

Advanced Data Structures

Lecture 07: Suffix Arrays and String B-Trees

Florian Kurpicz

PINGO

https://pingo.scc.kit.edu/172581

Definition: External Memory Model

- internal memory of M words
- instances of size N ≫ M
- unlimited external memory
- transfer blocks of size B between memories
- measure number of blocks I/Os
- scanning N elements: $\Theta(N/B)$
- sorting N elements: $\Theta(\frac{N}{B}\log_{\frac{M}{B}}\frac{N}{B})$

Definition: External Memory Model

- internal memory of M words
- instances of size N ≫ M
- unlimited external memory
- transfer blocks of size B between memories
- measure number of blocks I/Os
- scanning N elements: $\Theta(N/B)$
- sorting N elements: $\Theta(\frac{N}{B}\log_{\frac{M}{B}}\frac{N}{B})$

Set of Strings

- lacksquare alphabet Σ of size σ
- k strings $\{s_1, \ldots, s_k\}$ over the alphabet Σ
- total size of strings is $N = \sum_{i=1}^{k} |s_i|$
- queries ask for pattern P of length m

String Dictionary

Given a set $S \subseteq \Sigma^*$ of prefix-free strings, we want to answer:

- is $x \in \Sigma^*$ in S
- add $x \notin S$ to S
- remove $x \in S$ from S
- predecessor and successor of
 - $x \in \Sigma^*$ in S

String Dictionary

Given a set $S \subseteq \Sigma^*$ of prefix-free strings, we want to answer:

- is $x \in \Sigma^*$ in S
- add $x \notin S$ to S
- remove $x \in S$ from S
- predecessor and successor of
 - $x \in \Sigma^*$ in S

Definition: Trie

Given a set $S = \{S_1, \dots, S_k\}$ of prefix-free strings, a trie is a labeled rooted tree G = (V, E) with:

- 1. k leaves
- 2. $\forall S_i \in S$ there is a path from the root to a leaf, such that the concatenation of the labels is S_i
- 3. $\forall v \in V$ the labels of the edges (v, \cdot) are unique

String Dictionary

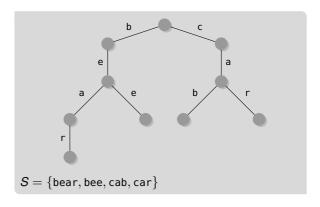
Given a set $S \subseteq \Sigma^*$ of prefix-free strings, we want to answer:

- is $x \in \Sigma^*$ in S
- \blacksquare add $x \notin S$ to S
- remove $x \in S$ from S
- predecessor and successor of
 - $x \in \Sigma^*$ in S

Definition: Trie

Given a set $S = \{S_1, \dots, S_k\}$ of prefix-free strings, a trie is a labeled rooted tree G = (V, E) with:

- 1. k leaves
- 2. $\forall S_i \in S$ there is a path from the root to a leaf, such that the concatenation of the labels is S_i
- 3. $\forall v \in V$ the labels of the edges (v, \cdot) are unique



Theoretical Comparison

Representation	Query Time (Contains)	Space in Words
arrays of variable size	$O(m \cdot \sigma)$	O(N)
arrays of fixed size	<i>O</i> (<i>m</i>)	$O(N \cdot \sigma)$
hash tables	<i>O</i> (<i>m</i>) w.h.p.	O(N)
balanced search trees	$O(m \cdot \lg \sigma)$	O(N)
weight-balanced search trees	$O(m + \lg k)$	O(N)
two-levels with weight-balanced search trees	$O(m + \lg \sigma)$	O(N)

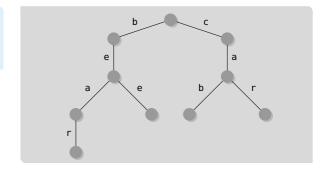
Query Time (Contains)	Space in Words
$O(m \cdot \sigma)$	O(N)
<i>O</i> (<i>m</i>)	$\mathcal{O}(N\cdot\sigma)$
<i>O</i> (<i>m</i>) w.h.p.	O(N)
$O(m \cdot \lg \sigma)$	O(N)
$O(m + \lg k)$	O(N)
$O(m + \lg \sigma)$	O(N)
	$O(m \cdot \sigma)$ $O(m)$ $O(m)$ w.h.p. $O(m \cdot \lg \sigma)$ $O(m + \lg k)$

more details in lecture Text Indexing

2023-06-12

Compact Trie

- tries have unnecessary nodes
- branchless paths can be removed
- edge labels can consist of multiple characters

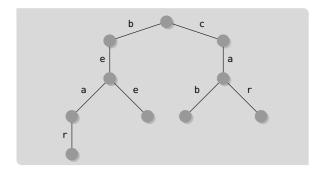


Compact Trie

- tries have unnecessary nodes
- branchless paths can be removed
- edge labels can consist of multiple characters

Definition: Compact Trie

- A compact trie is a trie where all branchless paths are replaced by a single edge.
- The label of the new edge is the concatenation of the replaced edges' labels.

