Recap: Succinct Trees

LOUDS

ab ch id ejkfg
1011100110011001100000
Recap: Succinct Trees

LOUDS

ab ch id e j k fg
10111100110011001100000

BP

ab cd ef g h i j k
(((())))))))))))(())()())()())()}
Recap: Succinct Trees

LOUDS

ab ch id e j k fg
10111100110011001100000

BP

ab cd ef g h i j k
((((()(()()())()))()()))

DFUDS

a bc de f g hi j k
((((()()))()()))()()()()()
Correction: Making DFUDS Fully-Functional

degree of p: $\operatorname{select}(\operatorname{rank}(p) + 1) - p$

- explanation on the board 📇
Correction: Making DFUDS Fully-Functional

- degree of p: $\text{select}^{\uparrow}(\text{rank}^{\uparrow}(p) + 1) - p$
- i-th child of p:
 $\text{findclose}(\text{select}^{\uparrow}(\text{rank}^{\uparrow}(p) + 1) - i) + 1$

explanation on the board 📝
Correction: Making DFUDS Fully-Functional

- degree of \(p \): \(\text{select}^{-r}(\text{rank}^{-r}(p) + 1) - p \)
- \(i \)-th child of \(p \):
 \(\text{findclose}(\text{select}^{-r}(\text{rank}^{-r}(p) + 1) - i) + 1 \)
- parent of \(p \):
 \(\text{select}^{-r}(\text{rank}^{-r}(\text{findopen}(p - 1))) + 1 \)

- explanation on the board 📚
Corretion: Making DFUDS Fully-Functional

- Degree of p: $\text{select}^{-1}(\text{rank}^{-1}(p) + 1) - p$
- i-th child of p: $\text{findclose}(|\text{select}^{-1}(\text{rank}^{-1}(p) + 1) - i| + 1$
- Parent of p: $\text{select}^{-1}(\text{rank}^{-1}(\text{findopen}(p - 1))) + 1$
- Subtree size of p: $(\text{findclose}(\text{enclose}(p)) - p)/2 + 1$
Today’s Plan

- preliminaries planar graph
- succinct planar graph representation
- project
Planar Graphs (1/2)

Definition: Planar Graph

A graph $G = (V, E)$ is planar, if it
- can be drawn on the plane such that
- no edges cross each other

- drawing (planar) embedding of the graph
- not unique

A graph is planar if it has no minor
- $K_{3,3}$
- K_5
embedding is defined by order of neighbors
this defines faces
must specify outer face

Now Consider Only
connected planar graphs with embedding,
multi-edges, and
self-loops appear twice in list of edges
Definition: Dual Graph

Given an embedding of a planar graph G, the dual graph G^* of G has

- one node for each face of G and
- one edge e' for each edge e in G such that e' crosses e and is incident to the faces separated by e

- dual graph is unique for the embedding
- dual graph is planar
Spanning Trees

Definition: Spanning Tree

Given a connected graph $G = (V, E)$, a spanning tree is a tree $T = (V, E')$ with $E' \subseteq E$.

- Consider spanning tree of planar graph and its dual graph.
- Trees can be represented succinctly.
Recap: Balanced Parentheses

Definition: BP

Starting at the root, traverse the tree in depth-first order and append a
- left parenthesis if a node is visited the first time
- right parenthesis if a node is visited the last time
to the bit vector

```
ab cd ef g h ij k
((()))((()))(((())()())()))
```

- $excess(i) = rank^{"("}(i+1) - rank^{"\)"}(i+1)$
- $fwd_search(i, d) = \min\{j > i: excess(j) - excess(i - 1) = d\}$
- $bwd_search(i, d) = \max\{j < i: excess(i) - excess(j - 1) = d\}$

- $findclose(i) = fwd_search(i, 0)$
- $findopen(i) = bwd_search(i, 0)$
- $enclose(i) = bwd_search(i, 2)$
Succinct Planar Graph: General Idea [Fer+20; Tur84]

- given connected planar graph G and its dual G^*
- let T be spanning tree of G
- construct complementary spanning tree T^* of G^* using only edges not crossing edges in T

- edges are stored in adjacency lists
Succinct Planar Graph: General Idea [Fer+20; Tur84]

