Advanced Data Structures

Lecture 09: Temporal Data Structures

Florian Kurpicz
Lemma: Decoding Time Improved CSA

An SA value can be decoded in $O(\log \log n)$ time using the improved CSA.

Proof (Sketch)

- on each level, odd SA values can be decoded using the recursive SA
- there are at most $\log \log n$ levels
- on each level, even SA values can be decoded in one step, as the next SA value is odd

- requires rank and select data structures

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Ψ</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>NEW</td>
<td>13</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>BV</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Temporal Data Structures

- data structure that allows updates
- queries only on the newest version
- what happens to old versions

- keep old versions around
- in a “clever” way
- lecture based on: http://courses.csail.mit.edu/6.851/spring12/lectures/L01

Persistence

- change in the past creates new branch
- similar to version control
- everything old/new remains the same

Retroactivity

- change in the past affects future
- make change in earlier version changes all later versions
Definition: Pointer Machine

- nodes containing $d = O(1)$ fields
- one root node
- operations in $O(1)$ time
 - new node
 - $x = y$_field
 - x_field = y
 - $x = y + z$
- access nodes by root.x.y...

- add additional functionality to existing data structures
- is this a “useful” model?
- balanced binary search tree
- linked list
- ...

- example on the board
Persistence

- keep all versions of data structure
- never forget an old version
- updates create new versions e.g., insert/delete
- all operations are relative to specific version

Definition: Partial Persistence

Only the latest version can be updated

- versions are linearly ordered
- old versions can still be queries

Definition: Full Persistence

Any version can be updated

- versions form a tree
- updates on old versions create branch

Definition: Confluent Persistence

Like full persistence, but two versions can be combined to a new version

Definition: Functional

Nodes cannot be modified, only new nodes can be created
Partial Persistence (1/3)

Lemma: Making DS Partially Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made partially persistent with
- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

Proof (Sketch: Idea)
- store original data and pointer (read only)
- store back pointers to latest version
- store \(\leq 2p \) modifications to fields
 - modification = (version, field, value)
- version \(v \): apply modification with version \(\leq v \)

Proof (Sketch: Functionality)
- read version \(v \)
 - look up all modifications \(\leq v \)
 - if old version go through old version pointer
- write version
 - if node is not full add modification
 - if node \(n \) is full
 - create new node \(n' \)
 - copy latest version to data fields
 - copy back pointers to \(n' \)
 - for every node \(x \) such that \(n \) points to \(x \) redirect its pack pointers to \(n' \)
 - for every node \(x \) pointing to \(n \) call recursive change of pointer to \(n' \)
Partial Persistence (2/3)

Proof (Sketch: Space)
- adding only constant number of back pointers
- adding only constant number of modifications
- total additional space is $O(1)$

Proof (Sketch: Time)
- read is constant time
- write requires amortized analysis

Proof (Sketch: Time cnt.)
- potential
 \[\Phi = c \cdot \sum \text{#modifications in latest version} \]
- change of potential by adding new modification
- change of potential by creating new node
- combined:
 \[\text{amortized_cost} \leq c + c - 2cp + p \cdot \text{recursion} \]
- first c: constant time checking
- second c: adding new modification
- remaining part if new node is created
- total amortized time: $O(1)$
Lemma: Making DS Partially Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made partially persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

- possible in \(O(1) \) worst case time [Bro96]

- also possible for full persistence?
Differences

- versions are no longer numbers
- versions are nodes in a tree

Can we represent versions in a linear fashion?

PINGO

```
ab cd ef g h i j k
(((((((((()))))))))((((()))))
```

```
b_ab_b_be_b_bc_b_d_e_d...
```

- versions change
- update in constant time?
Order-Maintenance Data Structure

Linked List
- insert before or after element in $O(1)$ time
- check if u is predecessor of v in n time

Balanced Search Tree
- insert before or after element in $O(\log n)$ time
- check if u is predecessor of v in $O(\log n)$ time

Order-Maintenance DS [DS87]
- insert before or after element in $O(1)$ time
- check if u is predecessor of v in $O(1)$ time
- how is

- linearized version tree in order-maintenance DS
- insert in $O(1)$ time
 - new version v of u
 - after b_u
 - before e_u
- check order of versions in $O(1)$ time
- maintain and check linearized version tree in $O(1)$ time
- important for applying modifications to fields
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with \(p = O(1) \) pointers to any node can be made fully persistent with

\[O(1) \] amortized factor overhead and
\[O(1) \] additional space per update

Proof (Sketch: Idea)

- store original data and pointer (read only)
- store back pointers to all versions
- store \(\leq 2(d + p + 1) \) modifications to fields
 - modification = (version, field, value)
- version \(v \): look at ancestors of \(v \)

Proof (Sketch: Functionality)

- read version \(v \)
 - look up all modifications \(\leq v \)
 - if old version go through old version pointer
- write version
 - if node is not full add modification
 - the same if node is full?
 - if node \(n \) is full
 - split node into two
 - each new node contains half of modifications
 - modifications are tree
 - partition tree
 - apply all modifications to “subtree”
 - recursively update pointers
Full Persistence (3/4)

Proof (Sketch: Space)
- If no split, no additional memory.
- If split, $O(1)$ memory.

Proof (Sketch: Time)
- Applying versions in $O(1)$ time.
- There are $\leq 2(d + p) + 1$ recursive pointer updates.
- Potential:
 \[\Phi = -c \cdot \sum \text{#empty modification slots} \]

Proof (Sketch: Time cnt.)
- If node is split, $\Delta \Phi = -c \cdot 2(d + p + 1)$.
- If node is not split, $\Delta \Phi = c$.
- Combined:
 \[
 \text{amortized_cost} = c + c - 2c(d + p + 1) + (2(d + p) + 1) \cdot \text{recursions}
 \]
- If node is split, constants cancel each other out.
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with \(p = O(1) \) pointers to any node can be made fully persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

- versions are represented by tree
- tree has pointers to order-maintenance DS
- order-maintenance DS has pointers to tree

de-amortization is open problem
Confluent Persistence

- hard because concatenation
- linked list concatenate with itself
- after u version length 2^u

more information:
Conclusion and Outlook

This Lecture
- partial and full persistent data structures

Next Lecture
- retroactive data structures

Advanced Data Structures

- String B-tree
- SA & LCP
- Successor
- CSA
- RMQ
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs
Bibliography I