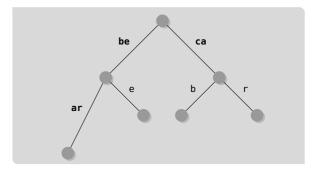


Compact Trie

- tries have unnecessary nodes
- branchless paths can be removed
- edge labels can consist of multiple characters

Definition: Compact Trie

- A compact trie is a trie where all branchless paths are replaced by a single edge.
- The label of the new edge is the concatenation of the replaced edges' labels.



Definition: Suffix Array [GBS92; MM93]

Given a text T of length n, the suffix array (SA) is a permutation of [1..n], such that for $i \le j \in [1..n]$

$$T[SA[i]..n] \leq T[SA[j]..n]$$

	1	2	3	4	5	6	7	8	9	10	11	12	13
T	а	b	а	b	С	а	b	С	а	b	b	а	\$
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
LCP	0	0	1	2	2	5	0	2	1	1	4	0	3
	\$	a \$	a ba b c a b c a b b a \$	a b b a \$	a b c a b b a \$	a b c a b c a b b a \$	b a \$	babcabcabba\$	b b a \$	bcabba\$	b c a b c a b b a \$	c a b b a \$	c a b c a b b a \$

Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]

Given a text T of length n, the suffix array (SA) is a permutation of [1..n], such that for $i \le j \in [1..n]$

$$T[SA[i]..n] \leq T[SA[j]..n]$$

Definition: Longest Common Prefix Array

Given a text T of length n and its SA, the LCP-array is defined as

$$LCP[i] = \begin{cases} 0 & i = 1\\ \max\{\ell \colon T[SA[i]..SA[i] + \ell) = \\ T[SA[i - 1]..SA[i - 1] + \ell)\} & i \neq 1 \end{cases}$$

	1	2	3	4	5	6	7	8	9	10	11	12	13
Τ	а	b	а	b	С	а	b	С	а	b	b	а	\$
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
LCP	0	0	1	2	2	5	0	2	1	1	4	0	3
	\$	a \$	a ba bc a bc a bba\$	a b b a \$	a b c a b b a \$	a b c a b c a b b a \$	b a \$	babcabcabba\$	b b a \$	b c a b b a \$	b c a b c a b b a \$	c a b b a \$	c a b c a b b a \$

Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]

Given a text T of length n, the suffix array (SA) is a permutation of [1..n], such that for $i \le j \in [1..n]$

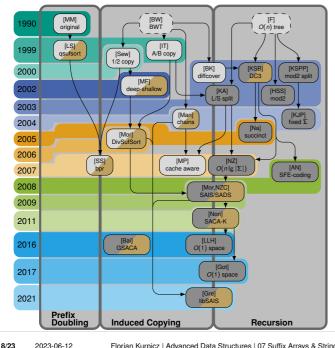
$$T[SA[i]..n] \leq T[SA[j]..n]$$

Definition: Longest Common Prefix Array

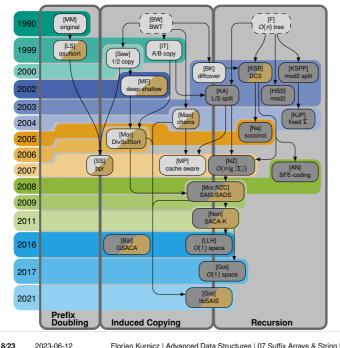
Given a text T of length n and its SA, the LCP-array is defined as

$$LCP[i] = \begin{cases} 0 & i = 1\\ \max\{\ell : T[SA[i]..SA[i] + \ell) = \\ T[SA[i - 1]..SA[i - 1] + \ell)\} & i \neq 1 \end{cases}$$

	1	2	3	4	5	6	7	8	9	10	11	12	13
T	а	b	а	b	С	а	b	С	а	b	b	а	\$
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
LCP	0	0	1	2	2	5	0	2	1	1	4	0	3
	\$	a \$	a babcabcabba\$	a b b a \$	a b c a b b a \$	a b c a b c a b b a \$	b \$	babcabcabba\$	b b a \$	bcabba\$	bcabcabba\$	c a b b a \$	cabcabba\$



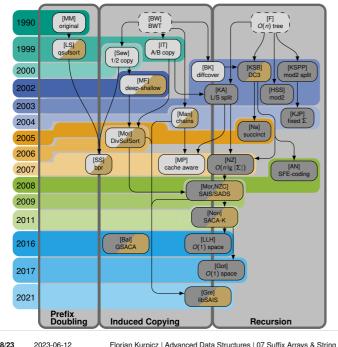
- based on [Bah+19; Bin18; Kur20; PST071
- darker grey: linear running time
- brown: available implementation



