Advanced Data Structures

Lecture 04: Predecessor and Range Minimum Query Data Structures
Florian Kurpicz
Recap

Succinct Planar Graphs

- using spanning tree of graph and
- special spanning tree of dual graph
- both represented succinctly
- represent planar graph succinctly
- remember whether edge is in spanning tree or not
Predecessor and Successor

Setting

- assume universe $\mathcal{U} = [0, u)$
- let $u = 2^w$
- sorted array of n integers $A \subseteq \mathcal{U}$
- $\log n \leq w$ since $n \leq u$
Predecessor and Successor

Setting

- assume universe $\mathcal{U} = [0, u)$
- let $u = 2^w$
- sorted array of n integers $A \subseteq \mathcal{U}$
- $\log n \leq w$ since $n \leq u$

Definition: Predecessor & Successor

Given an array A of n integers from an universe \mathcal{U} and an integer $x \in \mathcal{U}$, the predecessor and successor of x in A are

- $\text{pred}(A, x) = \max\{y \in A : y \leq x\}$
- $\text{succ}(A, x) = \min\{y \in A : y \geq x\}$
Predecessor and Successor

Setting

- assume universe $\mathcal{U} = [0, u)$
- let $u = 2^w$
- sorted array of n integers $A \subseteq \mathcal{U}$
- $\log n \leq w$ since $n \leq u$

Definition: Predecessor & Successor

Given an array A of n integers from an universe \mathcal{U} and an integer $x \in \mathcal{U}$, the predecessor and successor of x in A are

- $\text{pred}(A, x) = \max\{y \in A : y \leq x\}$
- $\text{succ}(A, x) = \min\{y \in A : y \geq x\}$
Predecessor and Successor

Setting
- assume universe $\mathcal{U} = [0, u)$
- let $u = 2^w$
- sorted array of n integers $A \subseteq \mathcal{U}$
- $\log n \leq w$ since $n \leq u$

Definition: Predecessor & Successor

Given an array A of n integers from an universe \mathcal{U} and an integer $x \in \mathcal{U}$, the predecessor and successor of x in A are

- $\text{pred}(A, x) = \max\{y \in A : y \leq x\}$
- $\text{succ}(A, x) = \min\{y \in A : y \geq x\}$

Example:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>32</td>
</tr>
</tbody>
</table>

- $\text{pred}(3) = 2$
- $\text{succ}(23) = 32$
Predecessor and Successor

Setting
- Assume universe $U = [0, u)$
- Let $u = 2^w$
- Sorted array of n integers $A \subseteq U$
- $\log n \leq w$ since $n \leq u$

Definition: Predecessor & Successor
Given an array A of n integers from an universe U and an integer $x \in U$, the predecessor and successor of x in A are
- $\text{pred}(A, x) = \max\{y \in A : y \leq x\}$
- $\text{succ}(A, x) = \min\{y \in A : y \geq x\}$

Example:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>32</td>
</tr>
</tbody>
</table>

- $\text{pred}(3) = 2$
- $\text{pred}(10) = 10$
Predecessor and Successor

Setting
- Assume universe $\mathcal{U} = [0, u)$
- Let $u = 2^w$
- Sorted array of n integers $A \subseteq \mathcal{U}$
- $\log n \leq w$ since $n \leq u$

Definition: Predecessor & Successor
Given an array A of n integers from an universe \mathcal{U} and an integer $x \in \mathcal{U}$, the predecessor and successor of x in A are
- $\text{pred}(A, x) = \max\{y \in A : y \leq x\}$
- $\text{succ}(A, x) = \min\{y \in A : y \geq x\}$

Example
<table>
<thead>
<tr>
<th>A</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>10</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $\text{pred}(3) = 2$
- $\text{pred}(10) = 10$
- $\text{succ}(23) = 32$
Setting

- assume universe $\mathcal{U} = [0, u)$
- let $u = 2^w$
- sorted array of n integers $A \subseteq \mathcal{U}$
- $\log n \leq w \implies n \leq u$

Definition: Predecessor & Successor

Given an array A of n integers from an universe \mathcal{U} and an integer $x \in \mathcal{U}$, the predecessor and successor of x in A are

- $\text{pred}(A, x) = \max\{y \in A : y \leq x\}$
- $\text{succ}(A, x) = \min\{y \in A : y \geq x\}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>32</td>
</tr>
</tbody>
</table>

