Lemma: Decoding Time Improved CSA

An SA value can be decoded in \(O(\log \log n)\) time using the improved CSA

Proof (Sketch)

- on each level, odd SA values can be decoded using the recursive SA
- there are at most \(\log \log n\) levels
- on each level, even SA values can be decoded in one step, as the next SA value is odd

requires rank and select data structures
Temporal Data Structures

- data structure that allows updates
- queries only on the newest version
- what happens to old versions
Temporal Data Structures

- data structure that allows updates
- queries only on the newest version
- what happens to old versions

- keep old versions around
- in a “clever” way
- lecture based on: http://courses.csail.mit.edu/6.851/spring12/lectures/L01
Temporal Data Structures

- data structure that allows updates
- queries only on the newest version
- what happens to old versions

- keep old versions around
- in a “clever” way
- lecture based on: http://courses.csail.mit.edu/6.851/spring12/lectures/L01

Persistence

- change in the past creates new branch
- similar to version control
- everything old/new remains the same
Temporal Data Structures

- data structure that allows updates
- queries only on the newest version
- what happens to old versions

- keep old versions around
- in a “clever” way

lecture based on: http://courses.csail.mit.edu/6.851/spring12/lectures/L01

Persistence

- change in the past creates new branch
- similar to version control
- everything old/new remains the same

Retroactivity

- change in the past affects future
- make change in earlier version changes all later versions
Definition: Pointer Machine

- nodes containing \(d = O(1) \) fields
- one root node
- operations in \(O(1) \) time
 - new node
 - \(x = y.\text{field} \)
 - \(x.\text{field} = y \)
 - \(x = y+z \)
- access nodes by root.x.y...
Definition: Pointer Machine

- nodes containing \(d = O(1) \) fields
- one root node
- operations in \(O(1) \) time
 - new node
 - \(x = y.\text{field} \)
 - \(x.\text{field} = y \)
 - \(x = y+z \)
- access nodes by root.x.y...
Definition: Pointer Machine

- nodes containing $d = O(1)$ fields
- one root node
- operations in $O(1)$ time
 - new node
 - $x = y.field$
 - $x.field = y$
 - $x = y + z$
- access nodes by root.x.y...
Definition: Pointer Machine

- nodes containing \(d = O(1) \) fields
- one root node
- operations in \(O(1) \) time
 - new node
 - \(x = y.\text{field} \)
 - \(x.\text{field} = y \)
 - \(x = y + z \)
- access nodes by root.x.y...

- add additional functionality to existing data structures
- is this a “useful” model? PINGO
- balanced binary search tree
- linked list
- ...

example on the board 📚
Persistence

- keep all versions of data structure
- never forget an old version
- updates create new versions (e.g., insert/delete)
- all operations are relative to specific version

Definition: Partial Persistence

Only the latest version can be updated

- versions are linearly ordered
- old versions can still be queries
Persistence

- keep all versions of data structure
- never forget an old version
- updates create new versions e.g., insert/delete
- all operations are relative to specific version

Definition: Partial Persistence
Only the latest version can be updated
- versions are linearly ordered
- old versions can still be queries

Definition: Full Persistence
- Any version can be updated
- versions form a tree
- updates on old versions create branch
Persistence

- keep all versions of data structure
- never forget an old version
- updates create new versions e.g., insert/delete
- all operations are relative to specific version

Definition: Partial Persistence
Only the latest version can be updated

- versions are linearly ordered
- old versions can still be queries

Definition: Full Persistence
Any version can be updated

- versions form a tree
- updates on old versions create branch

Definition: Confluent Persistence
Like full persistence, but two versions can be combined to a new version

Definition: Functional
Nodes cannot be modified, only new nodes can be created
Lemma: Making DS Partially Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made partially persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update
Lemma: Making DS Partially Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made partially persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

Proof (Sketch: Idea)

