Advanced Data Structures

Lecture 06: BSP Trees and Packed and Compressed Hash Tables

Florian Kurpicz
Recap: 2-Dimensional Rectangular Range Searching

Important

- assume now two points have the same x- or y-coordinate
- generalize 1-dimensional idea
 - 1-dimensional
 - split number of points in half at each node
 - points consist of one value
 - 2-dimensional
 - points consist of two values
 - split number of points in half w.r.t. one value
 - switch between values depending on depth
Motivation

- hidden surface removal
- which pixel is visible
- important for rendering
z-Buffer Algorithm

- transform scene such that viewing direction is positive z-direction
- consider objects in scene in arbitrary order
- maintain two buffers
 - frame buffer \square currently shown pixel
 - z-buffer \square z-coordinate of object shown
- compare z-coordinate of z-buffer and object
z-Buffer Algorithm

- transform scene such that viewing direction is positive z-direction
- consider objects in scene in arbitrary order
- maintain two buffers
 - frame buffer \(f \) currently shown pixel
 - z-buffer \(z \) z-coordinate of object shown
- compare z-coordinate of z-buffer and object

- first sort object in depth-order
- depth-order may not always exist
- how to efficiently sort objects?
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

\[h^+ = \{(x_1, \ldots, x_d): a_1 x_1 + \cdots + a_d x_d > 0\} \]
\[h^- = \{(x_1, \ldots, x_d): a_1 x_1 + \cdots + a_d x_d < 0\} \]
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

- \[h^+ = \{(x_1, \ldots, x_d): a_1 x_1 + \cdots + a_d x_d > 0\} \]
- \[h^- = \{(x_1, \ldots, x_d): a_1 x_1 + \cdots + a_d x_d < 0\} \]
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

- \[h^+ = \{(x_1, \ldots, x_d): a_1 x_1 + \cdots + a_d x_d > 0\} \]
- \[h^- = \{(x_1, \ldots, x_d): a_1 x_1 + \cdots + a_d x_d < 0\} \]
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

\[h^+ = \{(x_1, \ldots, x_d) : a_1x_1 + \cdots + a_dx_d > 0\} \]
\[h^- = \{(x_1, \ldots, x_d) : a_1x_1 + \cdots + a_dx_d < 0\} \]
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

\[
h^+ = \{(x_1, \ldots, x_d): a_1 x_1 + \cdots + a_d x_d > 0\}
\]

\[
h^- = \{(x_1, \ldots, x_d): a_1 x_1 + \cdots + a_d x_d < 0\}
\]
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

\[h^+ = \{(x_1, \ldots, x_d) : a_1 x_1 + \cdots + a_d x_d > 0\} \]
\[h^- = \{(x_1, \ldots, x_d) : a_1 x_1 + \cdots + a_d x_d < 0\} \]

- each split creates two nodes in a tree
- if number of objects in space is one: leaf
- otherwise: inner node
BSP Trees (2/2)

- for leaf: store object/fragment
- for inner node \(v \): store hyperplane \(h_v \) and the objects contained in \(h_v \)
- left child represents objects in upper half-space \(h^+ \)
- right child represents objects in lower half-space \(h^- \)
BSP Trees (2/2)

- for leaf: store object/fragment
- for inner node v: store hyperplane h_v and the objects contained in h_v
- left child represents objects in upper half-space h^+
- right child represents objects in lower half-space h^-
BSP Trees (2/2)

- for leaf: store object/fragment
- for inner node v: store hyperplane h_v and the objects contained in h_v
- left child represents objects in upper half-space h^+
- right child represents objects in lower half-space h^-
BSP Trees (2/2)

- for leaf: store object/fragment
- for inner node v: store hyperplane h_v and the objects contained in h_v
- left child represents objects in upper half-space h^+
- right child represents objects in lower half-space h^-
BSP Trees (2/2)

- for leaf: store object/fragment
- for inner node v: store hyperplane h_v and the objects contained in h_v
- left child represents objects in upper half-space h^+
- right child represents objects in lower half-space h^-
BSP Trees (2/2)

- for leaf: store object/fragment
- for inner node v: store hyperplane h_v and the objects contained in h_v
- left child represents objects in upper half-space h^+
- right child represents objects in lower half-space h^-

- space of BSP tree is number of objects stored at all nodes
- what about fragments?
- too many fragments can make the tree big
Auto-Partitioning