- based on [Bah+19; Bin18; Kur20; PST071
- darker grey: linear running time
- brown: available implementation

Special Mentions

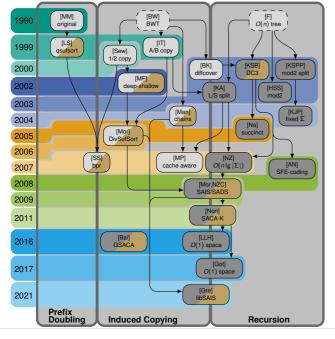
- DC3 first O(n) algorithm
- O(n) running time and O(1) space for integer alphabets possible



- based on [Bah+19; Bin18; Kur20; PST071
- darker grey: linear running time
- brown: available implementation

Special Mentions

- DC3 first O(n) algorithm
- \circ O(n) running time and O(1) space for integer alphabets possible
- until 2021: DivSufSort fastest in practice with $O(n \lg n)$ running time



- based on [Bah+19; Bin18; Kur20; PST07]
- darker grey: linear running time
- brown: available implementation

Special Mentions

- DC3 first O(n) algorithm
- O(n) running time and O(1) space for integer alphabets possible
- until 2021: DivSufSort fastest in practice with O(n lg n) running time
- since 2021: libSAIS fastest in practice with O(n) running time

Suffix Sorting in External Memory

- best in practice: Juha Kärkkäinen, Dominik Kempa, Simon J. Puglisi, and Bella Zhukova. "Engineering External Memory Induced Suffix Sorting". In: ALENEX. SIAM, 2017, pages 98–108. DOI: 10.1137/1.9781611974768.8
- using induced copying
- $O(N/B) \log_{\frac{M}{B}(N/B)}^2 I/Os$


```
Function SeachSA(T, SA[1..n], P[1..m]):
     \ell = 1, r = n + 1
     while \ell < r do
      i = |(\ell + r)/2|
       if P > T[SA[i]..SA[i] + m) then
        \ell = i + 1
      else r = i
      s = \ell, \ell = \ell - 1, r = n
     while \ell < r do
     i = \lceil \ell + r/2 \rceil
     if P = T[SA[i]..SA[i] + m) then \ell = i
      else r = i - 1
11
      return [s, r]
12
   pattern P = abc
```

	1	2	3	4	5	6	7	8	9	10	11	12	13
T	а	b	а	b	С	а	b	С	а	b	b	а	\$
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
	\$	a \$	ababcabcabba\$	a b b a \$	a b c a b b a \$	abcabcabba\$	ba \$	babcabcabba\$	b b a \$	bcabba\$	bcabcabba\$	c a b b a \$	cabcabba\$


```
Function SeachSA(T, SA[1..n], P[1..m]):
     \ell = 1, r = n + 1
     while \ell < r do \bullet Find left border
        i = |(\ell + r)/2|
         if P > T[SA[i]..SA[i] + m) then
         \ell = i + 1
       else r = i
      s = \ell, \ell = \ell - 1, r = n
      while \ell < r do
      i = \lceil \ell + r/2 \rceil
        if P = T[SA[i]..SA[i] + m) then \ell = i
      else r = i - 1
11
      return [s, r]
12
   pattern P = abc
```

	1	2	3	4	5	6	7	8	9	10	11	12	13
T	а	b	а	b	С	а	b	С	а	b	b	а	\$
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
	\$	a \$	ababcabcabba\$	a b b a \$	a b c a b b a \$	abcabcabba\$	ba \$	babcabcabba\$	b b a \$	bcabba\$	bcabcabba\$	c a b b a \$	cabcabba\$

2023-06-12


```
Function SeachSA(T, SA[1..n], P[1..m]):
      \ell = 1, r = n + 1
     while \ell < r do \blacksquare Find left border
         i = |(\ell + r)/2|
          if P > T[SA[i]..SA[i] + m) then
         \ell = i + 1
        else r = i
      s = \ell, \ell = \ell - 1, r = n
      while \ell < r do 1 Find right border
      i = \lceil \ell + r/2 \rceil
          if P = T[SA[i]..SA[i] + m) then \ell = i
        else r = i - 1
11
      return [s, r]
   pattern P = abc
```

	1	2	3	4	5	6	7	8	9	10	11	12	13
Т	а	b	а	b	С	а	b	С	а	b	b	а	\$
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
	\$	a \$	a b a b c a b c a b b a \$	a b b a \$	abcabba\$	a b c a b c a b b a \$	b a \$	babcabcabba\$	bba\$	bcabba\$	bcabcabba\$	c a b b a \$	cabcabba\$


```
Function SeachSA(T, SA[1..n], P[1..m]):
      \ell = 1, r = n + 1
     while \ell < r do
      i = |(\ell + r)/2|
          if P > T[SA[i]..SA[i] + m) then
          \ell = i + 1
         else r = i
      s = \ell, \ell = \ell - 1, r = n
      while \ell < r do
        i = \lceil \ell + r/2 \rceil
          if P = T[SA[i]..SA[i] + m) then \ell = i
        else r = i - 1
      return [s, r]
11
```