- $\text{pred}(3) = 2$
- $\text{pred}(10) = 10$
- $\text{succ}(23) = 32$

in what time and space can we solve this using bit vectors? PINGO
Predecessor and Successor: Simple Solutions

- binary search
- $O(\log n)$ query time
- no space overhead

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>32</td>
</tr>
</tbody>
</table>

- $\text{pred}(3) = 2$
Predecessor and Successor: Simple Solutions

- binary search
 - $O(\log n)$ query time
 - no space overhead

- using bit vector
 - $O(1)$ query time
 - $u + o(u)$ bits space

Predecessor of x in Bit Vector

$z = \text{rank}_1(x) + 2$

predecessor is $\text{select}_1(z)$

Example:

$\text{pred}(3) = 2$

1110100100100000000111000000001

$\text{predict}(19) = 10$
Predecessor and Successor: Simple Solutions

- **binary search**
 - $O(\log n)$ query time
 - no space overhead
- **using bit vector**
 - $O(1)$ query time
 - $u + o(u)$ bits space

Predecessor of x in Bit Vector
- $z = \text{rank}_1(x + 2)$
- predecessor is $\text{select}_1(z)$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>pred(3) = 2</td>
<td></td>
</tr>
<tr>
<td>111010010010000000001110000000001</td>
<td></td>
</tr>
<tr>
<td>rank$_1(21) = 6$</td>
<td></td>
</tr>
<tr>
<td>select$_1(6) = 10$</td>
<td></td>
</tr>
<tr>
<td>pred(19) = 10</td>
<td></td>
</tr>
</tbody>
</table>
Predecessor and Successor: Simple Solutions

- Binary search
 - $O(\log n)$ query time
 - No space overhead

- Using bit vector
 - $O(1)$ query time
 - $u + o(u)$ bits space

Predecessor of x in Bit Vector

- $z = \text{rank}_1(x + 2)$
- Predecessor is $\text{select}_1(z)$

![Diagram showing bit vector and query results]

- $\text{pred}(3) = 2$
- $\text{rank}_1(21) = 6$
- $\text{select}_1(6) = 10$
- $\text{pred}(19) = 10$
Elias-Fano Coding [Eli74; Fan71] (1/3)

- n integers from universe $\mathcal{U} = [0, u)$
- split number in upper and lower halves
- upper half: $\lceil \log n \rceil$ most significant bits
- lower half: $\lceil \log u - \log n \rceil$ remaining bits
Elias-Fano Coding [Eli74; Fan71] (1/3)

- *n* integers from universe $\mathcal{U} = [0, u)$
- split number in upper and lower halves
- upper half: $\lceil \log n \rceil$ most significant bits
- lower half: $\lceil \log u - \log n \rceil$ remaining bits

Upper Half

- monotonous sequence of $\lceil \log n \rceil$ bit integers
- not strictly monotonous
- let p_0, \ldots, p_{n-1} be sequence
- use bit vector of length $2n + 1$ bits
- represent p_i with a 1 at position $i + p_i$
- rank and select support requires $o(n)$ bits
Elias-Fano Coding \([\text{Eli74}; \text{Fan71}]\) (1/3)

- **Upper Half**
 - monotonous sequence of \(\lceil \log n \rceil\) bit integers
 - not strictly monotonous
 - let \(p_0, \ldots, p_{n-1}\) be sequence
 - use bit vector of length \(2n + 1\) bits
 - represent \(p_i\) with a 1 at position \(i + p_i\)
 - rank and select support requires \(o(n)\) bits

- **Lower Half**
 - store lower half plain using \(\lceil \log \frac{u}{n} \rceil\) bits
 - \(n \log \left\lceil \frac{u}{n} \right\rceil\) bits for lower half
Elias-Fano Coding [Eli74; Fan71] (1/3)

- \(n \) integers from universe \(\mathcal{U} = [0, u) \)
- split number in upper and lower halves
- upper half: \(\lceil \log n \rceil \) most significant bits
- lower half: \(\lceil \log u - \log n \rceil \) remaining bits

Upper Half
- monotonous sequence of \(\lceil \log n \rceil \) bit integers
- not strictly monotonous
- let \(p_0, \ldots, p_{n-1} \) be sequence
- use bit vector of length \(2n + 1 \) bits
- represent \(p_i \) with a 1 at position \(i + p_i \)
- rank and select support requires \(o(n) \) bits