- store original data and pointer (read only)
- store back pointers to latest version
- store \(\leq 2p \) modifications to fields
 - modification = \((\text{version}, \text{field}, \text{value})\)
 - version \(v \): apply modification with version \(\leq v \)

Proof (Sketch: Functionality)

- read version \(v \)
- look up all modifications \(\leq v \)
- if old version go through old version pointer
- write version
 - if node is not full add modification
 - if node \(n \) is full
 - create new node \(n' \)
 - copy latest version to data fields
 - copy back pointers to \(n' \)
 - for every node \(x \) such that \(n \) points to \(x \)
 - redirect its pointer to \(n' \)
 - for every node \(x \) pointing to \(n \) call recursive change of pointer to \(n' \)
Lemma: Making DS Partially Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made partially persistent with
- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

Proof (Sketch: Idea)
- store original data and pointer (read only)
- store back pointers to latest version
- store \(\leq 2p \) modifications to fields
 - modification = \((\text{version, field, value})\)
 - version \(v \): apply modification with version \(\leq v \)

Proof (Sketch: Functionality)
- read version \(v \)
 - look up all modifications \(\leq v \)
 - if old version go through old version pointer
Partial Persistence (1/3)

Lemma: Making DS Partially Persistent

Any pointer-machine data structure with $p = O(1)$ pointers to any node can be made partially persistent with
- $O(1)$ amortized factor overhead and
- $O(1)$ additional space per update

Proof (Sketch: Idea)
- store original data and pointer (read only)
- store back pointers to latest version
- store $\leq 2p$ modifications to fields
 - modification = $(\text{version}, \text{field}, \text{value})$
- version v: apply modification with version $\leq v$

Proof (Sketch: Functionality)
- read version v
 - look up all modifications $\leq v$
 - if old version go through old version pointer
- write version
 - if node is not full add modification
 - if node n is full
 - create new node n'
 - copy latest version to data fields
 - copy back pointers to n'
 - for every node x such that n points to x redirect its pack pointers to n'
 - for every node x pointing to n call recursive change of pointer to n'
Proof (Sketch: Space)
- adding only constant number of back pointers
- adding only constant number of modifications
- total additional space is $O(1)$

Proof (Sketch: Time)
Read is constant time.
Write requires amortized analysis.
Potential function Φ amortizes cost:
$$ \Phi(n) = \text{cost}(n) + \Delta \Phi $$

Proof (Sketch: Time cnt.)
Potential $\Phi = c \cdot P$ # modifications in latest version.
Change of potential by adding new modification.
Change of potential by creating new node.
Combined:
$$ \text{amortized cost} \leq c + c - 2cp + p \cdot \text{recursion} $$
First c: constant time checking.
Second c: adding new modification.
Remaining part if new node is created.
Total amortized time: $O(1)$.
Partial Persistence (2/3)

Proof (Sketch: Space)
- adding only constant number of back pointers
- adding only constant number of modifications
- total additional space is $O(1)$

Proof (Sketch: Time)
- read is constant time
- write requires amortized analysis
Partial Persistence (2/3)

Proof (Sketch: Space)
- adding only constant number of back pointers
- adding only constant number of modifications
- total additional space is $O(1)$

Proof (Sketch: Time)
- read is constant time
- write requires amortized analysis

- potential function Φ
- $\text{amortizes}_{\text{cost}}(n) = \text{cost}(n) + \Delta \Phi$
Partial Persistence (2/3)

Proof (Sketch: Space)
- adding only constant number of back pointers
- adding only constant number of modifications
- total additional space is $O(1)$

Proof (Sketch: Time)
- read is constant time
- write requires amortized analysis
- potential function Φ
- amortizes_cost(n) = cost(n) + $\Delta\Phi$