Lemma: Running Time SeachSA

The SeachSA answers counting queries in $O(m \lg n)$ time and reporting queries in $O(m \lg n + occ)$ time

Proof (Sketch)

two binary searches on the SA in O(Ign) time


```
Function SeachSA(T, SA[1..n], P[1..m]):
      \ell = 1, r = n + 1
      while \ell < r \, \text{do}
         i = |(\ell + r)/2|
          if P > T[SA[i]..SA[i] + m) the
           \ell = i + 1
          else r = i
       s = \ell, \ell = \ell - 1, r = n
      while \ell < r do-
         i = \lceil \ell + r/2 \rceil
          if P = T[SA[i]..SA[i] + m) then \ell = i
         else r = i - 1
       return [s, r]
11
```

Lemma: Running Time SeachSA

The SeachSA answers counting queries in $O(m \lg n)$ time and reporting queries in $O(m \lg n + occ)$ time

Proof (Sketch)

 \rightarrow two binary searches on the SA in O(Ign) time


```
Function SeachSA(T, SA[1..n], P[1..m]):
      \ell = 1, r = n + 1
      while \ell < r \, \text{do}
         i = |(\ell + r)/2|
          if P > T[SA[i]..SA[i] + m) the
           \ell = i + 1
          else r = i
       s = \ell, \ell = \ell - 1, r = n
      while \ell < r do-
         i = \lceil \ell + r/2 \rceil
          if P = T[SA[i]..SA[i] + m) then \ell = i
         else r = i - 1
       return [s, r]
11
```

Lemma: Running Time SeachSA

The SeachSA answers counting queries in $O(m \lg n)$ time and reporting queries in $O(m \lg n + occ)$ time

- \rightarrow two binary searches on the SA in O(lgn) time
- \blacksquare each comparison requires O(m) time


```
Function SeachSA(T, SA[1..n], P[1..m]):
       \ell = 1, r = n + 1
      while \ell < r \, \text{do}
          i = |(\ell + r)/2|
           if P > T[SA[i]..SA[i] + m
           \ell = i + 1
           else r = i
       s = \ell, \ell = \ell - 1, r = n
       while \ell < r do-
          i = \lceil \ell + r/2 \rceil
           if P = T[SA[i]..SA[i] + m) then \ell = i
           else r = i - 1
       return [s, r]
11
```

Lemma: Running Time SeachSA

The SeachSA answers counting queries in $O(m \lg n)$ time and reporting queries in $O(m \lg n + occ)$ time

 \rightarrow two binary searches on the SA in O(lgn) time \triangleright each comparison requires O(m) time


```
Function SeachSA(T, SA[1..n], P[1..m]):
       \ell = 1, r = n + 1
      while \ell < r \, \text{do}
          i = |(\ell + r)/2|
           if P > T[SA[i]..SA[i] + m
            \ell = i + 1
           else r = i
       s = \ell, \ell = \ell - 1, r = n
       while \ell < r do-
          i = \lceil \ell + r/2 \rceil
           if P = T[SA[i]..SA[i] + m) then \ell = i
           else r = i - 1
       return [s, r]
11
```

Lemma: Running Time SeachSA

The SeachSA answers counting queries in $O(m \lg n)$ time and reporting queries in $O(m \lg n + occ)$ time

Proof (Sketch)

- \rightarrow two binary searches on the SA in O(Ign) time
- \rightarrow each comparison requires O(m) time
- counting in O(1) additional time


```
Function SeachSA(T, SA[1..n], P[1..m]):
       \ell = 1, r = n + 1
      while \ell < r \, \text{do}
           i = |(\ell + r)/2|
           if P > T[SA[i]..SA[i] +
            \ell = i + 1
           else r = i
 5
       s = \ell, \ell = \ell - 1, r = n
       while \ell < r do-
          i = \lceil \ell + r/2 \rceil
           if P = T[SA[i]..SA[i] + m) then
           else r = i - 1
10
       return [s, r]
11
```

Lemma: Running Time SeachSA

The SeachSA answers counting queries in $O(m \lg n)$ time and reporting queries in $O(m \lg n + occ)$ time

- \rightarrow two binary searches on the SA in O(lgn) time
- \triangleright each comparison requires O(m) time
- ightharpoonup counting in O(1) additional time


```
Function SeachSA(T, SA[1..n], P[1..m]):
       \ell = 1, r = n + 1
      while \ell < r \, \text{do}
           i = |(\ell + r)/2|
           if P > T[SA[i]..SA[i] +
            \ell = i + 1
           else r = i
 5
       s = \ell, \ell = \ell - 1, r = n
       while \ell < r do-
          i = \lceil \ell + r/2 \rceil
           if P = T[SA[i]..SA[i] + m) then
           else r = i - 1
10
       return [s, r]
11
```