Lower Half
- store lower half plain using \(\lceil \log \frac{u}{n} \rceil \) bits
- \(n \log \left\lceil \frac{u}{n} \right\rceil \) bits for lower half

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>0:</td>
<td>000000</td>
<td>1:</td>
<td>000001</td>
<td>2:</td>
<td>000010</td>
<td>4:</td>
<td>000100</td>
<td>7:</td>
<td>000111</td>
</tr>
</tbody>
</table>
Elias-Fano Coding (2/3)

Access
\- **i-th Element**
\- **upper**: select \(1 \cdot (i)\) corresponding bits from upper bit vector
\- **lower**: corresponding bits from lower bit vector

Predecessor

Let \(x'\) be \(\lceil \log n \rceil\) MSB of \(x\)

\[p = \text{select}_0(x') \text{ select}_0(0) \]

Returns 0 scanning corresponding values in lower till predecessor is found

How many elements do we have to scan?

PINGO scanning \(O(n)\) elements can be done better

Elias-Fano Coding (2/3)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>000000</td>
<td>000001</td>
<td>000010</td>
<td>000100</td>
<td>000111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>001010</td>
<td>010100</td>
<td>010101</td>
<td>010110</td>
</tr>
<tr>
<td></td>
<td>001111</td>
<td>000100</td>
<td>000110</td>
<td>000111</td>
<td>000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

upper: 11101101000111000100

lower: 00011000111000011000
Elias-Fano Coding (2/3)

Access i-th Element

- upper: $\text{select}_1(i) - i$
- lower: corresponding bits from lower bit vector

Example

```
0: 000000
1: 000001
2: 000010
4: 000100
7: 000111
10: 001010
20: 010100
21: 010101
22: 010110
30: 100000
```

upper: `11101101000111000100`

lower: `00 01 10 00 11 10 00 01 10 00`

How many elements do we have to scan? Scanning $O(n)$ elements can be done better.
Elias-Fano Coding (2/3)

Access i-th Element
- upper: $select_1(i) - i$
- lower: corresponding bits from lower bit vector

Predecessor x
- let x' be $\lceil \log n \rceil$ MSB of x
- $p = select_0(x')$ $select_0(0)$ returns 0
- scan corresponding values in lower till predecessor is found
- how many elements do we have to scan?

PINGO

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>32</td>
</tr>
</tbody>
</table>

0: 000000
1: 000001
2: 000010
4: 000100
7: 000111
10: 001010
20: 010100
21: 010101
22: 010110
30: 100000

upper: 11101101000111000100
lower: 00011000111000011000
Elias-Fano Coding (2/3)

Access i-th Element
- upper: $\text{select}_1(i) - i$
- lower: corresponding bits from lower bit vector

Predecessor x
- let x' be $\lceil \log n \rceil$ MSB of x
- $p = \text{select}_0(x') \uparrow \text{select}_0(0)$ returns 0
- scan corresponding values in lower till predecessor is found
- how many elements do we have to scan?

PINGO
- scanning $O(n)$ elements * can be done better

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>32</td>
</tr>
</tbody>
</table>

- 0: 000000
- 1: 000001
- 2: 000010
- 3: 000100
- 4: 000111
- 7: 000111
- 10: 001010
- 20: 010100
- 21: 010101
- 22: 010110
- 30: 100000

upper: 11101101000111000100
lower: 00 01 10 00 11 10 00 01 10 00
Lemma: Elias-Fano Coding

Given an array containing \(n \) distinct integers from a universe \(\mathcal{U} = [0, n) \), the array can be represented using

\[
n(2 + \log \left\lceil \frac{u}{n} \right\rceil) \text{ bits}
\]

while allowing \(O(1) \) access time and \(O(\log \frac{u}{n}) \) predecessor/successor time.
x-Fast Tries

- Each number has \(w \) bits.
- Build a binary tree where leaves represent numbers.
- Edges are labeled 0 or 1.
- Labels on the path from root to leaf are the value represented in the leaf.

- Pointers to \(\text{min} \) and \(\text{max} \) are missing.