- given connected planar graph G and its dual G^*
- let T be spanning tree of G
- construct complementary spanning tree T^* of G^* using only edges not crossing edges in T

- edges are stored in adjacency lists

Definition: Incidence

Given a face f and a vertex v, an incidence of f in v is a pair of edges e, e', such that v is part of f and e, e' are incident of f and consecutive in the adjacency list of v
Lemma: Graph-Tree-Traversal

Given an embedding of G, a spanning tree T of G, and its complementary spanning tree T^* of the dual of G. When

- traversing T depth-first, starting at any node on the outer face
- processing edges in counter-clockwise order
- (for the root choose an arbitrary incidence of the outer face),

each edge not in T corresponds to the next edge visited in a depth-first traversal of T^*.
Traversing the Graph gives Traversal of Trees (2/2)

Proof Graph-Tree-Traversal

- proof by induction
- correct in the beginning
- processed i edges, $(i + 1)$-th edge is (v, w)
- if (v, w) is in T, nothing changes
- example on the board 📚
Proof Graph-Tree-Traversals

- Proof by induction
- Correct in the beginning
- Processed i edges, $(i + 1)$-th edge is (v, w)
- If (v, w) is in T, nothing changes
- Example on the board

Proof Graph-Tree-Traversals

- Proof by induction
- Correct in the beginning
- Processed i edges, $(i + 1)$-th edge is (v, w)
- If (v, w) is in not T, then
 - Visit new edge in T'
 - Due to counter-clockwise visiting of nodes in G, going deeper in T^*
- Example on the board
Succinct Planar Graph Representation

Succinct Graphs ($n = |V|$ and $m = |E|$)

- bit vector $A[0..2m)$ with $A[i] = 1 \iff$ the i-th edge processed is in T

![Diagram of a planar graph with labeled nodes and edges]
Succinct Planar Graph Representation

Succinct Graphs ($n = |V|$ and $m = |E|$)

- bit vector $A[0..2m]$ with $A[i] = 1$ ⇐⇒ the i-th edge processed is in T

- $A = 01101101011100101100010100$

- $B = ()()()()()$

- $B^* = ()(()(()))()()$
Succinct Planar Graph Representation

Succinct Graphs \((n = |V| \text{ and } m = |E|)\)

- bit vector \(A[0..2m]\) with \(A[i] = 1 \iff \) the \(i\)-th edge processed is in \(T\)
- bit vector \(B[0..2(n - 1)]\) with \(B[i] = " (" \iff \(i\)-th time an edge in \(T\) is processed is the first time that edge is processed

\[
A = 0110110101110010110010100
\]

\[
B = (())(())(())
\]

\[
B^* = ()(()(()))()()
\]
Succinct Graphs ($n = |V|$ and $m = |E|$)

- bit vector $A[0..2m]$ with $A[i] = 1$ \iff the i-th edge processed is in T
- bit vector $B[0..2(n - 1)]$ with $B[i] = "("$ \iff i-th time an edge in T is processed is the first time that edge is processed

- $A = 01101101011110110010100010100$
- $B = ()())()()()()()()$
Succinct Graphs ($n = |V|$ and $m = |E|$)

- bit vector $A[0..2m]$ with $A[i] = 1 \iff$ the i-th edge processed is in T
- bit vector $B[0..2(n - 1)]$ with $B[i] = "(" \iff$ the i-th time an edge in T is processed is the first time that edge is processed
- bit vector $B^*[0..2(m - n + 1))$ with $B^*[i] = "(" \iff$ the i-th time an edge not in T is processed is the first time that edge is processed

- $A = 0110110101110010110010100$
- $B = ((())((()))((())))$
Succinct Graphs \((n = |V| \text{ and } m = |E|)\)

- bit vector \(A[0..2m]\) with \(A[i] = 1 \iff \) the \(i\)-th edge processed is in \(T\)
- bit vector \(B[0..2(n - 1)]\) with \(B[i] = "(" \iff \) \(i\)-th time an edge in \(T\) is processed is the first time that edge is processed
- bit vector \(B^*[0..2(m - n + 1)]\) with \(B^*[i] = "(" \iff \) \(i\)-th time an edge not in \(T\) is processed is the first time that edge is processed