Lemma: Running Time SeachSA

The SeachSA answers counting queries in $O(m \lg n)$ time and reporting queries in $O(m \lg n + occ)$ time

Proof (Sketch)

- \rightarrow two binary searches on the SA in O(Ign) time
- \rightarrow each comparison requires O(m) time
- ightharpoonup counting in O(1) additional time
- reporting in O(occ) additional time

2023-06-12


```
Function SeachSA(T, SA[1..n], P[1..m]):
       \ell = 1, r = n + 1
       while \ell < r \, \text{do}
           i = |(\ell + r)/2|
           if P > T[SA[i]..SA[i] +
            \ell = i + 1
           else r = i
 5
       s = \ell, \ell = \ell - 1, r = n
       while \ell < r do-
          i = \lceil \ell + r/2 \rceil
           if P = T[SA[i]..SA[i] + m) then
           else r = i - 1
10
       return [s, r]
11
```

Lemma: Running Time SeachSA

The SeachSA answers counting queries in $O(m \lg n)$ time and reporting queries in $O(m \lg n + occ)$ time

- \rightarrow two binary searches on the SA in O(lgn) time
- \triangleright each comparison requires O(m) time
- ightharpoonup counting in O(1) additional time
- ightharpoonupreporting in O(occ) additional time


```
Function SeachSA(T, SA[1..n], P[1..m]):
       \ell = 1, r = n + 1
      while \ell < r \, \text{do}
           i = |(\ell + r)/2|
           if P > T[SA[i]..SA[i] +
            \ell = i + 1
           else r = i
       s = \ell, \ell = \ell - 1, r = n
       while \ell < r do-
          i = \lceil \ell + r/2 \rceil
           if P = T[SA[i]..SA[i] + m) then
           else r = i - 1
10
       return [s, r]
11
```

Lemma: Running Time SeachSA

The SeachSA answers counting queries in $O(m \lg n)$ time and reporting queries in $O(m \lg n + occ)$ time

- \rightarrow two binary searches on the SA in O(Ign) time
- \triangleright each comparison requires O(m) time
- counting in O(1) additional time
- ightharpoonupreporting in O(occ) additional time
- how can this be improved? PINGO

Speeding Up Pattern Matching with the LCP-Array (1/4)

- remember how many characters of the pattern and suffix match
- identify how long the prefix of the old and next suffix is
- do so using the LCP-array and
- range minimum queries

Definition: Range Minimum Queries

Given an array A[1..m), a range minimum query for a range $\ell \leq r \in [1, n)$ returns

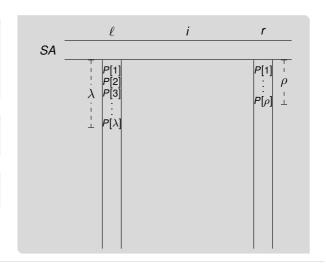
$$RMQ_A(\ell, r) = \arg\min\{A[k]: k \in [\ell, r]\}$$

- $lcp(i,j) = max\{k: T[i..i+k)$
- RMQs can be answered in O(1) time and
- require O(n) space

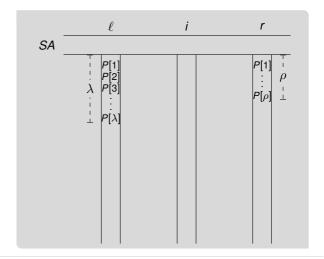
2023-06-12

12/23

- during binary search matched
- lacksquare λ characters with left border ℓ and
- ightharpoonup characters with right border r
- w.l.o.g. let $\lambda > \rho$
- middle position i
- decide if continue in $[\ell, i]$ or [i, r]
- let $\xi = lcp(SA[\ell], SA[i])$ O(1) time with RMOs