- sorting points for kd-trees worked well
- BSP-tree is used to sort objects in dept-order
- auto-partitioning uses splitters through objects
 - 2-dimensional: line through line segments
 - 3-dimensional: half-plane through polygons
Painter’s Algorithm

- Consider viewpoint p_{view}
- Traverse through tree and always recurse on half-space that does not contain p_{view} first
- Then scan-convert object contained in node
- Then recurse on half-space that contains p_{view}
Constructing Planar BSP Trees (1/3)

- use auto-partitioning
- construction similar to construction of kd-tree
- store all necessary information
 - hyperplane
 - objects in hyperplane
- how to determine next hyperplane?
- creating fragments increases size of BSP tree
Constructing Planar BSP Trees (1/3)

- use auto-partitioning
- construction similar to construction of kd-tree
- store all necessary information
 - hyperplane
 - objects in hyperplane
- how to determine next hyperplane?
- creating fragments increases size of BSP tree

- let s be object and \(\ell(s) \) line through object
- order matters
Constructing Planar BSP Trees (1/3)

- use auto-partitioning
- construction similar to construction of kd-tree
- store all necessary information
 - hyperplane
 - objects in hyperplane
- how to determine next hyperplane?
- creating fragments increases size of BSP tree

- let s be object and \(\ell(s) \) line through object
- order matters
use auto-partitioning
construction similar to construction of kd-tree
store all necessary information
- hyperplane
- objects in hyperplane
how to determine next hyperplane?
creating fragments increases size of BSP tree

let s be object and $\ell(s)$ line through object
order matters
Lemma: Number Line Fragments

The expected number of fragments generated when iterating through the line segments using a random permutation is $O(n \log n)$
Lemma: Number Line Fragments

The expected number of fragments generated when iterating through the line segments using a random permutation is $O(n \log n)$

Proof (Sketch)

- distance of lines $\text{dist}_{s_i}(s_j) =$
 \[
 \begin{cases}
 \# \text{ segments inters. } \ell(s_i) & \text{between } s_i \text{ and } s_j \\
 \infty & \ell(s_i) \text{ inters. } s_j
 \end{cases}
 \]

- example on the board 📚
Constructing Planar BSP Trees (2/3)

Lemma: Number Line Fragments
The expected number of fragments generated when iterating through the line segments using a random permutation is $O(n \log n)$.

Proof (Sketch)
- distance of lines $\text{dist}_{s_i}(s_j) = \begin{cases} \# \text{segments inters. } \ell(s_i) \\ \text{between } s_i \text{ and } s_j \\ \ell(s_i) \text{ inters. } s_j \\ \infty \end{cases}$ otherwise
- example on the board

Proof (Sketch, cnt.)
- let $\text{dist}_{s_i}(s_j) = k$ and s_{j_1}, \ldots, s_{j_k} be segments between s_i and s_j
- what is the probability that $\ell(s_i)$ cuts s_j?
- this happens if no s_{j_x} is processed before s_i
- since order is random

$$P[\ell(s_i) \text{ cuts } s_j] \leq \frac{1}{\text{dist}_{s_i}(s_j) + 2}$$
Proof (Sketch, cnt.)

- expected number of cuts

\[\mathbb{E}[\text{\# cuts generated by } s_i] \leq \sum_{j \neq i} \frac{1}{\text{dist}_{s_i}(s_j) + 2} \leq 2 \sum_{k=0}^{n-2} \frac{1}{k + 2} \leq 2 \ln n \]

- all lines generate at most \(2n \ln n\) fragments
Proof (Sketch, cnt.)

- expected number of cuts

\[\mathbb{E}[\# \text{ cuts generated by } s_i] \leq \sum_{j \neq i} \frac{1}{\text{dist}_{s_i}(s_j) + 2} \leq 2 \sum_{k=0}^{n-2} \frac{1}{k + 2} \leq 2 \ln n \]

- all lines generate at most \(2n \ln n \) fragments

Lemma: BSP Construction

A BSP tree of size \(O(n \log n) \) can be computed in expected time \(O(n^2 \log n) \)
Proof (Sketch, cnt.)

