Advanced Data Structures

Lecture 07: Suffix Arrays and String B-Trees

Florian Kurpicz
External Memory Model [AV88]

Definition: External Memory Model

- internal memory of M words
- instances of size $N \gg M$
- unlimited external memory
- transfer blocks of size B between memories

- measure number of blocks I/Os
- scanning N elements: $\Theta(N/B)$
- sorting N elements: $\Theta(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B})$
External Memory Model [AV88]

Definition: External Memory Model
- Internal memory of M words
- Instances of size $N \gg M$
- Unlimited external memory
- Transfer blocks of size B between memories
- Measure number of blocks I/Os
- Scanning N elements: $\Theta(N/B)$
- Sorting N elements: $\Theta\left(\frac{N}{B} \log_{\frac{M}{B}}\frac{N}{B}\right)$

Set of Strings
- Alphabet Σ of size σ
- k strings $\{s_1, \ldots, s_k\}$ over the alphabet Σ
- Total size of strings is $N = \sum_{i=1}^{k} |s_i|$
- Queries ask for pattern P of length m
String Dictionary

Given a set $S \subseteq \Sigma^*$ of prefix-free strings, we want to answer:

- is $x \in \Sigma^*$ in S
- add $x \not\in S$ to S
- remove $x \in S$ from S
- predecessor and successor of $x \in \Sigma^*$ in S
Given a set $S \subseteq \Sigma^*$ of prefix-free strings, we want to answer:

- is $x \in \Sigma^*$ in S
- add $x \notin S$ to S
- remove $x \in S$ from S
- predecessor and successor of $x \in \Sigma^*$ in S

Definition: Trie

Given a set $S = \{S_1, \ldots, S_k\}$ of prefix-free strings, a trie is a labeled rooted tree $G = (V, E)$ with:

1. k leaves
2. $\forall S_i \in S$ there is a path from the root to a leaf, such that the concatenation of the labels is S_i
3. $\forall v \in V$ the labels of the edges (v, \cdot) are unique
String Dictionary

Given a set \(S \subseteq \Sigma^* \) of prefix-free strings, we want to answer:
- \(x \in \Sigma^* \) in \(S \)
- add \(x \notin S \) to \(S \)
- remove \(x \in S \) from \(S \)

Definition: Trie

Given a set \(S = \{S_1, \ldots, S_k\} \) of prefix-free strings, a trie is a labeled rooted tree \(G = (V, E) \) with:

1. \(k \) leaves
2. \(\forall S_i \in S \) there is a path from the root to a leaf, such that the concatenation of the labels is \(S_i \)
3. \(\forall v \in V \) the labels of the edges \((v, \cdot) \) are unique
Theoretical Comparison

<table>
<thead>
<tr>
<th>Representation</th>
<th>Query Time (Contains)</th>
<th>Space in Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrays of variable size</td>
<td>(O(m \cdot \sigma))</td>
<td>(O(N))</td>
</tr>
<tr>
<td>arrays of fixed size</td>
<td>(O(m))</td>
<td>(O(N \cdot \sigma))</td>
</tr>
<tr>
<td>hash tables</td>
<td>(O(m)) w.h.p.</td>
<td>(O(N))</td>
</tr>
<tr>
<td>balanced search trees</td>
<td>(O(m \cdot \lg \sigma))</td>
<td>(O(N))</td>
</tr>
<tr>
<td>weight-balanced search trees</td>
<td>(O(m + \lg k))</td>
<td>(O(N))</td>
</tr>
<tr>
<td>two-levels with weight-balanced search trees</td>
<td>(O(m + \lg \sigma))</td>
<td>(O(N))</td>
</tr>
</tbody>
</table>
Theoretical Comparison

<table>
<thead>
<tr>
<th>Representation</th>
<th>Query Time (Contains)</th>
<th>Space in Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrays of variable size</td>
<td>$O(m \cdot \sigma)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>arrays of fixed size</td>
<td>$O(m)$</td>
<td>$O(N \cdot \sigma)$</td>
</tr>
<tr>
<td>hash tables</td>
<td>$O(m)$ w.h.p.</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>balanced search trees</td>
<td>$O(m \cdot \lg \sigma)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>weight-balanced search trees</td>
<td>$O(m + \lg k)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>two-levels with weight-balanced search trees</td>
<td>$O(m + \lg \sigma)$</td>
<td>$O(N)$</td>
</tr>
</tbody>
</table>