![Diagram of a binary tree with labeled edges and pointers to min and max.](image-url)
x-Fast Tries

- Each number has w bits
- Build binary tree where leaves represent numbers
- Edges are labeled 0 or 1
- Labels on path from root to leaf are value represented in leaf

- Store nodes in hash tables with bit prefix as key
- Also store pointer to min and max in right and left subtree
- Leaves are stored in doubly linked list
- Using perfect hashing on each level requires $O(wn)$ space

- Pointers to min and max are missing
x-Fast Tries

- each number has w bits
- build binary tree where leaves represent numbers
- edges are labeled 0 or 1
- labels on path from root to leaf are value represented in leaf

- store nodes in hash tables with bit prefix as key
- also store pointer to min and max in right and left subtree
- leaves are stored in doubly linked list
- using perfect hashing on each level requires $O(wn)$ space

- pointers to min and max are missing
- tree most likely not complete
x-Fast Tries

- each number has \(w \) bits
- build binary tree where leaves represent numbers
- edges are labeled 0 or 1
- labels on path from root to leaf are value represented in leaf

- store nodes in hash tables with bit prefix as key
- also store pointer to \(\text{min} \) and \(\text{max} \) in right and left subtree
- leaves are stored in doubly linked list
- using perfect hashing on each level requires \(O(wn) \) space

- pointers to \(\text{min} \) and \(\text{max} \) are missing
- tree most likely not complete
x-Fast Tries: Queries

- traversing tree requires $O(w)$ time
- using binary search on levels requires $O(\log w)$ time
- if value not found go to min or max depending on query
- if value is found use doubly linked list to find predecessor or successor

example on the board
y-Fast Tries

- x-fast trie requires $O(wn)$ space
- group w consecutive objects into one block B_i
- for each block B_i choose maximum m_i as representative
- build x-fast trie for representatives
- store blocks in balanced binary trees
y-Fast Tries

- x-fast trie requires $O(wn)$ space
- group w consecutive objects into one block B_i
- for each block B_i choose maximum m_i as representative
- build x-fast trie for representatives
- store blocks in balanced binary trees

- x-fast trie requires $O(n)$ space
- search in x-fast trie requires $O(\log \log \frac{n}{w})$ time
- search in balanced binary tree requires $O(\log w) = O(\log \log n)$ time

example on the board
y-Fast Tries

- x-fast trie requires $O(wn)$ space
- group w consecutive objects into one block B_i
- for each block B_i choose maximum m_i as representative
- build x-fast trie for representatives
- store blocks in balanced binary trees

- x-fast trie requires $O(n)$ space
- search in x-fast trie requires $O(\log \log \frac{n}{w})$ time
- search in balanced binary tree requires $O(\log w) = O(\log \log n)$ time

Dynamic y-Fast Trie

- use cuckoo hashing
- representative does not have to be maximum
- any element separating groups suffices
- merge and split blocks that are too small/too big
- query time only expected

example on the board
Range Minimum Queries

Setting
- array of \(n \) integers
- not necessarily sorted

Definition: Range Minimum Queries
Given an array of \(A \) of \(n \) integers

\[
rmq(A, s, e) = \arg \min_{s \leq i \leq e} A[i]
\]

returns the position of minimum in \(A[s, e] \)

\[
\begin{align*}
rmq(0, 9) &= 3 \\
rmq(0, 2) &= 1 \\
rmq(4, 8) &= 4
\end{align*}
\]
Range Minimum Queries

Setting
- array of n integers
- not necessarily sorted

Definition: Range Minimum Queries
Given an array of A of n integers

$$rmq(A, s, e) = \arg \min_{s \leq i \leq e} A[i]$$

returns the position of minimum in $A[s, e]$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>20</td>
<td>22</td>
<td>4</td>
</tr>
</tbody>
</table>

- $rmq(0, 9) = 3$
- $rmq(0, 2) = 1$
- $rmq(4, 8) = 4$

- naive in $O(1)$ time
- how much space does a naive $O(1)$-time solution need [PINGO]
Range Minimum Queries

Setting
- array of n integers
- not necessarily sorted

Definition: Range Minimum Queries
Given an array of A of n integers

$$rmq(A, s, e) = \arg \min_{s \leq i \leq e} A[i]$$

returns the position of minimum in $A[s, e]$
instead of storing all solutions
store solutions for intervals of length 2^k for every k
$M[0..n][0..\lfloor \log n \rfloor]$
Range Minimum Queries in $O(1)$ Time and $O(n \log n)$ Space