- expected number of cuts

\[\mathbb{E}[\# \text{ cuts generated by } s_i] \leq \sum_{j \neq i} \frac{1}{\text{dist}_{s_i}(s_j)} + 2 \leq 2 \sum_{k=0}^{n-2} \frac{1}{k + 2} \leq 2 \ln n \]

- all lines generate at most \(2n \ln n \) fragments

Lemma: BSP Construction

A BSP tree of size \(O(n \log n) \) can be computed in expected time \(O(n^2 \log n) \)

Proof (Sketch)

- computing permutation in linear time
- construction is linear in number of fragments to be considered
- number of fragments in subtree is bounded by \(n \)
- number of recursions is \(n \log n \)
New Topic: Hash Tables

- now hash tables
- first packed and compressed hash table
- presented in January ’23 at ALENEX
Motivation

Setting
- static hash table for objects of variable size
- storing objects in external memory
- ideally retrieve objects in single I/O
- very small internal memory data structure

Objects of Variable Size
- only blocks of size B bits can be transferred
- one I/O per block transfer

External Memory
Space-Efficient Object Stores from Literature

- objects of size 256 bytes
- blocks of size 4096 bytes
- internal space I_b (bits/block)
- (*) consecutive I/O
Space-Efficient Object Stores from Literature

- objects of size 256 bytes
- blocks of size 4096 bytes
- internal space I_b (bits/block)
- (*) consecutive I/O

<table>
<thead>
<tr>
<th>Method</th>
<th>I_b</th>
<th>load factor</th>
<th>I/Os</th>
</tr>
</thead>
<tbody>
<tr>
<td>fixed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larson et al. [LR85]</td>
<td>96</td>
<td><96%</td>
<td>1</td>
</tr>
<tr>
<td>SILT SortedStore [Lim+11]</td>
<td>51</td>
<td>100%</td>
<td>1</td>
</tr>
<tr>
<td>Linear Separator [Lar88]</td>
<td>8</td>
<td>85%</td>
<td>1</td>
</tr>
<tr>
<td>Separator [GL88; LK84]</td>
<td>6</td>
<td>98%</td>
<td>1</td>
</tr>
<tr>
<td>Robin Hood [Cel88]</td>
<td>3</td>
<td>99%</td>
<td>1.3</td>
</tr>
<tr>
<td>Ramakrishna et al. [RT89]</td>
<td>4</td>
<td>80%</td>
<td>1</td>
</tr>
<tr>
<td>Jensen, Pagh [JP08]</td>
<td>0</td>
<td>80%</td>
<td>1.25</td>
</tr>
<tr>
<td>Cuckoo [Aza+94; Pag03]</td>
<td>0</td>
<td><100%</td>
<td>2</td>
</tr>
<tr>
<td>PaCHash, $a = 1$</td>
<td>2</td>
<td>100%</td>
<td>2*</td>
</tr>
<tr>
<td>PaCHash, $a = 8$</td>
<td>5</td>
<td>100%</td>
<td>1.13*</td>
</tr>
<tr>
<td>variable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SILT LogStore [Lim+11]</td>
<td>832</td>
<td>100%</td>
<td>1</td>
</tr>
<tr>
<td>SkimpyStash [DSL11]</td>
<td>32</td>
<td>≤98%</td>
<td>8</td>
</tr>
<tr>
<td>PaCHash, $a = 1$</td>
<td>2</td>
<td>99.95%</td>
<td>2.06*</td>
</tr>
<tr>
<td>PaCHash, $a = 8$</td>
<td>5</td>
<td>99.95%</td>
<td>1.19*</td>
</tr>
</tbody>
</table>
PaCHash Overview

objects of variable size

EM
PaCHash Overview

objects of variable size

hash function \(h: K \rightarrow 1..am \)

EM
PaCHash Overview

- Hash function $h: K \rightarrow 1^{\ldots}am$
- Tuning parameter $p = (p_1, \ldots, p_m)$
- EM blocks
- Remaining bits per EM block $ar{B}$
PaCHash Overview

- Objects of variable size
- Hash function $h : K \rightarrow 1..am$
- Tuning parameter $p = \langle p_1, \ldots, p_m \rangle$
- EM blocks
- No fragmentation
- Store offset in EM

PaCHash Overview
PaCHash Overview

- Objects of variable size
- Hash function $h: K \rightarrow 1..am$
- Sorted objects in EM in bins

- Tuning parameter: $p = \langle p_1, \ldots, p_m \rangle$
- \bar{B} bits remaining per EM block