- more details in lecture Text Indexing
Compact Trie

- tries have unnecessary nodes
- branchless paths can be removed
- edge labels can consist of multiple characters
Compact Trie

- tries have unnecessary nodes
- branchless paths can be removed
- edge labels can consist of multiple characters

Definition: Compact Trie

- A compact trie is a trie where all branchless paths are replaced by a single edge.
- The label of the new edge is the concatenation of the replaced edges’ labels.
Compact Trie

- tries have unnecessary nodes
- branchless paths can be removed
- edge labels can consist of multiple characters

Definition: Compact Trie

- A compact trie is a trie where all branchless paths are replaced by a single edge.
- The label of the new edge is the concatenation of the replaced edges’ labels.
Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]

Given a text T of length n, the suffix array (SA) is a permutation of $[1..n]$, such that for $i \leq j \in [1..n]$

$$T[SA[i]..n] \leq T[SA[j]..n]$$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>LCP</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]
Given a text T of length n, the suffix array (SA) is a permutation of $[1..n]$, such that for $i \leq j \in [1..n]$

$$T[SA[i]..n] \leq T[SA[j]..n]$$

Definition: Longest Common Prefix Array
Given a text T of length n and its SA, the LCP-array is defined as

$$LCP[i] = \begin{cases} 0 & i = 1 \\ \max\{\ell : T[SA[i]..SA[i] + \ell) = T[SA[i-1]..SA[i-1] + \ell)\} & i \neq 1 \end{cases}$$
Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]
Given a text \(T \) of length \(n \), the suffix array (SA) is a permutation of \([1..n]\), such that for \(i \leq j \in [1..n] \)
\[
T[SA[i]..n] \leq T[SA[j]..n]
\]

Definition: Longest Common Prefix Array
Given a text \(T \) of length \(n \) and its SA, the LCP-array is defined as
\[
LCP[i] = \begin{cases}
0 & i = 1 \\
\max\{\ell : T[SA[i]..SA[i] + \ell) = T[SA[i-1]..SA[i-1] + \ell}\} & i \neq 1
\end{cases}
\]
Timeline Sequential Suffix Sorting

- based on [Bah+19; Bin18; Kur20; PST07]
- darker grey: linear running time
- brown: available implementation

Prefix Doubling
- [MM] original
- [LS] qsufsort
- [Sew] 1/2 copy
- [IT] A/B copy
- [MF] deep-shallow
- [M] DwSufSort
- [SS] bpr

Induced Copying
- [MW] BWT
- [BK] diffcover
- [KA] L/S split
- [Man] chains
- [Na] succinct
- [MP] cache aware
- [NZ] O(n lg |Σ|)
- [AN] SFE-coding
- [Bai] GSACA
- [LLH] O(1) space
- [Got] O(1) space
- [Gre] libSAIS

Recursion
- [IT] A/B copy
- [BK] diffcover
- [KJ] DC3
- [KSP] mod2 split
- [KSPP] mod2 split
- [KA] L/S split
- [Na] succinct
- [MP] cache aware
- [NZ] O(n lg |Σ|)
- [Non] SACA-K
- [Bai] GSACA
- [LLH] O(1) space
- [Got] O(1) space
- [Gre] libSAIS
Timeline Sequential Suffix Sorting

- based on [Bah+19; Bin18; Kur20; PST07]
- darker grey: linear running time
- brown: available implementation

Special Mentions

- DC3 first $O(n)$ algorithm
- $O(n)$ running time and $O(1)$ space for integer alphabets possible
Timeline Sequential Suffix Sorting

- based on [Bah+19; Bin18; Kur20; PST07]
- darker grey: linear running time
- brown: available implementation

Special Mentions

- DC3 first $O(n)$ algorithm
- $O(n)$ running time and $O(1)$ space for integer alphabets possible
- until 2021: DivSufSort fastest in practice with $O(n \lg n)$ running time
Timeline Sequential Suffix Sorting

- based on [Bah+19; Bin18; Kur20; PST07]
- darker grey: linear running time
- brown: available implementation