- Instead of storing all solutions
- Store solutions for intervals of length 2^k for every k
- $M[0..n][0..\lfloor \log n \rfloor)$

Queries

- Query $rmq(A, s, e)$ is answered using two subqueries
- Let $\ell = \lfloor \log (e - s - 1) \rfloor$
- $m_1 = rmq(A, s, s + 2^\ell - 1)$ and $m_2 = rmq(A, e - 2^\ell + 1, e)$
- $rmq(A, s, e) = \arg \min_{m \in \{m_1, m_2\}} A[m]$
instead of storing all solutions
store solutions for intervals of length 2^k for every k
$M[0..n][0..\lfloor \log n \rfloor)$

Queries

query $rmq(A, s, e)$ is answered using two subqueries
let $\ell = \lfloor \log (e - s - 1) \rfloor$
$m_1 = rmq(A, s, s + 2^\ell - 1)$ and $m_2 = rmq(A, e - 2^\ell + 1, e)$
$rmq(A, s, e) = \arg \min_{m \in \{m_1, m_2\}} A[m]$

Construction

$M[x][\ell] = rmq(A, x, x + 2^\ell - 1)$
$= \arg \min \{A[i] : i \in [x, x + 2^\ell)\}$
$= \arg \min \{A[i] : i \in \{rmq(A, x, x + 2^{\ell-1} - 1), rmq(A, x + 2^{\ell-1}, x + 2^\ell - 1)\}\}$
$= \arg \min \{A[i] : i \in \{M[x][\ell - 1], M[x + 2^{\ell-1}][\ell - 1]\}\}$

how much time do we need to fill the table?
Range Minimum Queries in $O(1)$ Time and $O(n \log n)$ Space

- instead of storing all solutions
- store solutions for intervals of length 2^k for every k
- $M[0..n][0..\lfloor \log n \rfloor)$

Queries

- query $rmq(A, s, e)$ is answered using two subqueries
- let $\ell = \lfloor \log(e - s - 1) \rfloor$
- $m_1 = rmq(A, s, s + 2^\ell - 1)$ and $m_2 = rmq(A, e - 2^\ell + 1, e)$
- $rmq(A, s, e) = \arg\min_{m \in \{m_1, m_2\}} A[m]$

Construction

$$M[x][\ell] = rmq(A, x, x + 2^\ell - 1)$$
$$= \arg\min\{A[i] : i \in [x, x + 2^\ell)\}$$
$$= \arg\min\{A[i] : i \in \{rmq(A, x, x + 2^{\ell-1} - 1),$$
$$= \quad \quad rmq(A, x + 2^{\ell-1}, x + 2^\ell - 1)\}\}$$
$$= \arg\min\{A[i] : i \in \{M[x][\ell - 1],$$
$$= \quad \quad M[x + 2^{\ell-1}][\ell - 1]\}\}$$

how much time do we need to fill the table?

PINGO

dynamic programming in $O(n \log n)$ time
Range Minimum Queries in $O(1)$ Time and $O(n)$ Space (1/2)

- divide A into blocks of size $s = \frac{\log n}{4}$
- blocks B_1, \ldots, B_m with $m = \lceil n/s \rceil$
- query $rmq(A, s, e)$ is answered using at most three subqueries
 - one query spanning multiple block
 - at most two queries within a block each
- example on the board 📚
divide A into blocks of size $s = \frac{\log n}{4}$

blocks B_1, \ldots, B_m with $m = \lceil n/s \rceil$

query $rmq(A, s, e)$ is answered using at most three subqueries

one query spanning multiple block

at most two queries within a block each

example on the board

Query Spanning Blocks

- use array B containing minimum within each block
 - B has m entries
 - use $O(n \log n)$ data structure for B
 - $O(m \log m) = O\left(\frac{n}{s} \log \frac{n}{s} \right) = O\left(\frac{n \log n \log \frac{n}{s}}{\log n} \right) = O(n)$

- use additional array B' storing position of minimum in each block

14/18 2023-05-15 Florian Kurpicz | Advanced Data Structures | 04 Predecessor & RMQ

Institute of Theoretical Informatics, Algorithm Engineering
divide A into blocks of size $s = \frac{\log n}{4}$
blocks B_1, \ldots, B_m with $m = \left\lceil \frac{n}{s} \right\rceil$
query $rmq(A, s, e)$ is answered using at most three subqueries
one query spanning multiple block
at most two queries within a block each

