Recap

Succinct Planar Graphs
- using spanning tree of graph and
- special spanning tree of dual graph
- both represented succinctly
- represent planar graph succinctly
- remember whether edge is in spanning tree or not
Predecessor and Successor

Setting
- assume universe $\mathcal{U} = [0, u)$
- let $u = 2^w$
- sorted array of n integers $A \subseteq \mathcal{U}$
- $\log n \leq w$ since $n \leq u$

Definition: Predecessor & Successor
Given an array A of n integers from an universe \mathcal{U} and an integer $x \in \mathcal{U}$, the predecessor and successor of x in A are:
- $\text{pred}(A, x) = \max\{y \in A : y \leq x\}$
- $\text{succ}(A, x) = \min\{y \in A : y \geq x\}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

- $\text{pred}(3) = 2$
- $\text{pred}(10) = 10$
- $\text{succ}(23) = 32$

in what time and space can we solve this using bit vectors?
Predecessor and Successor: Simple Solutions

- binary search
 - $O(\log n)$ query time
 - no space overhead

- using bit vector
 - $O(1)$ query time
 - $u + o(u)$ bits space

Predecessor of x in Bit Vector

- $z = rank_1(x + 2)$
- predecessor is $select_1(z)$

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>32</td>
</tr>
</tbody>
</table>

$pred(3) = 2$

110100100100000000011100000001

- $rank_1(21) = 6$
- $select_1(6) = 10$
- $pred(19) = 10$
Elias-Fano Coding [Eli74; Fan71] (1/3)

- n integers from universe $\mathcal{U} = [0, u)$
- split number in upper and lower halves
 - upper half: $\lceil \log n \rceil$ most significant bits
 - lower half: $\lceil \log u - \log n \rceil$ remaining bits

Upper Half
- monotonous sequence of $\lceil \log n \rceil$ bit integers
- not strictly monotonous
- let p_0, \ldots, p_{n-1} be sequence
- use bit vector of length $2n + 1$ bits
- represent p_i with a 1 at position $i + p_i$
- rank and select support requires $o(n)$ bits

Lower Half
- store lower half plain using $\lceil \log \frac{u}{n} \rceil$ bits
- $n \log \left\lceil \frac{u}{n} \right\rceil$ bits for lower half

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000000</td>
<td>10: 001010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>000001</td>
<td>20: 010100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>000010</td>
<td>21: 010101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>000100</td>
<td>22: 010110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>000111</td>
<td>30: 100000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Elias-Fano Coding (2/3)

Access i-th Element
- **upper**: $select_1(i) - i$
- **lower**: corresponding bits from lower bit vector

Predecessor x
- Let x' be $\lceil \log n \rceil$ MSB of x
- $p = select_0(x') \& select_0(0)$ returns 0
- Scan corresponding values in lower till predecessor is found

how many elements do we have to scan?

PINGO

scanning $O(n)$ elementscan be done better

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000000</td>
<td>10: 001010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>000001</td>
<td>20: 010100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>000010</td>
<td>21: 010101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>000100</td>
<td>22: 010110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>000111</td>
<td>30: 100000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

upper: 11101101000111000100

lower: 00 01 10 00 11 10 00 01 10 00
Lemma: Elias-Fano Coding

Given an array containing \(n \) distinct integers from a universe \(\mathcal{U} = [0, n) \), the array can be represented using

\[
n(2 + \log \left\lceil \frac{u}{n} \right\rceil) \text{ bits}
\]

while allowing \(O(1) \) access time and \(O(\log \frac{u}{n}) \) predecessor/successor time.
x-Fast Tries

- Each number has w bits
- Build binary tree where leaves represent numbers
- Edges are labeled 0 or 1
- Labels on path from root to leaf are value represented in leaf
- Store nodes in hash tables with bit prefix as key
- Also store pointer to min and max in right and left subtree
- Leaves are stored in doubly linked list
- Using perfect hashing on each level requires $O(wn)$ space
- Pointers to min and max are missing
- Tree most likely not complete
x-Fast Tries: Queries

- traversing tree requires $O(w)$ time
- using binary search on levels requires $O(\log w)$ time
- if value not found go to min or max depending on query
- if value is found use doubly linked list to find predecessor or successor

- example on the board
y-Fast Tries

- x-fast trie requires $O(wn)$ space
- group w consecutive objects into one block B_i
- for each block B_i choose maximum m_i as representative
- build x-fast trie for representatives
- store blocks in balanced binary trees

x-fast trie requires $O(n)$ space

- search in x-fast trie requires $O(\log \log \frac{n}{w})$ time
- search in balanced binary tree requires $O(\log w) = O(\log \log n)$ time