Special Mentions

- DC3 first $O(n)$ algorithm
- $O(n)$ running time and $O(1)$ space for integer alphabets possible
- until 2021: DivSufSort fastest in practice with $O(n \lg n)$ running time
- since 2021: libSAIS fastest in practice with $O(n)$ running time
Suffix Sorting in External Memory

- using induced copying
- \(O(N/B) \log_B^2 (N/B) \) I/Os
Pattern Matching with the Suffix Array (1/2)

Function `SearchSA(T, SA[1..n], P[1..m])`:

1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do
3. \(i = \lfloor (\ell + r)/2 \rfloor \)
4. if \(P > T[SA[i]..SA[i] + m) \) then
5. \(\ell = i + 1 \)
6. else \(r = i \)
7. \(s = \ell, \ell = \ell - 1, r = n \)
8. while \(\ell < r \) do
9. \(i = \lceil (\ell + r)/2 \rceil \)
10. if \(P = T[SA[i]..SA[i] + m) \) then \(\ell = i \)
11. else \(r = i - 1 \)
12. return \([s, r] \)

Pattern \(P = abc \)
Function SearchSA(T, SA[1..n], P[1..m]):

1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do
 3. \(i = \lfloor (\ell + r)/2 \rfloor \)
 4. if \(P > T[SA[i]..SA[i] + m) \) then
 5. \(\ell = i + 1 \)
 6. else \(r = i \)
 7. \(s = \ell, \ell = \ell - 1, r = n \)
3. while \(\ell < r \) do
 4. \(i = \lceil (\ell + r)/2 \rceil \)
 5. if \(P = T[SA[i]..SA[i] + m) \) then \(\ell = i \)
 6. else \(r = i - 1 \)
7. return \([s, r]\)

pattern \(P = \text{abc} \)
Pattern Matching with the Suffix Array (1/2)

Function `SearchSA(T, SA[1..n], P[1..m])`:

1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do
 3. \(i = \lfloor (\ell + r)/2 \rfloor \)
 4. if \(P > T[SA[i]..SA[i] + m] \) then
 5. \(\ell = i + 1 \)
 6. else \(r = i \)
7. \(s = \ell, \ell = \ell - 1, r = n \)
8. while \(\ell < r \) do
 9. \(i = \lceil (\ell + r)/2 \rceil \)
10. if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
11. else \(r = i - 1 \)
12. return \([s, r] \)

Pattern \(P = \text{abc} \)
Pattern Matching with the Suffix Array (2/2)

Function SeachSA(T, SA[1..n], P[1..m]):
1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do
 3. \(i = \lfloor (\ell + r)/2 \rfloor \)
 4. if \(P > T[SA[i]..SA[i] + m] \) then
 5. \(\ell = i + 1 \)
 6. else \(r = i \)
 7. \(s = \ell, \ell = \ell - 1, r = n \)
3. while \(\ell < r \) do
 4. \(i = \lceil (\ell + r)/2 \rceil \)
 5. if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
 6. else \(r = i - 1 \)
5. return \([s, r]\)

Lemma: Running Time SeachSA

The SeachSA answers counting queries in \(O(m \lg n) \) time and reporting queries in \(O(m \lg n + \text{occ}) \) time.

Proof (Sketch)
- two binary searches on the \(SA \) in \(O(\lg n) \) time
Pattern Matching with the Suffix Array (2/2)

Function SeachSA(T, SA[1..n], P[1..m]):

1 \ell = 1, r = n + 1
2 \textbf{while} \ell < r \textbf{ do}
3 \quad i = \lfloor (\ell + r)/2 \rfloor
4 \quad \textbf{if} P > T[SA[i]..SA[i] + m] \textbf{ then}
5 \quad \ell = i + 1
6 \textbf{else} r = i
7 \quad s = \ell, \ell = \ell - 1, r = n
8 \textbf{while} \ell < r \textbf{ do}
9 \quad i = \lceil \ell + r/2 \rceil
10 \quad \textbf{if} P = T[SA[i]..SA[i] + m] \textbf{ then} \ell = i
11 \textbf{else} r = i - 1
12 \textbf{return} [s, r]

Lemma: Running Time SeachSA

The SeachSA answers counting queries in $O(m \lg n)$ time and reporting queries in $O(m \lg n + \text{occ})$ time.

