

Advanced Data Structures

Lecture 03: Succinct Planar Graphs

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @ () () www.creativecommons.org/licenses/by-sa/4.0 | commit 3c6d2d4 compiled at 2023-05-08-10:53

www.kit.edu

Recap: Succinct Trees

LOUDS

ab ch id ejkfg 101111001100110010000

Recap: Succinct Trees

LOUDS

ab ch id ejkfg 1011110011001100100000

BP

ab cd ef g h ij k (()(()(()()))()(()()))

Recap: Succinct Trees

LOUDS

ab ch id ejkfg 1011110011001100100000

BP

ab cd ef g h ij k (()(()(()()))()(()()))

DFUDS

a bc de fghi jk ((((())(())(())))(()))

bc de fghi jk а а ((((()))(())(())))(()))• degree of p: select ")" (rank ")" (p) + 1) - pb h k d i g f

a bc de fghi jk ((((())(())(())))(()))

- degree of p: select_{")"} (rank_{")"} (p) + 1) p
- i-th child of p: findclose(select ")" (rank ")" (p) + 1) − i) + 1

a bc de fghi jk ((((())(())(())))(()))

- degree of p: select_{")"} (rank_{")"} (p) + 1) p
- i-th child of p: findclose(selectⁿ)ⁿ (rankⁿ)ⁿ (p) + 1) − i) + 1

parent of p: select.")" (rank.")" (findopen(p - 1))) + 1

a bc de fghi jk ((((())(())(())))(()))

- degree of p: select_{")"} (rank_{")"} (p) + 1) p
- i-th child of p: findclose(select^w)ⁿ (rank^w)ⁿ (p) + 1) − i) + 1
- parent of p: select_{")}" (rank_{")}" (findopen(p - 1))) + 1
- subtree size of p: (findclose(enclose(p)) - p)/2 + 1

Today's Plan

- preliminaries planar graph
- succinct planar graph representation
- project

Planar Graphs (1/2)

Definition: Planar Graph

A graph G = (V, E) is planar, if it

- can be drawn on the plane such that
- no edges cross each other
- drawing (planar) embedding of the graph

not unique

a graph is planar if it has no minor 💶

- K_{3,3}
- K₅

Planar Graphs (2/2)

- embedding is defined by order of neighbors
- this defines faces
- must specify outer face

Now Consider Only

- connected planar graphs with embedding,
- multi-edges, and
- self-loops of appear twice in list of edges

Dual Graph of Planar Graph

Definition: Dual Graph

Given an embedding of a planar graph G, the dual graph G^* of G has

- one node for each face of G and
- one edge e' for each edge e in G such that e' crosses e and is incident to the faces separated by e
- dual graph is unique for the embedding
- dual graph is planar

Spanning Trees

Definition: Spanning Tree

Given a connected graph G = (V, E), a spanning tree is a tree T = (V, E') with $E' \subseteq E$

- consider spanning tree of planar graph and
- its dual graph
- trees can be represented succinctly

Recap: Balanced Parentheses

Definition: BP

Starting at the root, traverse the tree in depth-first order and append a

- Ieft parenthesis if a node is visited the first time
- right parenthesis if a node is visited the last time to the bit vector

ab cd ef g h ij k (()(()(()()))()(()()))

- $excess(i) = rank_{"("}(i+1) rank_{")"}(i+1)$
- fwd_search(i, d) =
 min{j > i: excess(j) excess(i 1) = d}
- bwd_search(i, d) =
 max{j < i: excess(i) excess(j 1) = d}</pre>
- findclose(i) = fwd_search(i,0)
- findopen(i) = bwd_search(i, 0)
- enclose(i) = bwd_search(i,2)

Succinct Planar Graph: General Idea [Fer+20; Tur84]

- given connected planar graph G and its dual G*
- let T be spanning tree of G
- construct complementary spanning tree T* of G* using only edges not crossing edges in T
- edges are stored in adjacency lists

Succinct Planar Graph: General Idea [Fer+20; Tur84]

- given connected planar graph G and its dual G*
- let T be spanning tree of G
- construct complementary spanning tree T* of G* using only edges not crossing edges in T
- edges are stored in adjacency lists

Definition: Incidence

Given a face f and a vertex v, an incidence of f in v is a pair of edges e, e', such that v is part of f and e, e' are incident of f and consecutive in the adjacency list of v

Traversal of the Graph gives Traversal of Trees (1/2)

Lemma: Graph-Tree-Traversal

Given an embedding of G, a spanning tree T of G, and its complementary spanning tree T^* of the dual of G. When

- traversing T depth-first, starting at any node on the outer face
- processing edges in counter-clockwise order
- (for the root choose an arbitrary incidence of the outer face),

each edge not in T corresponds to the next edge visited in a depth-first traversal of T^*

Traversal of the Graph gives Traversal of Trees (2/2)

Proof Graph-Tree-Traversal

- proof by induction
- correct in the beginning
- processed *i* edges, (i + 1)-th edge is (v, w)
- if (v, w) is in T, nothing changes
- example on the board

Traversal of the Graph gives Traversal of Trees (2/2)

Proof Graph-Tree-Traversal

- proof by induction
- correct in the beginning
- processed *i* edges, (i + 1)-th edge is (v, w)
- if (v, w) is in T, nothing changes
- example on the board