- No fragmentation

PaCHash Institute of Theoretical Informatics, Algorithm Engineering
PaCHash Overview

- Objects of variable size
- Hash function \(h: K \rightarrow 1..am \)
- Sorted objects in EM in bins
- Tuning parameter
- No fragmentation

\[p = \langle p_1, \ldots, p_m \rangle \]

\(\bar{B} \) bits remaining per EM block

\(m \) number of EM blocks
PaCHash Overview

- Objects of variable size
- Hash function $h: K \rightarrow 1..am$
- Sorted objects in EM in bins
- First bin (partially) in block
- Tuning parameter
- No fragmentation

EM blocks

$p = \langle p_1, \ldots, p_m \rangle$

\bar{B} bits remaining per EM block
PaCHash Overview

- Objects of variable size
- Hash function $h: K \rightarrow 1..am$
- Sorted objects in EM in bins
- No fragmentation
- First bin (partially) in block
- Tuning parameter
- $p = \langle p_1, \ldots, p_m \rangle$

EM blocks
PaCHash Overview

- Objects of variable size
- Hash function $h: K \rightarrow 1..am$
- Sorted objects in EM in bins
- First bin (partially) in block
- No fragmentation
- Tuning parameter
- $p = \langle p_1, \ldots, p_m \rangle$
- \bar{B} bits remaining per EM block
- $\# \text{EM blocks}$
PaCHash Overview

- Objects of variable size
- Hash function: \(h: K \rightarrow 1..am \)
- Sorted objects in EM in bins
- No fragmentation
- Store offset in EM

Tuning parameter:
- \# EM blocks
- \(p = \langle p_1, \ldots, p_m \rangle \)

First bin (partially) in block
PaCHash Overview

- Objects of variable size
- Hash function $h: K \rightarrow 1..am$
- Sorted objects in EM in bins
- First bin (partially) in block
- No fragmentation
- Store offset in EM
- \bar{B} bits remaining per EM block
- Tuning parameter
- $p = \langle p_1, \ldots, p_m \rangle$
Finding Blocks

Query Algorithm

\[b_x = h(x) \]

- find first \(i \) with \(p_i \leq b_x \)
- if \(p_i = b_x \) let \(i = i - 1 \)
- find first \(j \) with \(p_j > b_x \)
- return \(i..(j - 1) \)
Finding Blocks

Query Algorithm

1. $b_x = h(x)$
2. find first i with $p_i \leq b_x$
3. if $p_i = b_x$ let $i = i - 1$
4. find first j with $p_j > b_x$
5. return $i..(j - 1)$

Elias-Fano Coding

- given k monotonic increasing integers in $1..u$
- store log k MSBs encoded in bit vector
- store $\log(u/k)$ LSBs plain
- $k(2 + \log(u/k)) + 1 + o(k)$ bits in total
- predecessor in $O(k)$ time
Finding Blocks

Query Algorithm

- \(b_x = h(x) \)
- find first \(i \) with \(p_i \leq b_x \)
- if \(p_i = b_x \) let \(i = i - 1 \)
- find first \(j \) with \(p_j > b_x \)
- return \(i..(j - 1) \)

Elias-Fano Coding

- given \(k \) monotonic increasing integers in 1..\(u \)
- store \(\log k \) MSBs encoded in bit vector
- store \(\log(u/k) \) LSBs plain
- \(k(2 + \log(u/k)) + 1 + o(k) \) bits in total
- predecessor in \(O(k) \) time

Lemma: Space with Elias-Fano Coding

When using Elias-Fano coding [Eli74; Fan71] to store \(p \), the index needs \(2 + \log a + o(1) \) bits of internal memory per block.
Finding Blocks

Query Algorithm

- \(b_x = h(x) \)
- find first \(i \) with \(p_i \leq b_x \)
- if \(p_i = b_x \) let \(i = i - 1 \)
- find first \(j \) with \(p_j > b_x \)
- return \(i..(j - 1) \)

Elias-Fano Coding

- given \(k \) monotonic increasing integers in \(1..u \)
 - store \(\log k \) MSBs encoded in bit vector
 - store \(\log(u/k) \) LSBs plain
 - \(k(2 + \log(u/k)) + 1 + o(k) \) bits in total
- predecessor in \(O(k) \) time

Lemma: Space with Elias-Fano Coding

When using Elias-Fano coding [Eli74; Fan71] to store \(p \), the index needs \(2 + \log a + o(1) \) bits of internal memory per block.
Lemma: Expected Predecessor Time

When using Elias-Fano coding to store p, the range of blocks containing the bin of an object x can be found in expected constant time.