- \(A = \text{01101101011100101100010100}\)
- \(B = (())((())(())(())(())\)
- \(B^* = (())((())(())(())(())\)
Simple Planar Succinct Graph Operations (1/2)

- \(\text{first}(v)\) return \(i\) such that the first edge processed when visiting \(v\) is processed \(i\)-th during traversal

- \(\text{next}(i)\) return \(j\) such that next edge that is processed when visiting \(v\) by \(i\)-th edge is processed \(j\)-th during traversal

- \(\text{mate}(i)\) return \(j\) such that edge is processed \(i\)-th and \(j\)-th during traversal

- \(\text{vertex}(i)\) return node \(v\) that is currently visited when processing \(i\)-th edge during traversal
all operations work in $O(1)$ time
- using rank and select queries on A
- using BP representation of T and T^*

Simple Planar Succinct Graph Operations (2/2)
all operations work in $O(1)$ time
- using rank and select queries on A
- using BP representation of T and T^*

$A = 01101101011100101100010100$
$B = (((()))(()))(()))$
$B^* = ()((())())(()))$

$\text{first}(0) = 0 \quad \text{mate}(0) = 3 \quad \text{vertex}(3) = 2$
$\text{next}(0) = 1 \quad \text{mate}(1) = 9 \quad \text{vertex}(9) = 1$
$\text{next}(1) = 10 \quad \text{mate}(10) = 16 \quad \text{vertex}(16) = 4$
$\text{next}(10) = 17 \quad \text{mate}(17) = 25 \quad \text{vertex}(25) = 6$

example on the board
Getting the Degree

- while node has $next$
- increase counter and go to $next$
- return counter

Running time depends on the degree of the node. Better running time is preferable. Speeding up queries using $O(m)$ additional bits. Let $f(m) \in \omega(1)$ mark in $D[0..m]$ nodes with degree $> f(m)$ at most $m/f(m)$ ones (sparse). For these nodes store degree unary in $E[0..2^m]$ also sparse. Compressed sparse bit vectors require $O(m)$ space. Degree queries require only $O(f(m))$ time. Example on the board/chalkboard.
Getting the Degree

- while node has next
- increase counter and go to next
- return counter

- running time depends of degree of node
- better running time preferable
Getting the Degree

- while node has $next$
- increase counter and go to $next$
- return counter

- running time depends of degree of node
- better running time preferable

- speed up queries using $o(m)$ additional bits
- let $f(m) \in \omega(1)$
- mark in $D[0..m]$ nodes with degree $> f(m)$
 - at most $m/f(m)$ ones (sparse)
- for these nodes store degree unary in $E[0..2m]$
 - also sparse
- compressed sparse bit vectors require $o(m)$ space
Getting the Degree

- while node has next
- increase counter and go to next
- return counter

- running time depends of degree of node
- better running time preferable

- speed up queries using $o(m)$ additional bits
- let $f(m) \in \omega(1)$
- mark in $D[0..m]$ nodes with degree $> f(m)$
 - at most $m/f(m)$ ones (sparse)
- for these nodes store degree unary in $E[0..2m]$
 - also sparse
- compressed sparse bit vectors require $o(m)$ space

- degree queries require only $O(f(m))$ time
- example on the board 📚
Lemma: Succinct Planar Graphs

Storing an embedding of a connected planar graph with \(m \) edges requires \(4m + o(m) \) bits and all nodes incident to a node can be iterated over in (counter-)clockwise order in constant time per edge. Finding the degree of a node can be done in \(O(f(m)) \) time for any function \(f(m) \in \omega(1) \).
Conclusion and Outlook

This Lecture

- succinct planar graphs

Advanced Data Structures

- static BV
- static succ. trees
- succ. graphs
Conclusion and Outlook

This Lecture
- succinct planar graphs
- recap DFUDS

Advanced Data Structures

- static BV
- static succ. trees
- succ. graphs
Conclusion and Outlook

This Lecture
- succinct planar graphs
- recap DFUDS

Next Lecture
- predecessor data structures
- range minimum queries

Advanced Data Structures
- static BV
- static succ. trees
- succ. graphs
- detailed information on the homepage
- implement predecessor and range minimum data structures
- **deadline:** 17.07.2023
- 2 pages report