Proof (Sketch)

Two binary searches on the SA in $O(\lg n)$ time.
Function `SearchSA(T, SA[1..n], P[1..m])`:

```plaintext
1 \( \ell = 1, r = n + 1 \)
2 while \( \ell < r \) do
3     \( i = \lfloor (\ell + r)/2 \rfloor \)
4     if \( P > T[SA[i]..SA[i] + m] \) then
5         \( \ell = i + 1 \)
6     else \( r = i \)
7     \( s = \ell, \ell = \ell - 1, r = n \)
8 while \( \ell < r \) do
9     \( i = \lceil (\ell + r)/2 \rceil \)
10    if \( P = T[SA[i]..SA[i] + m] \) then \( \ell = i \)
11    else \( r = i - 1 \)
12 return \([s, r]\)
```

Lemma: Running Time `SearchSA`

The `SearchSA` answers counting queries in \(O(m \log n) \) time and reporting queries in \(O(m \log n + \text{occ}) \) time.

Proof (Sketch)

- Two binary searches on the `SA` in \(O(\log n) \) time
- Each comparison requires \(O(m) \) time
Function \text{SearchSA}(T, SA[1..n], P[1..m]):

1. \(\ell = 1, r = n + 1 \)
2. While \(\ell < r \) do
 3. \(i = \lfloor (\ell + r)/2 \rfloor \)
 4. If \(P > T[SA[i]..SA[i] + m] \) then
 5. \(\ell = i + 1 \)
 6. Else \(r = i \)
 7. \(s = \ell, \ell = \ell - 1, r = n \)
3. While \(\ell < r \) do
 4. \(i = \lceil \ell + r/2 \rceil \)
 5. If \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
 6. Else \(r = i - 1 \)
5. Return \([s, r]\)

Lemma: Running Time \text{SearchSA}

The \text{SearchSA} answers counting queries in \(O(m \log n) \) time and reporting queries in \(O(m \log n + \text{occ}) \) time.

Proof (Sketch)

- Two binary searches on the \(SA \) in \(O(\log n) \) time
- Each comparison requires \(O(m) \) time

Pattern Matching with the Suffix Array (2/2)
Function SeachSA(T, SA[1..n], P[1..m]):

1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do
 3. \(i = \lfloor (\ell + r)/2 \rfloor \)
 4. if \(P > T[SA[i]..SA[i] + m] \) then
 5. \(\ell = i + 1 \)
 6. else \(r = i \)
7. \(s = \ell, \ell = \ell - 1, r = n \)
8. while \(\ell < r \) do
 9. \(i = \lceil \ell + r/2 \rceil \)
 10. if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
 11. else \(r = i - 1 \)
12. return \([s, r]\)

Lemma: Running Time SeachSA

The SeachSA answers counting queries in \(O(m \lg n) \) time and reporting queries in \(O(m \lg n + \text{occ}) \) time.

Proof (Sketch)

- Two binary searches on the SA in \(O(\lg n) \) time
- Each comparison requires \(O(m) \) time
- Counting in \(O(1) \) additional time
Pattern Matching with the Suffix Array (2/2)

Function SeachSA(T, SA[1..n], P[1..m]):

1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do
 3. \(i = \lfloor (\ell + r)/2 \rfloor \)
 4. if \(P > T[SA[i]..SA[i] + m] \) then
 5. \(\ell = i + 1 \)
 else \(r = i \)
 6. \(s = \ell, \ell = \ell - 1, r = n \)
3. while \(\ell < r \) do
 4. \(i = \lceil \ell + r/2 \rceil \)
 5. if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
 else \(r = i - 1 \)
5. return \([s, r]\)

Lemma: Running Time SeachSA

The SeachSA answers counting queries in \(O(m \lg n) \) time and reporting queries in \(O(m \lg n + \text{occ}) \) time.