Proof (Sketch)

Consider $\lceil \log m \rceil$ MSB

Let bin b_x have MSBs equal to u

Expected size $E(Y_u)$ of all bins with MSB u that are $< b_x$ is

$$X \sum_{y \in S} |y| \cdot P(h(y) \text{ w/ MSB } = u; h(y) < h(x)) \leq X \sum_{y \in S} |y| \cdot P(h(y) \text{ w/ MSB } = u) = \frac{1}{m} \sum_{y \in S} |y| = \bar{B}$$

Number of entries to scan is $E(Y_u) / \bar{B} = \frac{1}{17/25}$
Lemma: Expected Predecessor Time

When using Elias-Fano coding to store \(p \), the range of blocks containing the bin of an object \(x \) can be found in expected constant time.

Proof (Sketch)

- consider \(\lceil \log m \rceil \) MSB
- let bin \(b_x \) have MSBs equal to \(u \)
- expected size \(E(Y_u) \) of all bins with MSB \(u \) that are \(< b_x \) is

\[
\sum_{y \in S} |y| \cdot \mathbb{P}(h(y) \text{ w/ MSB} = u; h(y) < h(x))
\]

\[
\leq \sum_{y \in S} |y| \cdot \mathbb{P}(h(y) \text{ w/ MSB} = u)
\]

\[
= \frac{1}{m} \sum_{y \in S} |y| = \frac{m\bar{B}}{m} = \bar{B}
\]

- number of entries to scan is \(E(Y_u)/\bar{B} = 1 \)
Lemma: Additional Blocks Loaded

Retrieving an object x of size $|x|$ from a PaCHash data structure loads $\leq 1 + |x|/\bar{B} + 1/a$ consecutive blocks from the external memory in expectation.
Lemma: Additional Blocks Loaded

Retrieving an object x of size $|x|$ from a PaCHash data structure loads $\leq 1 + |x|/\bar{B} + 1/a$ consecutive blocks from the external memory in expectation.

Proof (Sketch)

- expected size of bin $b_x = h(x)$

\[
E(|b_x|) = |x| + \sum_{y \in S, y \neq x} |y|P(y \in b_x) \\
\leq |x| + \sum_{y \in S} |y|P(y \in b_x) \\
= |x| + \sum_{y \in S} |y| \cdot \frac{1}{am} = |x| + \frac{\bar{B}}{a}
\]
Loading Blocks from External Memory

Lemma: Additional Blocks Loaded

Retrieving an object x of size $|x|$ from a PaCHash data structure loads $\leq 1 + |x|/\bar{B} + 1/a$ consecutive blocks from the external memory in expectation.

Proof (Sketch)

- expected size of bin $b_x = h(x)$

$$E(|b_x|) = |x| + \sum_{y \in S, y \neq x} |y| \cdot P(y \in b_x)$$

$$\leq |x| + \sum_{y \in S} |y| \cdot P(y \in b_x)$$

$$= |x| + \sum_{y \in S} |y| \cdot \frac{1}{am} = |x| + \frac{\bar{B}}{a}$$

Proof (Sketch, cnt.)

- expected number of blocks overlapped by b_x

$$E(X) = 1 + \frac{(E(|b_x|) - 1)}{\bar{B}}$$

$$= 1 + \frac{|x|}{\bar{B}} + \frac{1}{a} - \frac{1}{\bar{B}}$$

- P(bin and block border align) $= 1/\bar{B}$
Experimental Evaluation

Hardware and Software

- Intel i7 11700 (base clock speed: 2.5 GHz)
- 1 TB Samsung 980 Pro NVMe SSD
- Ubuntu 21.10 (Kernel 5.13.0)
- io_uring for I/O operations
- GCC 11.2.0 (-O3 -march=native)
- $B = 4096$ bytes

Competitors

- LevelDB [Goo21]
- RocksDB [Fac21]
- SILT [Lim+11]
- std::unordered_map
- RecSplit [EGV20]
- CHD [BBD09; CR+12]
- PTHash [PT21]
Experimental Evaluation