Dynamic y-Fast Trie

- use cuckoo hashing
- representative does not have to be maximum
- any element separating groups suffices
- merge and split blocks that are too small/too big
- query time only expected

example on the board
Range Minimum Queries

Setting
- array of \(n \) integers
- not necessarily sorted

Definition: Range Minimum Queries
Given an array of \(A \) of \(n \) integers

\[
rmq(A, s, e) = \arg \min_{s \leq i \leq e} A[i]
\]

returns the position of minimum in \(A[s, e] \)

0 1 2 3 4 5 6 7 8 9
8 2 5 1 9 11 10 20 22 4

- \(rmq(0, 9) = 3 \)
- \(rmq(0, 2) = 1 \)
- \(rmq(4, 8) = 4 \)

naive in \(O(1) \) time
how much space does a naive \(O(1) \)-time solution need

\[
rmq(s, e) = M[s][e]
\]

using \(O(n^2) \) space
instead of storing all solutions
store solutions for intervals of length 2^k for every k
$M[0..n][0..\lfloor \log n \rfloor)$

Queries
- query $rmq(A, s, e)$ is answered using two subqueries
- let $\ell = \lfloor \log(e - s - 1) \rfloor$
- $m_1 = rmq(A, s, s + 2^\ell - 1)$ and $m_2 = rmq(A, e - 2^\ell + 1, e)$
- $rmq(A, s, e) = \arg\min_{m \in \{m_1, m_2\}} A[m]$

Construction

$M[x][\ell] = rmq(A, x, x + 2^\ell - 1)$
$= \arg\min \{A[i] : i \in [x, x + 2^\ell)\}$
$= \arg\min \{A[i] : i \in \{rmq(A, x, x + 2^{\ell-1} - 1), \}$
$= \arg\min \{A[i] : i \in \{M[x][\ell - 1], \}$
$= \arg\min \{A[i] : i \in \{M[x][\ell - 1], M[x + 2^{\ell-1}][\ell - 1]\}\}$

how much time do we need to fill the table?

Dynamic programming in $O(n \log n)$ time
Range Minimum Queries in $O(1)$ Time and $O(n)$ Space (1/2)

- divide A into blocks of size $s = \frac{\log n}{4}$
- blocks B_1, \ldots, B_m with $m = \lceil n/s \rceil$
- query $rmq(A, s, e)$ is answered using at most three subqueries
 - one query spanning multiple block
 - at most two queries within a block each

Query Spanning Blocks

- use array B containing minimum within each block
- B has m entries
- use $O(n \log n)$ data structure for B
- $O(m \log m) = O\left(\frac{n}{s} \log \frac{n}{s}\right) = O\left(\frac{n}{\log n} \log \frac{n}{\log n}\right) = O(n)$
- use additional array B' storing position of minimum in each block
- for queries within block use Cartesian trees

example on the board 📚
Definition: Cartesian Tree
Given an array A of length n, a Cartesian tree $C(A)$ of a is a labeled binary tree with
- root r is labeled with $x = \arg \min \{ A[i] : i \in [0, n) \}$
- left and right children of r are Cartesian trees $C(A[0, x))$ and $C(A[x + 1, n))$ if interval exists

Lemma: Cartesian Tree Construction
A Cartesian tree for an array of size n can be computed in $O(n)$ time

Proof (Sketch)
- scan array from left to right
- insert each element by
 - following rightmost path from leaf to root till element can be inserted
 - everything below becomes left child of new node
- each node is removed at most once from the rightmost path
- moving subtree to left child in constant time gives $O(n)$ construction time

example on the board

Lemma: Equality of Cartesian Trees

Given two arrays A and B of length n with equal Cartesian trees, then

$$rmq(A, s, e) = rmq(B, s, e)$$

for all $0 \leq s < e < n$

Proof (Sketch)
- proof by induction over the size of the array
- if the array has size one, this is true
- assuming this is correct for arrays of size n, showing this for arrays of size $n + 1$ uses recursive definition of Cartesian trees
Query Within a Block

- consider every possible Cartesian tree for arrays of size $s = \frac{\log n}{4}$
- tree can be represented using $2s + 1$ bits
- store bit representation of Cartesian tree for every block
- for every possible Cartesian tree and every start and end position store position of minimum
- $O(2^{2s+1} \cdot s \cdot s) = O(\sqrt{n} \log^2 n) = O(n)$ space
Conclusion and Outlook

This Lecture

- successor and predecessor data structures
- range minimum query data structures

Advanced Data Structures

- Successor
 - static
 - BV
 - range min-max tree
- RMQ
 - static
 - succ. trees
 - succ. graphs
Bibliography I

[Fan71] Robert Mario Fano. On the Number of Bits Required to Implement an Associative Memory. 1971.