Advanced Data Structures

Lecture 03: Succinct Planar Graphs

Florian Kurpicz
Recap: Succinct Trees

LOUDS

ab ch id ejkfg
1011100110011001100000

BP

ab cd ef g h ij k
((((()))(())(())))(()))

DFUDS

a bc de fghi jk
(((((((())))))))))))))))}
Correction: Making DFUDS Fully-Functional

- degree of \(p \): \(\text{select}^{\text{rank}^{\text{enclose}(p)} - p}(p + 1) - p \)
- \(i \)-th child of \(p \):
 \(\text{findclose}(\text{select}^{\text{rank}^{\text{enclose}(p)} - p}(p + 1) - i) + 1 \)
- parent of \(p \):
 \(\text{select}^{\text{rank}^{\text{findopen}(p - 1)}}(p - 1)) + 1 \)
- subtree size of \(p \):
 \((\text{findclose}(\text{enclose}(p)) - p)/2 + 1 \)

- explanation on the board 🎨
Today’s Plan

- preliminaries planar graph
- succinct planar graph representation
- project
Definition: Planar Graph

A graph \(G = (V, E) \) is planar, if it
- can be drawn on the plane such that
- no edges cross each other

- drawing (planar) embedding of the graph
- not unique

A graph is planar if it has no minor
- \(K_{3,3} \)
- \(K_5 \)
embedding is defined by order of neighbors
this defines faces
must specify outer face

Now Consider Only
connected planar graphs with embedding,
multi-edges, and
self-loops appear twice in list of edges
Definition: Dual Graph

Given an embedding of a planar graph G, the dual graph G^* of G has

- one node for each face of G and
- one edge e' for each edge e in G such that e' crosses e and is incident to the faces separated by e

- dual graph is unique for the embedding
- dual graph is planar
Spanning Trees

Definition: Spanning Tree

Given a connected graph $G = (V, E)$, a spanning tree is a tree $T = (V, E')$ with $E' \subseteq E$.

- consider spanning tree of planar graph and
- its dual graph
- trees can be represented succinctly
Recap: Balanced Parentheses

Definition: BP

Starting at the root, traverse the tree in depth-first order and append a
- left parenthesis if a node is visited the first time
- right parenthesis if a node is visited the last time
to the bit vector

<table>
<thead>
<tr>
<th>ab cd ef g h i j k</th>
</tr>
</thead>
<tbody>
<tr>
<td>() () () () ()</td>
</tr>
</tbody>
</table>

excess(i) = rank"("(i+1) - rank")"(i+1)

fwd_search(i, d) =
\[
\min\{j > i : \text{excess}(j) - \text{excess}(i - 1) = d\}
\]

bwd_search(i, d) =
\[
\max\{j < i : \text{excess}(i) - \text{excess}(j - 1) = d\}
\]

findclose(i) = fwd_search(i, 0)

findopen(i) = bwd_search(i, 0)

enclose(i) = bwd_search(i, 2)
Succinct Planar Graph: General Idea [Fer+20; Tur84]

- given connected planar graph G and its dual G^*
- let T be spanning tree of G
- construct complementary spanning tree T^* of G^* using only edges not crossing edges in T

- edges are stored in adjacency lists

Definition: Incidence
Given a face f and a vertex v, an incidence of f in v is a pair of edges e, e', such that v is part of f and e, e' are incident of f and consecutive in the adjacency list of v
Lemma: Graph-Tree-Traversal

Given an embedding of G, a spanning tree T of G, and its complementary spanning tree T^* of the dual of G. When

- traversing T depth-first, starting at any node on the outer face
- processing edges in counter-clockwise order
- (for the root choose an arbitrary incidence of the outer face),

each edge not in T corresponds to the next edge visited in a depth-first traversal of T^*.
Traversals of the Graph gives Traversal of Trees (2/2)

Proof Graph-Tree-Traversal:
- proof by induction
- correct in the beginning
- processed i edges, $(i + 1)$-th edge is (v, w)
- if (v, w) is in T, nothing changes
- example on the board

Proof Graph-Tree-Traversal:
- proof by induction
- correct in the beginning
- processed i edges, $(i + 1)$-th edge is (v, w)
- if (v, w) is in not T, then
- visit new edge in T'
- due to counter-clockwise visiting of nodes in G, going deeper in T^*
- example on the board
Succinct Graphs ($n = |V|$ and $m = |E|$)

- Bit vector $A[0..2m]$ with $A[i] = 1 \iff$ the i-th edge processed is in T
- Bit vector $B[0..2(n - 1)]$ with $B[i] = "(" \iff i$-th time an edge in T is processed is the first time that edge is processed
- Bit vector $B^*[0..2(m - n + 1)]$ with $B^*[i] = "(" \iff i$-th time an edge not in T is processed is the first time that edge is processed

- $A = 01101101011100101100010100$
- $B = (()())((()())())$
- $B^* = (()())((())())()$
Simple Planar Succinct Graph Operations (1/2)

- $first(v)$ return i such that the first edge processed when visiting v is processed i-th during traversal
- $next(i)$ return j such that next edge that is processed when visiting v by i-th edge is processed j-th during traversal
- $mate(i)$ return j such that edge is processed i-th and j-th during traversal
- $vertex(i)$ return node v that is currently visited when processing i-th edge during traversal
Simple Planar Succinct Graph Operations (2/2)

- all operations work in $O(1)$ time
- using rank and select queries on A
- using BP representation of T and T^*

\[
A = 01101101011100101100010100
\]
\[
B = (())(())(())(())
\]
\[
B^* = ()(())(())(())
\]

- $\text{next}(0) = 0$, $\text{mate}(0) = 3$, $\text{vertex}(3) = 2$
- $\text{next}(1) = 1$, $\text{mate}(1) = 9$, $\text{vertex}(9) = 1$
- $\text{next}(10) = 16$, $\text{mate}(10) = 16$, $\text{vertex}(16) = 4$
- $\text{next}(10) = 17$, $\text{mate}(17) = 25$, $\text{vertex}(25) = 6$

- example on the board
while node has next
increase counter and go to next
return counter

running time depends of degree of node
better running time preferable

speed up queries using $o(m)$ additional bits
let $f(m) \in \omega(1)$
mark in $D[0..m]$ nodes with degree $> f(m)$
most $m/f(m)$ ones (sparse)
for these nodes store degree unary in $E[0..2m]$
also sparse
compressed sparse bit vectors require $o(m)$ space

degree queries require only $O(f(m))$ time
example on the board
Conclusion Succinct Planar Graphs

Lemma: Succinct Planar Graphs

Storing an embedding of a connected planar graph with m edges requires $4m + o(m)$ bits and all nodes incident to a node can be iterated over in (counter-)clockwise order in constant time per edge. Finding the degree of a node can be done in $O(f(m))$ time for any function $f(m) \in \omega(1)$.
Conclusion and Outlook

This Lecture

- succinct planar graphs
- recap DFUDS

Next Lecture

- predecessor data structures
- range minimum queries

Advanced Data Structures

- static BV
- static succ. trees
- succ. graphs
Project

- detailed information on the homepage
- implement predecessor and range minimum data structures
- deadline: 17.07.2023
- 2 pages report