Query Spanning Blocks
- use array B containing minimum within each block
- B has m entries
- use $O(n \log n)$ data structure for B
- $O(m \log m) = O\left(\frac{n}{s} \log \frac{n}{s}\right) = O\left(\frac{n}{\log n} \log \frac{n}{\log n}\right) = O(n)$
- use additional array B' storing position of minimum in each block
- for queries within block use Cartesian trees

example on the board
Definition: Cartesian Tree

Given an array A of length n, a Cartesian tree $C(A)$ of a is a labeled binary tree with:

- root r is labeled with $x = \arg \min \{A[i] : i \in [0, n]\}$
- left and right children of r are Cartesian trees $C(A[0, x))$ and $C(A[x + 1, n))$ if interval exists
Definition: Cartesian Tree

Given an array A of length n, a Cartesian tree $C(A)$ of A is a labeled binary tree with

- root r is labeled with $x = \arg\min\{A[i] : i \in [0, n]\}$
- left and right children of r are Cartesian trees $C(A[0, x))$ and $C(A[x + 1, n))$ if interval exists

Lemma: Cartesian Tree Construction

A Cartesian tree for an array of size n can be computed in $O(n)$ time
Definition: Cartesian Tree

Given an array A of length n, a Cartesian tree $C(A)$ of a is a labeled binary tree with

- root r is labeled with $x = \arg \min \{ A[i] : i \in [0, n) \}$
- left and right children of r are Cartesian trees $C(A[0, x))$ and $C(A[x + 1, n))$ if interval exists

Lemma: Cartesian Tree Construction

A Cartesian tree for an array of size n can be computed in $O(n)$ time

Proof (Sketch)

- scan array from left to right
- insert each element by
 - following rightmost path from leaf to root till element can be inserted
 - everything below becomes left child of new node
- each node is removed at most once from the rightmost path
- moving subtree to left child in constant time gives $O(n)$ construction time
Definition: Cartesian Tree

Given an array A of length n, a Cartesian tree $C(A)$ of a is a labeled binary tree with

- root r is labeled with $x = \arg\min\{A[i] : i \in [0, n]\}$
- left and right children of r are Cartesian trees $C(A[0, x))$ and $C(A[x + 1, n))$ if interval exists

Lemma: Cartesian Tree Construction

A Cartesian tree for an array of size n can be computed in $O(n)$ time

Proof (Sketch)

- scan array from left to right
- insert each element by
 - following rightmost path from leaf to root till element can be inserted
 - everything below becomes left child of new node
- each node is removed at most once from the rightmost path
- moving subtree to left child in constant time gives $O(n)$ construction time

- example on the board 📚
Lemma: Equality of Cartesian Trees

Given two arrays \(A \) and \(B \) of length \(n \) with equal Cartesian trees, then

\[
\text{rmq}(A, s, e) = \text{rmq}(B, s, e)
\]

for all \(0 \leq s < e < n \).
Lemma: Equality of Cartesian Trees

Given two arrays A and B of length n with equal Cartesian trees, then

$$rmq(A, s, e) = rmq(B, s, e)$$

for all $0 \leq s < e < n$

Proof (Sketch)

- proof by induction over the size of the array
- if the array has size one, this is true
- assuming this is correct for arrays of size n, showing this for arrays of size $n + 1$ uses recursive definition of Cartesian trees
Range Minimum Queries in $O(1)$ Time and $O(n)$ Space (2/2)

Query Within a Block

- consider every possible Cartesian tree for arrays of size $s = \frac{\log n}{4}$
- tree can be represented using $2s + 1$ bits
- store bit representation of Cartesian tree for every block
- for every possible Cartesian tree and every start and end position store position of minimum
- $O(2^{2s+1} \cdot s \cdot s) = O(\sqrt{n} \log^2 n) = O(n)$ space
Conclusion and Outlook

This Lecture
- successor and predecessor data structures
- range minimum query data structures

Advanced Data Structures

- Successor
 - static BV
 - range min-max tree
- RMQ
 - static succ. trees
 - succ. graphs
Bibliography I

[Fan71] Robert Mario Fano. On the Number of Bits Required to Implement an Associative Memory. 1971.