Proof (Sketch)

- Two binary searches on the SA in \(O(\lg n) \) time
- Each comparison requires \(O(m) \) time
- Counting in \(O(1) \) additional time
Function SeachSA(T, SA[1..n], P[1..m]):

1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do
3. \(i = \lfloor (\ell + r)/2 \rfloor \)
4. if \(P > T[SA[i]..SA[i] + m] \) then
5. \(\ell = i + 1 \)
6. else \(r = i \)
7. \(s = \ell, \ell = \ell - 1, r = n \)
8. while \(\ell < r \) do
9. \(i = \lceil (\ell + r)/2 \rceil \)
10. if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
11. else \(r = i - 1 \)
12. return \([s, r]\)
Pattern Matching with the Suffix Array (2/2)

Function `SearchSA(T, SA[1..n], P[1..m])`:

```
1 \ell = 1, r = n + 1
2 \textbf{while } \ell < r \textbf{ do}
3 \quad i = \lfloor (\ell + r)/2 \rfloor
4 \quad \textbf{if } P > T[SA[i]..SA[i] + m] \textbf{ then}
5 \quad \quad \ell = i + 1
6 \quad \textbf{else } r = i
7 \quad s = \ell, \ell = \ell - 1, r = n
8 \textbf{while } \ell < r \textbf{ do}
9 \quad i = \lceil \ell + r/2 \rceil
10 \quad \textbf{if } P = T[SA[i]..SA[i] + m] \textbf{ then} \ell = i
11 \quad \textbf{else } r = i - 1
12 \textbf{return } [s, r]
```

Lemma: Running Time `SearchSA`

The `SearchSA` answers counting queries in $O(m \log n)$ time and reporting queries in $O(m \log n + \text{occ})$ time.

Proof (Sketch)

- Two binary searches on the SA in $O(\log n)$ time
- Each comparison requires $O(m)$ time
- Counting in $O(1)$ additional time
- Reporting in $O(\text{occ})$ additional time
Pattern Matching with the Suffix Array (2/2)

Function SeachSA(T, SA[1..n], P[1..m]):

1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do
3. \(i = \lfloor (\ell + r)/2 \rfloor \)
4. if \(P > T[SA[i]..SA[i] + m] \) then
5. \(\ell = i + 1 \)
6. else \(r = i \)
7. \(s = \ell, \ell = \ell - 1, r = n \)
8. while \(\ell < r \) do
9. \(i = \lceil (\ell + r)/2 \rceil \)
10. if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
11. else \(r = i - 1 \)
12. return \([s, r]\)

Lemma: Running Time SeachSA

The SeachSA answers counting queries in \(O(m \log n) \) time and reporting queries in \(O(m \log n + occ) \) time.

Proof (Sketch)
- two binary searches on the SA in \(O(\log n) \) time
- each comparison requires \(O(m) \) time
- counting in \(O(1) \) additional time
- reporting in \(O(occ) \) additional time

how can this be improved?
Speeding Up Pattern Matching with the LCP-Array (1/4)

- remember how many characters of the pattern and suffix match
- identify how long the prefix of the old and next suffix is
- do so using the LCP-array and
- range minimum queries

Definition: Range Minimum Queries

Given an array $A[1..m]$, a range minimum query for a range $\ell \leq r \in [1, n)$ returns

$$RMQ_A(\ell, r) = \arg\min\{A[k]: k \in [\ell, r]\}$$

- $lcp(i, j) = \max\{k: T[i..i+k)\}$
- $lcp(i, j) = T[j..j+k) = LCP[RMQ_{LCP}(i+1, j)]$
- RMQs can be answered in $O(1)$ time and
- require $O(n)$ space
during binary search matched
\(\lambda \) characters with left border \(\ell \) and
\(\rho \) characters with right border \(r \)
w.l.o.g. let \(\lambda \geq \rho \)

middle position \(i \)
decide if continue in \([\ell, i]\) or \([i, r]\)

let \(\xi = \text{lcp}(SA[\ell], SA[i]) \) \(\in O(1) \) time with RMQs
- let $\xi = \text{lcp}(\text{SA}[\ell], \text{SA}[i])$

\[
\begin{array}{c|c|c}
\ell & i & r \\
\hline
\hline
\lambda & P[2] & \vdots \\
\lambda & P[3] & \vdots \\
\lambda & P[\lambda] & \downarrow \\
\end{array}
\]
let $\xi = lcp(SA[\ell], SA[i])$

$\xi > \lambda$

- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison
Speeding Up Pattern Matching with the LCP-Array (3/4)

