\left(\log ^{3} n\right)$
- $O(\log \log n)$ query time inside a chunk
- can result in total query time of $O(\log \log n)$

Balanced Parentheses (1/2) [MR01]

- represent tree as depth-first traversal
- using balanced parentheses

Definition: BP

Starting at the root, traverse the tree in depth-first order and append a

- left parenthesis if a node is visited the first time
- right parenthesis if a node is visited the last time to the bit vector

Lemma: Space Usage of BP

Representing a tree with n nodes requires $2 n$ bits

- write down the BP representation of this example tree using $B P$

Balanced Parentheses (2/2)

```
ab cd ef g h ij k
(()(()(()()))()(()()))
```

- node starts at first parenthesis
- subtree structure is encoded in parentheses \square

Making BP Fully-Functional

```
ab cd ef g h ij k
(()(()(()()))()(()()))
```

- subtree size of p : $($ findclose $(p)-p+1) / 2$
- parent of p : enclose (p)
- explanation on the board \square

Complicated Constant Time [NS14]

- degree
- i-th child

Advantages and Disadvantages of Both Approaches

- LOUDS cannot answer subtree size
- BP cannot easily answer i-th child and degree
- all other operations can be done easily

Depth First Unary Degree Sequence (1/2) [Ben+05]

Definition: DFUDS

Starting at the root, traverse tree in depth-first order and append

- for node $v, \delta(v)$ left parentheses and
- a right parenthesis if v is visited the first time to the bit vector that initially contains a left parenthesis (3) to make them balanced

Lemma: Space Usage of DFUDS

Representing a tree with n nodes requires $2 n$ bits using DFUDS

- write down the DFUDS representation of this example tree

Depth First Unary Degree Sequence (2/2)

```
a bc de fghi jk
(((())(())(())))(()))
```

- node starts at first parenthesis
- subtree structure is encoded 0

Making DFUDS Fully-Functional

a bc de fghi jk
((()())(())(())))(()))

- degree of p : select")" (rank")" $(p)+1)-p$
- i-th child of p :
findclose(select")" (rank")" $(p)+1)-i)+1$
- parent of p : select".") (rank"." (findopen($p-1$)))+1
- subtree size of p :
$($ findclose $(\operatorname{enclose}(p))-p) / 2+1$

- explanation on the board 20

Conclusion and Outlook

This Lecture

- three succinct tree representations
- different advantages and disadvantages
- min-max-trees

Next Lecture

- succinct graphs

Advanced Data Structures

Bibliography I

[Ben+05] David Benoit, Erik D. Demaine, J. Ian Munro, Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. "Representing Trees of Higher Degree". In: Algorithmica 43.4 (2005), pages 275-292. DOI: 10.1007/s00453-004-1146-6.
[Jac88] Guy Joseph Jacobson. "Succinct Static Data Structures". PhD thesis. Carnegie Mellon University, 1988.
[MR01] J. Ian Munro and Venkatesh Raman. "Succinct Representation of Balanced Parentheses and Static Trees". In: SIAM J. Comput. 31.3 (2001), pages 762-776. DOI: 10.1137/S0097539799364092.
[NS14] Gonzalo Navarro and Kunihiko Sadakane. "Fully Functional Static and Dynamic Succinct Trees". In: ACM Trans. Algorithms 10.3 (2014), 16:1-16:39. DOI: 10.1145/2601073.