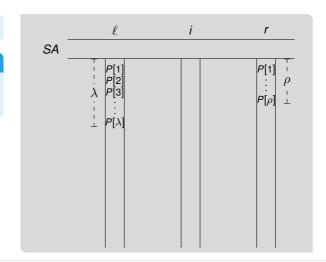
• let $\xi = lcp(SA[\ell], SA[i])$



• let $\xi = lcp(SA[\ell], SA[i])$

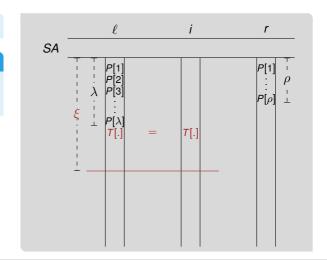
$$\xi > \lambda$$

- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison



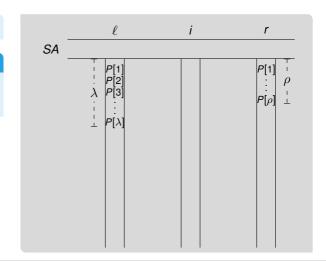
$$\xi > 1$$

- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison



$$\xi > 1$$

- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison



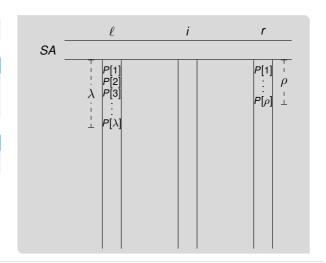
14/23

$$\xi > \lambda$$

- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison

$\xi = \lambda$

compare as before

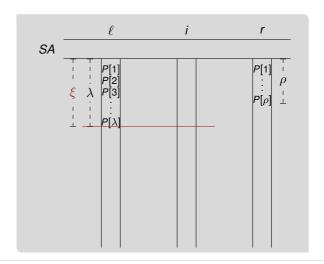


$$\xi > \lambda$$

- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison

$\xi = \lambda$

compare as before

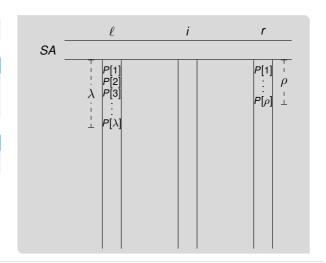


$$\xi > \lambda$$

- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison

$\xi = \lambda$

compare as before



$\xi > \lambda$

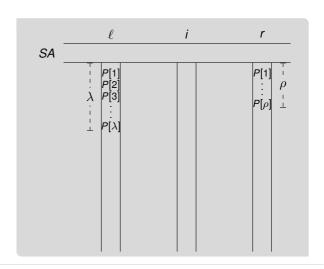
- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison

$\xi = \lambda$

compare as before

$\xi < \lambda$

- $\xi \ge \rho$ and $P[\xi + 1] < T[SA[i] + \xi]$
- r = i and $\rho = \xi$ without character comparison



$\xi > \lambda$

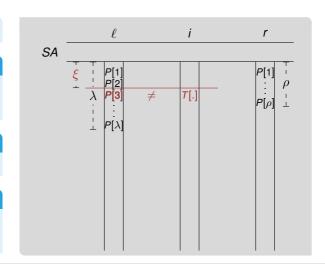
- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison

$\xi = \lambda$

compare as before

$\xi < \lambda$

- $\xi \ge \rho$ and $P[\xi + 1] < T[SA[i] + \xi]$
- r = i and $\rho = \xi$ without character comparison



Speeding Up Pattern Matching with the LCP-Array (4/4)

Lemma:

Using RMQs, SeachSA answers counting queries in $O(m + \lg n)$ time and reporting queries in $O(m + \lg n + occ)$ time

Speeding Up Pattern Matching with the LCP-Array (4/4)

Lemma:

Using RMQs, SeachSA answers counting queries in $O(m + \lg n)$ time and reporting queries in $O(m + \lg n + occ)$ time

- either halve the range in the suffix array ($\xi \neq \lambda$) or
- compare characters of the pattern (at most m)

(Recap) B-Trees

- search tree with out-degree in [b, 2b)
- works well in external memory
- uses separators to find subtree
- can be dynamic
- who knows B-trees PINGO
- example on the board

From Atomic Values to Strings

- strings take more time to compare
- load as few strings from disk as possible

String B-Tree [FG99]

- strings are stored in EM
- strings are identified by starting positions
- B-tree layout for sorted suffixes (1) identified by position
- at least $b = \Theta(B)$ children
- tree height O(log_B N)
- given node v
- L(v) is lexicographically smallest string at v
- R(v) is lexicographically largest string at v

- given node v with children v_0, \ldots, v_k with $k \in [b, 2b)$
- inner: store separators $L(v_0), R(v_0), \dots, L(v_k), R(v_k)$
- leaf: store strings and link leaves

Search in String B-Tree

- task: find all occurrences of pattern P
- two traversals of String B-Tree
- identify leftmost/rightmost occurrence
- output all strings in O(occ/B)
- at every node with children v_0, \ldots, v_k
- binary search for P in $L(v_0), \ldots, R(v_k)$
 - if $R(v_i) < P \le L(v_{i-1})$: found
 - if $L(v_i) < P \le R(v_i)$: continue in v_i

Lemma: String B-Tree

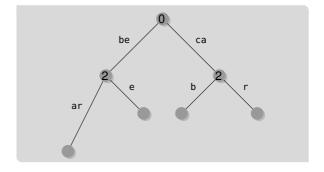
Using a String B-tree, a pattern P can be found in a set of strings with total length N in $O(|P|/B \log N)$ I/Os