- Let $\xi = lcp(SA[\ell], SA[i])$

$\xi > \lambda$

- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison
Speeding Up Pattern Matching with the LCP-Array (3/4)

- let $\xi = lcp(SA[\ell], SA[i])$

<table>
<thead>
<tr>
<th>$\xi > \lambda$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$</td>
</tr>
<tr>
<td>$\ell = i$ without character comparison</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ℓ</th>
<th>i</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[\lambda]$</td>
<td>$P[\lambda]$</td>
<td>$P[\lambda]$</td>
</tr>
<tr>
<td>$P[\rho]$</td>
<td>$P[\rho]$</td>
<td>$P[\rho]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\xi = \lambda$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[1] \neq T[SA[i] + \lambda]$</td>
</tr>
<tr>
<td>$P[\rho]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\xi < \lambda$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\xi \geq \rho$ and $P[\xi + 1] < T[SA[i] + \xi]$</td>
</tr>
<tr>
<td>$r = i$ and $\rho = \xi$ without character comparison</td>
</tr>
</tbody>
</table>
Speeding Up Pattern Matching with the LCP-Array (3/4)

- Let $\xi = lcp(SA[\ell], SA[i])$

$\xi > \lambda$

- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison

$\xi = \lambda$

- Compare as before

<table>
<thead>
<tr>
<th>ℓ</th>
<th>i</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>\ldots</td>
<td>$P[1]$</td>
<td>$P[1]$</td>
</tr>
<tr>
<td>λ</td>
<td>$P[2]$</td>
<td>\ldots</td>
</tr>
<tr>
<td>λ</td>
<td>$P[3]$</td>
<td>$P[\rho]$</td>
</tr>
<tr>
<td>λ</td>
<td>\ldots</td>
<td>\perp</td>
</tr>
<tr>
<td>\perp</td>
<td>$P[\lambda]$</td>
<td>\perp</td>
</tr>
</tbody>
</table>
Speeding Up Pattern Matching with the LCP-Array (3/4)

- let $\xi = lcp(SA[\ell], SA[i])$

$\xi > \lambda$
- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison

$\xi = \lambda$
- compare as before
Speeding Up Pattern Matching with the LCP-Array (3/4)

- Let $\xi = lcp(SA[\ell], SA[i])$

<table>
<thead>
<tr>
<th>$\xi > \lambda$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$</td>
</tr>
<tr>
<td>$\ell = i$ without character comparison</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\xi = \lambda$</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare as before</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ℓ</th>
<th>i</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[1]$</td>
<td>$P[\lambda]$</td>
<td></td>
</tr>
<tr>
<td>$P[2]$</td>
<td>$P[\lambda]$</td>
<td></td>
</tr>
<tr>
<td>$P[3]$</td>
<td>$P[\lambda]$</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td>$P[\lambda]$</td>
<td>$P[\lambda]$</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>ρ</td>
<td>ρ</td>
</tr>
</tbody>
</table>

$\xi > \lambda$ case:

$P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$

$\ell = i$ without character comparison

$\xi = \lambda$ case:

compare as before
Speeding Up Pattern Matching with the LCP-Array (3/4)

- let $\xi = lcp(SA[\ell], SA[i])$

$\xi > \lambda$
- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison

$\xi = \lambda$
- compare as before

$\xi < \lambda$
- $\xi \geq \rho$ and $P[\xi + 1] < T[SA[i] + \xi]$
- $r = i$ and $\rho = \xi$ without character comparison
let $\xi = lcp(SA[\ell], SA[i])$

$\xi > \lambda$

- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison

$\xi = \lambda$

- compare as before

$\xi < \lambda$

- $\xi \geq \rho$ and $P[\xi + 1] < T[SA[i] + \xi]$
- $r = i$ and $\rho = \xi$ without character comparison
Lemma:
Using RMQs, SeachSA answers counting queries in $O(m + \lg n)$ time and reporting queries in $O(m + \lg n + \text{occ})$ time.
Lemma:
Using RMQs, SeachSA answers counting queries in $O(m + \lg n)$ time and reporting queries in $O(m + \lg n + occ)$ time.