Proof (Sketch: Time cnt.)
- potential $\Phi = c \cdot \sum \#\text{modifications in latest version}$
- change of potential by adding new modification
- change of potential by creating new node
- combined:
 \[
 \text{amortized}_\text{cost} \leq c + c - 2cp + p \cdot \text{recursion}
 \]
- first c: constant time checking
- second c: adding new modification
- remaining part if new node is created
- total amortized time: $O(1)$
Lemma: Making DS Partially Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made partially persistent with

- $O(1)$ amortized factor overhead and
- $O(1)$ additional space per update
Lemma: Making DS Partially Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made partially persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

possible in \(O(1) \) worst case time [Bro96]
Lemma: Making DS Partially Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made partially persistent with
- $O(1)$ amortized factor overhead and
- $O(1)$ additional space per update

- possible in $O(1)$ worst case time [Bro96]

- also possible for full persistence?
Differences

- versions are no longer numbers
- versions are nodes in a tree
Differences

- versions are no longer numbers
- versions are nodes in a tree

- can we represent versions in a linear fashion?

PINGO
Full Persistence (1/4)

Differences
- versions are no longer numbers
- versions are nodes in a tree
- can we represent versions in a linear fashion?

PINGO
Differences

- versions are no longer numbers
- versions are nodes in a tree

can we represent versions in a linear fashion?

PINGO

ab cd ef g h i j k
(()(()(()()))()(()()))

b_a b_b e_b b_c b_d e_d \ldots
Differences
- versions are no longer numbers
- versions are nodes in a tree

- can we represent versions in a linear fashion?

PINGO

ab cd ef g h i j k
(((((())(()))))((()))())

versions change
update in constant time?
Order-Maintenance Data Structure

Linked List
- insert before or after element in $O(1)$ time
- check if u is predecessor of v in n time
Order-Maintenance Data Structure

Linked List
- insert before or after element in $O(1)$ time
- check if u is predecessor of v in n time

Balanced Search Tree
- insert before or after element in $O(\log n)$ time
- check if u is predecessor of v in $O(\log n)$ time
Order-Maintenance Data Structure

Linked List
- insert before or after element in $O(1)$ time
- check if u is predecessor of v in n time

Balanced Search Tree
- insert before or after element in $O(\log n)$ time
- check if u is predecessor of v in $O(\log n)$ time

Order-Maintenance DS [DS87]
- insert before or after element in $O(1)$ time
- check if u is predecessor of v in $O(1)$ time
- how is
Order-Maintenance Data Structure

Linked List
- Insert before or after element in $O(1)$ time
- Check if u is predecessor of v in n time

Balanced Search Tree
- Insert before or after element in $O(\log n)$ time
- Check if u is predecessor of v in $O(\log n)$ time

Order-Maintenance DS [DS87]
- Insert before or after element in $O(1)$ time
- Check if u is predecessor of v in $O(1)$ time
- How is

- Linearized version tree in order-maintenance DS
- Insert in $O(1)$ time
 - New version v of u
 - After b_u
 - Before e_u
- Check order of versions in $O(1)$ time
- Maintain and check linearized version tree in $O(1)$ time
- Important for applying modifications to fields
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made fully persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

Proof (Sketch: Idea)

- store original data and pointer (read only)
- store back pointers to all versions
- store \(\leq 2(d + p + 1) \) modifications to fields

Proof (Sketch: Functionality)

- read version \(v \)
- look up all modifications \(\leq v \)
- if old version go through old version pointer
- write version if node is not full add modification
- the same if node is full?