Proof (Sketch)

- String B-Tree has height log_B N
- load separators of node: O(1) I/O
- load strings for binary search: O(|P|/B) I/Os
- total: $O(\log_B N \cdot \log B \cdot |P|/B) = O(|P|/B \log N)$ I/Os

Patricia Trie

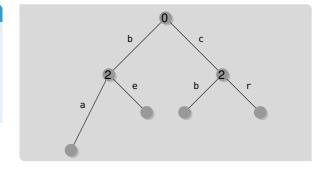
- for strings $S = \{S_0, \dots, S_{k-1}\}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size O(k) for k strings



Improving String B-Tree with Patricia Tries (1/2)

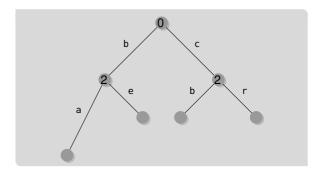
Patricia Trie

- for strings $S = \{S_0, \dots, S_{k-1}\}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size O(k) for k strings



Patricia Trie

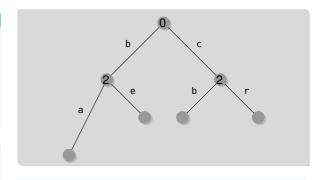
- for strings $S = \{S_0, \dots, S_{k-1}\}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size O(k) for k strings
- search requires two steps
- first blind search using only trie
- blind search can result in false matches
- second a comparison with resulting string
- use any leaf after matching pattern



Improving String B-Tree with Patricia Tries (1/2)

Patricia Trie

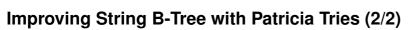
- for strings $S = \{S_0, ..., S_{k-1}\}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size O(k) for k strings
- search requires two steps
- first blind search using only trie
- blind search can result in false matches
- second a comparison with resulting string
- use any leaf after matching pattern



How do Patricia tries help? PINGO

Improving String B-Tree with Patricia Tries (2/2)

- in each inner node build Patricia trie for separators
- if blind search finds leaf w
- compute L = lcp(P, w)
- let u be first node on root-to-w path with $d \ge L$



- in each inner node build Patricia trie for separators
- if blind search finds leaf w
- compute L = lcp(P, w)
- let u be first node on root-to-w path with $d \ge L$

d = L

- find matching children v_i and v_{i+1} of w with
- branching characters $c_i < P[L+1] < c_{i+1}$
- example on the board <a>

Improving String B-Tree with Patricia Tries (2/2)

- in each inner node build Patricia trie for separators
- if blind search finds leaf w
- compute L = lcp(P, w)
- let u be first node on root-to-w path with $d \ge L$

d = L

- find matching children v_i and v_{i+1} of w with
- branching characters $c_i < P[L+1] < c_{i+1}$
- example on the board <a>=

d > L

- consider next branching character c on path
- if P[L+1] < c continue in leftmost leaf
- if P[L+1] > c continue in rightmost leaf

2023-06-12

- at every node with children v_0, \ldots, v_k
- load Patricia trie for $L(v_0), \ldots, R(v_k)$
- search Patricia trie for w n result of blind search
- load one string and compare with P
- identify child and continue

Searching in Improved String B-Tree

- \blacksquare at every node with children v_0, \ldots, v_k
- load Patricia trie for $L(v_0), \ldots, R(v_k)$
- search Patricia trie for w n result of blind search.
- load one string and compare with P
- identify child and continue

Lemma: String B-Tree with PTs

Using a string B-tree with Patricia tries, a pattern P can be found in a set of strings with total length N with $O(|P|/B\log_B N)$ I/Os

2023-06-12

Searching in Improved String B-Tree

- at every node with children v_0, \ldots, v_k
- load Patricia trie for $L(v_0), \ldots, R(v_k)$
- search Patricia trie for w nesult of blind search
- load one string and compare with P
- identify child and continue

Lemma: String B-Tree with PTs

Using a string B-tree with Patricia tries, a pattern P can be found in a set of strings with total length N with $O(|P|/B\log_B N)$ I/Os

Proof (Sketch)

- loading PT: O(1) I/Os
- blind search: no I/Os
- loading one string: O(|P|/B) I/Os
- identify child: no I/Os
- total $O(|P|/B\log_B N)$ I/Os

Searching in Improved String B-Tree

- at every node with children v_0, \ldots, v_k
- load Patricia trie for $L(v_0), \ldots, R(v_k)$
- search Patricia trie for w nesult of blind search
- load one string and compare with P
- identify child and continue
- How can this be improved even further?
 PINGO

Lemma: String B-Tree with PTs

Using a string B-tree with Patricia tries, a pattern P can be found in a set of strings with total length N with $O(|P|/B\log_B N)$ I/Os