Proof (Sketch):
- either halve the range in the suffix array ($\xi \neq \lambda$)
- or
- compare characters of the pattern (at most m)
(Recap) B-Trees

- search tree with out-degree in \([b, 2b)\)
- works well in external memory
- uses separators to find subtree
- can be dynamic
- who knows B-trees 🎈 PINGO

example on the board 🎰

From Atomic Values to Strings

- strings take more time to compare
- load as few strings from disk as possible
String B-Tree [FG99]

- strings are stored in EM
- strings are identified by starting positions

- B-tree layout for sorted suffixes identified by position
 - at least $b = \Theta(B)$ children
 - tree height $O(\log_B N)$

- given node v with children v_0, \ldots, v_k with $k \in [b, 2b)$
- inner: store separators $L(v_0), R(v_0), \ldots, L(v_k), R(v_k)$
- leaf: store strings and link leaves

- given node v
 - $L(v)$ is lexicographically smallest string at v
 - $R(v)$ is lexicographically largest string at v
task: find all occurrences of pattern P

- two traversals of String B-Tree
- identify leftmost/rightmost occurrence
- output all strings in $O(\text{occ}/B)$

at every node with children v_0, \ldots, v_k

- binary search for P in $L(v_0), \ldots, R(v_k)$
 - if $R(v_i) < P \leq L(v_{i-1})$: found
 - if $L(v_i) < P \leq R(v_i)$: continue in v_i

Lemma: String B-Tree

Using a String B-tree, a pattern P can be found in a set of strings with total length N in $O(|P|/B \log N)$ I/Os

Proof (Sketch)

- String B-Tree has height $\log_B N$
- load separators of node: $O(1)$ I/O
- load strings for binary search: $O(|P|/B)$ I/Os
- total:

 $$O(\log_B N \cdot \log B \cdot |P|/B) = O(|P|/B \log N)$$ I/Os
Patricia Trie

- for strings $S = \{S_0, \ldots, S_{k-1}\}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size $O(k)$ for k strings

How do Patricia tries help?
Improving String B-Tree with Patricia Tries (1/2)

Patricia Trie
- for strings $S = \{S_0, \ldots, S_{k-1}\}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size $O(k)$ for k strings

For strings $S = \{S_0, \ldots, S_{k-1}\}$, a compact trie where only branching characters are stored and additionally the string depth is stored, the size is $O(k)$.
Patricia Trie

- for strings $S = \{ S_0, \ldots, S_{k-1} \}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size $O(k)$ for k strings

- search requires two steps
 - first blind search using only trie
 - blind search can result in false matches
 - second a comparison with resulting string
 - use any leaf after matching pattern
Improving String B-Tree with Patricia Tries (1/2)

Patricia Trie
- for strings \(S = \{ S_0, \ldots, S_{k-1} \} \)
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size \(O(k) \) for \(k \) strings

- search requires two steps
 - first **blind search** using only trie
 - blind search can result in false matches
 - second a comparison with resulting string
 - use any leaf after matching pattern

How do Patricia tries help?
in each inner node build Patricia trie for separators
if blind search finds leaf w
compute $L = lcp(P, w)$
let u be first node on root-to-w path with $d \geq L$
Improving String B-Tree with Patricia Tries (2/2)

- in each inner node build Patricia trie for separators
- if blind search finds leaf \(w \)
- compute \(L = \text{lcp}(P, w) \)
- let \(u \) be first node on root-to-\(w \) path with \(d \geq L \)

\[d = L \]

- find matching children \(v_i \) and \(v_{i+1} \) of \(w \) with
- branching characters \(c_i < P[L + 1] < c_{i+1} \)
- example on the board 📚
Improving String B-Tree with Patricia Tries (2/2)

- in each inner node build Patricia trie for separators
- if blind search finds leaf w
- compute $L = lcp(P, w)$
- let u be first node on root-to-w path with $d \geq L$

$d > L$
- consider next branching character c on path
- if $P[L + 1] < c$ continue in leftmost leaf
- if $P[L + 1] > c$ continue in rightmost leaf

$d = L$
- find matching children v_i and v_{i+1} of w with
- branching characters $c_i < P[L + 1] < c_{i+1}$
- example on the board 📚
Searching in Improved String B-Tree