PINGO

- if node \(n \) is full
- split node into two
- each new node contains half of modifications
- modifications are tree
- partition tree
- apply all modifications to “subtree”
- recursively update pointers
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made fully persistent with
- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

Proof (Sketch: Idea)
- store original data and pointer (read only)
- store back pointers to all versions
- store \(\leq 2(d + p + 1) \) modifications to fields
 - modification = \((version, field, value)\)
- version \(v \): look at ancestors of \(v \)
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made fully persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

Proof (Sketch: Idea)

- store original data and pointer (read only)
- store back pointers to all versions
- store \(\leq 2(d + p + 1) \) modifications to fields
 - modification = (version, field, value)
- version \(v \): look at ancestors of \(v \)

Proof (Sketch: Functionality)

- read version \(v \)
 - look up all modifications \(\leq v \)
 - if old version go through old version pointer
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with \(p = O(1) \) pointers to any node can be made fully persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

Proof (Sketch: Idea)

- store original data and pointer (read only)
- store back pointers to all versions
- store \(\leq 2(d + p + 1) \) modifications to fields
 - modification = \((\text{version}, \text{field}, \text{value})\)
- version \(v \): look at ancestors of \(v \)

Proof (Sketch: Functionality)

- read version \(v \)
 - look up all modifications \(\leq v \)
 - if old version go through old version pointer
- write version
 - if node is not full add modification
 - the same if node is full? PINGO
Lemma: Making DS Fully Persistent
Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made fully persistent with
- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

Proof (Sketch: Idea)
- store original data and pointer (read only)
- store back pointers to all versions
- store \(\leq 2(d + p + 1) \) modifications to fields
 - modification = \((\text{version, field, value})\)
- version \(v \): look at ancestors of \(v \)

Proof (Sketch: Functionality)
- read version \(v \)
 - look up all modifications \(\leq v \)
 - if old version go through old version pointer
- write version
 - if node is not full add modification
 - the same if node is full? PINGO
 - if node \(n \) is full
 - split node into two
 - each new node contains half of modifications
 - modifications are tree
 - partition tree
 - apply all modifications to “subtree”
 - recursively update pointers
Full Persistence (3/4)

Proof (Sketch: Space)
- if no split no additional memory
- if split $O(1)$ memory
Proof (Sketch: Space)

- if no split no additional memory
- if split $O(1)$ memory

Proof (Sketch: Time)

- applying versions in $O(1)$ time
- there are $\leq 2(d + p) + 1$ recursive pointer updates
- potential

$$\Phi = -c \cdot \sum \#empty \ modification \ slots$$
Full Persistence (3/4)

Proof (Sketch: Space)
- if no split no additional memory
- if split $O(1)$ memory

Proof (Sketch: Time)
- applying versions in $O(1)$ time
- there are $\leq 2(d + p) + 1$ recursive pointer updates
- potential

$$\Phi = -c \cdot \sum \#\text{empty modification slots}$$

Proof (Sketch: Time cnt.)
- if node is split $\Delta \Phi = -c \cdot 2(d + p + 1)$
- if node is not split $\Delta \Phi = c$
- combined:
 $$\text{amortized_cost} = c + c$$
 $$- 2c(d + p + 1)$$
 $$+ (2(d + p) + 1) \cdot \text{recursions}$$
- if node is split constants cancel each other out
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made fully persistent with

- $O(1)$ amortized factor overhead and
- $O(1)$ additional space per update
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made fully persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

- versions are represented by tree
- tree has pointers to order-maintenance DS
- order-maintenance DS has pointers to tree
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with \(p = O(1) \) pointers to any node can be made fully persistent with
- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

- versions are represented by tree
- tree has pointers to order-maintenance DS
- order-maintenance DS has pointers to tree
- de-amortization is open problem
Confluent Persistence

- hard because concatenation
- linked list concatenate with itself
- after u version length 2^u

more information:
Conclusion and Outlook

This Lecture
- partial and full persistent data structures

Advanced Data Structures

- String B-tree
- SA & LCP
- Successor
- CSA
- RMQ
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs
Conclusion and Outlook

This Lecture
- partial and full persistent data structures

Next Lecture
- retroactive data structures

Advanced Data Structures

- String B-tree
- SA & LCP
- Successor
- CSA
- RMQ
- static/dynamic
 - BV
- static/dynamic
 - succ. trees
- range min-max tree
- succ. graphs
Bibliography I