Hardware and Software
- Intel i7 11700 (base clock speed: 2.5 GHz)
- 1 TB Samsung 980 Pro NVMe SSD
- Ubuntu 21.10 (Kernel 5.13.0)
- io_uring for I/O operations
- GCC 11.2.0 (-O3 -march=native)
- $B = 4096$ bytes

Objects
- here only **fixed size**
- more in the paper (very similar results)
Experimental Evaluation

Hardware and Software
- Intel i7 11700 (base clock speed: 2.5 GHz)
- 1 TB Samsung 980 Pro NVMe SSD
- Ubuntu 21.10 (Kernel 5.13.0)
- io_uring for I/O operations
- GCC 11.2.0 (-O3 -march=native)
- \(B = 4096 \) bytes

Objects
- here only fixed size
- more in the paper (very similar results)

Competitors
- LevelDB [Goo21]
- RocksDB [Fac21]
- SILT [Lim+11]
- std::unordered_map
- RecSplit [EGV20]
- CHD [BBD09; CR+12]
- PTHash [PT21]
Construction

![Graph showing space and construction throughput vs. number of objects for different data structures.]

- CHD (16-perfect) [BBD09]
- LevelDB [Goo21]
- RecSplit [EGV20]
- SILT (Static part) [Lim+11]
- Cuckoo (here)
- PTHash [PT21]
- RocksDB [Fac21]
- Separator (here)
- LevelDB (Static part) [Goo21]
- PaCHash (here)
- SILT [Lim+11]
- std::unordered_map
Queries

<table>
<thead>
<tr>
<th>Number of objects [Millions]</th>
<th>Query Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>internal only</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>direct I/O</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
</tr>
<tr>
<td>buffered I/O</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
</tr>
</tbody>
</table>

- CHD (16-perfect) [BBD09]
- LevelDB [Goo21]
- RecSplit [EGV20]
- SILT (Static part) [Lim+11]
- Cuckoo (here)
- PTHash [PT21]
- RocksDB [Fac21]
- Separator (here)
- LevelDB (Static part) [Goo21]
- PaCHash (here)
- SILT [Lim+11]
- std::unordered_map
Maximum Load Factor of Competitors

Cuckoo Hashing

Separator Hashing

Average object size [B]

Identical size
Normal distribution
Uniform distribution
Alternative Internal Memory Data Structures

Lemma: Space with Succincter

When using Succincter [Pat08] to store p, the index needs $1.44 + \log(a + 1) + o(1)$ bits of internal memory per block.
Lemma: Space with Succincter

When using Succincter [Pat08] to store \(p \), the index needs 1.44 + \(\log(a + 1) + o(1) \) bits of internal memory per block.

Structure of Bit Vector

- runs of 0s and 10s
- sometimes additional 1s
Lemma: Space with Succincter

When using Succincter [Pat08] to store \(p \), the index needs \(1.44 + \log(a + 1) + o(1) \) bits of internal memory per block.

Structure of Bit Vector

- runs of 0s and 10s
- sometimes additional 1s

Entropy Encoding

- encode positions directly
- compress bit vector using Huffman codes
- encode blocks of size 8, 16, 32, or 64
Lemma: Space with Succincter

When using Succincter [Pat08] to store \(p \), the index needs \(1.44 + \log(a + 1) + o(1) \) bits of internal memory per block.

Structure of Bit Vector

- runs of 0s and 10s
- sometimes additional 1s

Entropy Encoding

- encode positions directly
- compress bit vector using Huffman codes
- encode blocks of size 8, 16, 32, or 64
Conclusion and Outlook

This Lecture

- BSP trees
- PaCHash

Advanced Data Structures

- PaCHash
- Successor
- RMQ
- Kd- & Range Tree
- static BV
- static succ. trees
- range min-max tree
- succ. graphs
Conclusion and Outlook

This Lecture
- BSP trees
- PaCHash

Next Lecture
- more on hashing
- measuring memory
F.A.Q. Project

- measuring memory
- measuring time
F.A.Q. Project

- measuring memory
- measuring time
- `std::map` vs `std::unordered_map`
F.A.Q. Project

- measuring memory
- measuring time
- `std::map` vs `std::unordered_map`
- more questions?
Bibliography I

Bibliography II

Bibliography IV