Proof (Sketch)

- loading PT: O(1) I/Os
- blind search: no I/Os
- loading one string: O(|P|/B) I/Os
- identify child: no I/Os
- total $O(|P|/B\log_B N)$ I/Os

- search for pattern in nodes
- path in String B-tree p_0, p_1, p_2, \dots
- in Patricia tries PT_{p_i} compute L = lcp(P, w)
- all strings in p_i have prefix P[0..L)
- do not compare previously matched characters
- load only |P| L characters at next node
- pass L down the String B-tree

Improving Search with LCP-Values

- search for pattern in nodes
- **a** path in String B-tree p_0, p_1, p_2, \ldots
- in Patricia tries PT_{p_i} compute L = lcp(P, w)
- all strings in p_i have prefix P[0..L)
- do not compare previously matched characters
- load only |P| L characters at next node
- pass L down the String B-tree

Lemma: String B-Tree with PTs and LCP

Using a String B-tree with Patricia tries and passing down the LCP-value, a pattern P can be found in a set of strings with total length N in $O(|P|/B + \log_B N)$ I/Os

Improving Search with LCP-Values

- search for pattern in nodes
- **a** path in String B-tree p_0, p_1, p_2, \ldots
- in Patricia tries PT_{p_i} compute L = lcp(P, w)
- all strings in p_i have prefix P[0..L)
- do not compare previously matched characters
- load only |P| L characters at next node
- pass L down the String B-tree

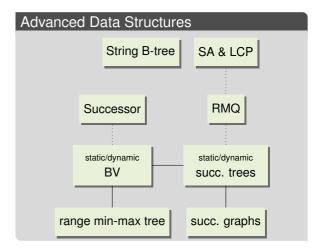
Lemma: String B-Tree with PTs and LCP

Using a String B-tree with Patricia tries and passing down the LCP-value, a pattern P can be found in a set of strings with total length N in $O(|P|/B + \log_B N)$ I/Os

- passing down LCP-value: no I/Os
- telescoping sum $\sum_{i \le h} \frac{L_i L_{i-1}}{B}$
- $h = \log_B N$ height of String B-tree
- L_i is LCP-value on Level i
- $L_0 = 0$ and $L_h < |P|$
- total: $O(|P|/B + \log_B N)$ I/Os

This Lecture

- suffix array and LCP array
- String B-tree



Bibliography I

- [AV88] Alok Aggarwal and Jeffrey Scott Vitter. "The Input/Output Complexity of Sorting and Related Problems". In: *Commun. ACM* 31.9 (1988), pages 1116–1127. DOI: 10.1145/48529.48535.
- [Bah+19] Johannes Bahne, Nico Bertram, Marvin Böcker, Jonas Bode, Johannes Fischer, Hermann Foot, Florian Grieskamp, Florian Kurpicz, Marvin Löbel, Oliver Magiera, Rosa Pink, David Piper, and Christopher Poeplau. "SACABench: Benchmarking Suffix Array Construction". In: *SPIRE*. Volume 11811. Lecture Notes in Computer Science. Springer, 2019, pages 407–416. DOI: 10.1007/978-3-030-32686-9_29.
- [Bin18] Timo Bingmann. "Scalable String and Suffix Sorting: Algorithms, Techniques, and Tools".

 PhD thesis. Karlsruhe Institute of Technology, Germany, 2018. DOI: 10.5445/IR/1000085031.
- [FG99] Paolo Ferragina and Roberto Grossi. "The String B-tree: A New Data Structure for String Search in External Memory and Its Applications". In: *J. ACM* 46.2 (1999), pages 236–280. DOI: 10.1145/301970.301973.

Bibliography II

- [GBS92] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. "New Indices for Text: Pat Trees and Pat Arrays". In: Information Retrieval: Data Structures & Algorithms. Prentice-Hall, 1992, pages 66-82.
- [Kär+17] Juha Kärkkäinen, Dominik Kempa, Simon J. Puglisi, and Bella Zhukova. "Engineering External Memory Induced Suffix Sorting". In: ALENEX. SIAM, 2017, pages 98–108. DOI: 10.1137/1.9781611974768.8.
- [Kur20] Florian Kurpicz. "Parallel Text Index Construction". PhD thesis. Technical University of Dortmund, Germany, 2020. DOI: 10.17877/DE290R-21114.
- [MM93] Udi Manber and Eugene W. Myers. "Suffix Arrays: A New Method for On-Line String Searches". In: SIAM J. Comput. 22.5 (1993), pages 935-948. DOI: 10.1137/0222058.
- [PST07] Simon J. Puglisi, William F. Smyth, and Andrew Turpin. "A Taxonomy of Suffix Array Construction Algorithms". In: ACM Comput. Surv. 39.2 (2007), page 4. DOI: 10.1145/1242471.1242472.