Proof Graph-Tree-Traversal

- proof by induction
- correct in the beginning
- processed *i* edges, (i + 1)-th edge is (v, w)
- if (v, w) is in not T, then
- visit new edge in T'
- due to counter-clockwise visiting of nodes in G, going deeper in T*
- example on the board

Succinct Graphs (n = |V| and m = |E|)

- bit vector A[0..2m) with A[i] = 1 ⇔ the *i*-th edge processed is in T
- bit vector B[0..2(n − 1)) with B[i] = "("
 ⇔ *i*-th time an edge in *T* is processed is the first time that edge is processed

• *A* = 0110110101110010110100010100

Succinct Graphs (n = |V| and m = |E|)

- bit vector A[0..2m) with A[i] = 1 ⇔ the *i*-th edge processed is in T
- bit vector B[0..2(n − 1)) with B[i] = "("
 ⇔ *i*-th time an edge in *T* is processed is the first time that edge is processed

A = 0110110101110010110100010100 B = (()())(())(())

Succinct Graphs (n = |V| and m = |E|)

- bit vector A[0..2m) with A[i] = 1 ⇔ the *i*-th edge processed is in T
- bit vector B[0..2(n − 1)) with B[i] = "("
 ⇐⇒ *i*-th time an edge in *T* is processed is the first time that edge is processed
- bit vector B*[0..2(m − n + 1)) with B*[i] = "("
 ⇒ i-th time an edge not in T is processed is the first time that edge is processed
- A = 0110110101110010110100010100
 B = (()())(())(())

Succinct Graphs (n = |V| and m = |E|)

- bit vector A[0..2m) with A[i] = 1 ⇔ the *i*-th edge processed is in T
- bit vector B[0..2(n − 1)) with B[i] = "("
 ⇒ *i*-th time an edge in *T* is processed is the first time that edge is processed
- bit vector B*[0..2(m − n + 1)) with B*[i] = "("
 ⇒ i-th time an edge not in T is processed is the first time that edge is processed
- A = 0110110101110010110100010100
- *B* = (()())(())(())
- *B*^{*} = ()(()(()))()()

Simple Planar Succinct Graph Operations (1/2)

- first(v) return i such that the first edge processed when visiting v is processed i-th during traversal
- next(i) return j such that next edge that is processed when visiting v by i-th edge is processed j-th during traversal
- mate(i) return j such that edge is processed i-th and j-th during traversal
- vertex(i) return node v that is currently visited when processing i-th edge during traversal

Simple Planar Succinct Graph Operations (2/2)

- all operations work in O(1) time
- using rank and select queries on A
- using BP representation of T and T*

Simple Planar Succinct Graph Operations (2/2)

- all operations work in O(1) time
- using rank and select queries on A
- using BP representation of T and T*
- A = 0110110101110010110100010100
- *B* = (()())(())(())
- *B*^{*} = ()(()(()))()()
- $\begin{array}{ll} \textit{first}(0) = 0 & \textit{mate}(0) = 3 & \textit{vertex}(3) = 2 \\ \textit{next}(0) = 1 & \textit{mate}(1) = 9 & \textit{vertex}(9) = 1 \\ \textit{next}(1) = 10 & \textit{mate}(10) = 16 & \textit{vertex}(16) = 4 \\ \textit{next}(10) = 17 & \textit{mate}(17) = 25 & \textit{vertex}(25) = 6 \\ \end{array}$
 - example on the board

Karlsruhe Institute of Technology

- while node has next
- increase counter and go to next
- return counter

- while node has next
- increase counter and go to next
- return counter
- running time depends of degree of node
- better running time preferable

- while node has next
- increase counter and go to next
- return counter
- running time depends of degree of node
- better running time preferable

- speed up queries using o(m) additional bits
- let $f(m) \in \omega(1)$
- mark in D[0..m) nodes with degree > f(m)
 at most m/f(m) ones (sparse)
- for these nodes store degree unary in E[0..2m)
 also sparse
- compressed sparse bit vectors require o(m) space

- while node has next
- increase counter and go to next
- return counter
- running time depends of degree of node
- better running time preferable

- speed up queries using o(m) additional bits
- let $f(m) \in \omega(1)$
- mark in D[0..m) nodes with degree > f(m)
 at most m/f(m) ones (sparse)
- for these nodes store degree unary in E[0..2m)
 also sparse
- compressed sparse bit vectors require o(m) space
- degree queries require only O(f(m)) time
- example on the board

Conclusion Succinct Planar Graphs

Lemma: Succinct Planar Graphs

Storing an embedding of a connected planar graph with *m* edges requires 4m + o(m) bits and all nodes incident to a node can be iterated over in (counter-)clockwise order in constant time per edge. Finding the degree of a node can be done in O(f(m)) time for any function $f(m) \in \omega(1)$

Conclusion and Outlook

This Lecture

succinct planar graphs

Advanced Data Structures

Conclusion and Outlook

Conclusion and Outlook

Project

- detailed information on the homepage
- implement predecessor and range minimum data structures
- deadline: 17.07.2023
- 2 pages report

Bibliography I

- [Fer+20] Leo Ferres, José Fuentes-Sepúlveda, Travis Gagie, Meng He, and Gonzalo Navarro. "Fast and Compact Planar Embeddings". In: Comput. Geom. 89 (2020), page 101630. DOI: 10.1016/j.comgeo.2020.101630.
- [Tur84] György Turán. "On the Succinct Representation of Graphs". In: *Discret. Appl. Math.* 8.3 (1984), pages 289–294. DOI: 10.1016/0166-218X(84)90126-4.