- at every node with children v_0, \ldots, v_k
- load Patricia trie for $L(v_0), \ldots, R(v_k)$
- search Patricia trie for w \(\triangleright\) result of blind search
- load one string and compare with P
- identify child and continue
Searching in Improved String B-Tree

- at every node with children v_0, \ldots, v_k
- load Patricia trie for $L(v_0), \ldots, R(v_k)$
- search Patricia trie for w (result of blind search)
- load one string and compare with P
- identify child and continue

Lemma: String B-Tree with PTs

Using a string B-tree with Patricia tries, a pattern P can be found in a set of strings with total length N with $O(|P|/B \log_B N)$ I/Os.
Searching in Improved String B-Tree

- at every node with children v_0, \ldots, v_k
- load Patricia trie for $L(v_0), \ldots, R(v_k)$
- search Patricia trie for w \(\in\) result of blind search
- load one string and compare with P
- identify child and continue

Lemma: String B-Tree with PTs

Using a string B-tree with Patricia tries, a pattern P can be found in a set of strings with total length N with $O(\frac{|P|}{B} \log_B N)$ I/Os

Proof (Sketch)

- loading PT: $O(1)$ I/Os
- blind search: no I/Os
- loading one string: $O(\frac{|P|}{B})$ I/Os
- identify child: no I/Os
- total $O(\frac{|P|}{B} \log_B N)$ I/Os
Searching in Improved String B-Tree

- at every node with children v_0, \ldots, v_k
- load Patricia trie for $L(v_0), \ldots, R(v_k)$
- search Patricia trie for w result of blind search
- load one string and compare with P
- identify child and continue

How can this be improved even further?

Lemma: String B-Tree with PTs

Using a string B-tree with Patricia tries, a pattern P can be found in a set of strings with total length N with $O(|P|/B \log_B N)$ I/Os.

Proof (Sketch)

- loading PT: $O(1)$ I/Os
- blind search: no I/Os
- loading one string: $O(|P|/B)$ I/Os
- identify child: no I/Os
- total $O(|P|/B \log_B N)$ I/Os
Improving Search with LCP-Values

- search for pattern in nodes
- path in String B-tree \(p_0, p_1, p_2, \ldots \)
- in Patricia tries \(PT_{p_i} \), compute \(L = \text{lcp}(P, w) \)
- all strings in \(p_i \) have prefix \(P[0..L) \)
- do not compare previously matched characters
- load only \(|P| - L \) characters at next node
- pass \(L \) down the String B-tree
Improving Search with LCP-Values

- search for pattern in nodes
- path in String B-tree p_0, p_1, p_2, \ldots
- in Patricia tries PT_{p_i} compute $L = lcp(P, w)$
- all strings in p_i have prefix $P[0..L)$
- do not compare previously matched characters
- load only $|P| - L$ characters at next node
- pass L down the String B-tree

Lemma: String B-Tree with PTs and LCP

Using a String B-tree with Patricia tries and passing down the LCP-value, a pattern P can be found in a set of strings with total length N in $O(|P|/B + \log_B N)$ I/Os
Improving Search with LCP-Values

- search for pattern in nodes
- path in String B-tree p_0, p_1, p_2, \ldots
- in Patricia tries PT_{p_i} compute $L = lcp(P, w)$
- all strings in p_i have prefix $P[0..L]$
- do not compare previously matched characters
- load only $|P| - L$ characters at next node
- pass L down the String B-tree

Lemma: String B-Tree with PTs and LCP

Using a String B-tree with Patricia tries and passing down the LCP-value, a pattern P can be found in a set of strings with total length N in $O(|P|/B + \log B N)$ I/Os

Proof (Sketch)

- passing down LCP-value: no I/Os
- telescoping sum $\sum_{i \leq h} \frac{L_i - L_{i-1}}{B}$
- $h = \log B N$ height of String B-tree
- L_i is LCP-value on Level i
- $L_0 = 0$ and $L_h \leq |P|$
- total: $O(|P|/B + \log B N)$ I/Os
Conclusion and Outlook

This Lecture
- suffix array and LCP array
- String B-tree

Advanced Data Structures
- String B-tree
- SA & LCP
- Successor
- RMQ
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs
Bibliography I

Bibliography II

