Advanced Data Structures

Lecture 10: Temporal Data Structures 2

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License Ⓒⓔⓡ: www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2023-07-03-10:53

KIT – The Research University in the Helmholtz Association
Exams

- 12.09.2023, 13.09.2023, and 21.09.2023 (09:00–16:00)
- 22.09.2023 (13:00–16:00)
- write to blancani@kit.edu
 - full name
 - Matrikelnummer
 - PO version
 - date
- in person
- 17.07.2022 Q&A during last half of lecture
- registration for project is open
Exams
- 12.09.2023, 13.09.2023, and 21.09.2023 (09:00–16:00)
- 22.09.2023 (13:00–16:00)
- write to blancani@kit.edu
 - full name
 - Matrikelnummer
 - PO version
 - date
- in person
- 17.07.2022 Q&A during last half of lecture
- registration for project is open

Evaluation
- next week
Instead of storing all solutions, store solutions for intervals of length 2^k for every k.

\[M[0..n][0..\lfloor \log n \rfloor) \]

Queries

- Query $rmq(A, s, e)$ is answered using two subqueries.
- Let $\ell = \lfloor \log(e - s + 1) \rfloor$.
- $m_1 = rmq(A, s, s + 2^\ell - 1)$ and $m_2 = rmq(A, e - 2^\ell + 1, e)$.
- $rmq(A, s, e) = \arg \min_{m \in \{m_1, m_2\}} A[m]$.

Construction

\[M[x][\ell] = rmq(A, x, x + 2^\ell - 1) \]
\[= \arg \min \{ A[i] : i \in [x, x + 2^\ell) \} \]
\[= \arg \min \{ A[i] : i \in \{ rmq(A, x, x + 2^{\ell-1} - 1), \]
\[= \quad rmq(A, x + 2^{\ell-1}, x + 2^\ell - 1) \} \} \]
\[= \arg \min \{ A[i] : i \in \{ M[x][\ell-1], \}
\[= \quad \} M[x + 2^{\ell-1}][\ell - 1] \} \}

Dynamic Programming

Dynamic programming in $O(n \log n)$ time.
Recap: Persistent Data Structures

- lecture based on: http://courses.csail.mit.edu/6.851/spring12/lectures/L01

Persistence
- change in the past creates new branch
 - similar to version control
 - everything old/new remains the same

Retroactivity
- change in the past affects future
 - make change in earlier version changes all later versions

Definition: Partial Persistence
- Only the latest version can be updated

Definition: Full Persistence
- Any version can be updated

Definition: Confluent Persistence
- Like full persistence, but two versions can be combined to a new version

Definition: Functional
- Nodes cannot be modified, only new nodes can be created
Recap: Persistent Data Structures

- lecture based on: http://courses.csail.mit.edu/6.851/spring12/lectures/L01

Persistence
- change in the past creates new branch
- similar to version control
- everything old/new remains the same
Recap: Persistent Data Structures

- **Persistence**
 - change in the past creates new branch
 - similar to version control
 - everything old/new remains the same

- **Definition: Partial Persistence**
 - Only the latest version can be updated

- **Definition: Full Persistence**
 - Any version can be updated

- **Definition: Confluent Persistence**
 - Like full persistence, but two versions can be combined to a new version

- **Definition: Functional**
 - Nodes cannot be modified, only new nodes can be created

Lecture based on: http://courses.csail.mit.edu/6.851/spring12/lectures/L01
Recap: Persistent Data Structures

Persistence
- change in the past creates new branch
- similar to version control
- everything old/new remains the same

Retroactivity
- change in the past affects future
- make change in earlier version changes all later versions

Definition: Partial Persistence
Only the latest version can be updated

Definition: Full Persistence
Any version can be updated

Definition: Confluent Persistence
Like full persistence, but two versions can be combined to a new version

Definition: Functional
Nodes cannot be modified, only new nodes can be created
Retroactive Data Structures

Operations

- \(\text{INSERT}(t, \text{operation}) \): insert operation at time \(t \)
- \(\text{DELETE}(t) \): delete operation at time \(t \)
- \(\text{QUERY}(t, \text{query}) \): ask \(\text{query} \) at time \(t \)

- for a priority queue updates are
 - insert
 - delete-min

- **time is integer**: for simplicity otherwise use order-maintenance data structure
Retroactive Data Structures

Operations
- INSERT(t, operation): insert operation at time t
- DELETE(t): delete operation at time t
- QUERY(t, query): ask query at time t

Definition: Partial Retroactivity
QUERY is only allowed for $t = \infty$ now

- for a priority queue updates are
 - insert
 - delete-min
- time is integer for simplicity otherwise use order-maintenance data structure

```
0 1 2 3 4 now time
insert(7) insert(2) insert(3) del-min del-min queries
```
Retroactive Data Structures

Operations

- **INSERT**(\(t, operation\)): insert operation at time \(t\)
- **DELETE**(\(t\)): delete operation at time \(t\)
- **QUERY**(\(t, query\)): ask query at time \(t\)

- for a priority queue updates are
 - insert
 - delete-min

- time is integer for simplicity otherwise use order-maintenance data structure

Definition: Partial Retroactivity

QUERY is only allowed for \(t = \infty\) \(\bowtie\) now

Definition: Full Retroactivity

QUERY is allowed at any time \(t\)
Retroactive Data Structures

Operations
- INSERT\((t, operation)\): insert operation at time \(t\)
- DELETE\((t)\): delete operation at time \(t\)
- QUERY\((t, query)\): ask query at time \(t\)

For a priority queue, updates are:
- insert
- delete-min

Time is integer \(\bullet\) for simplicity; otherwise, use order-maintenance data structure.

Definition: Partial Retroactivity
QUERY is only allowed for \(t = \infty\) \(\bullet\) now.

Definition: Full Retroactivity
QUERY is allowed at any time \(t\).

Definition: Nonoblivious Retroactivity
INSERT, DELETE, and QUERY at any time \(t\) but also identify changed QUERY results.

<table>
<thead>
<tr>
<th>Time</th>
<th>Operation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>insert(7)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>insert(2)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>insert(3)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>del-min</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>del-min</td>
<td></td>
</tr>
<tr>
<td>Now</td>
<td>queries</td>
<td></td>
</tr>
</tbody>
</table>
Easy Cases: Partial Retroactivity

- invertible updates
 - operation \(op^{-1} \) such that \(op^{-1}(op(\cdot)) = \emptyset \)
 - DELETE becomes INSERT inverse operation
- makes partial retroactivity easy
- \(\text{INSERT}(t, \text{operation}) = \text{INSERT}(\infty, \text{operation}) \)
- \(\text{DELETE}(t, \text{op}) = \text{INSERT}(\infty, \text{op}^{-1}) \)
Easy Cases: Partial Retroactivity

- invertible updates
 - operation op^{-1} such that $\text{op}^{-1}(\text{op}(\cdot)) = \emptyset$
 - DELETE becomes INSERT inverse operation
- makes partial retroactivity easy
- $\text{INSERT}(t, \text{operation}) = \text{INSERT}(\infty, \text{operation})$
- $\text{DELETE}(t, \text{op}) = \text{INSERT}(\infty, \text{op}^{-1})$

Partial Retroactivity

- hashing
- dynamic dictionaries
- array with updates only $A[i] + = \text{value}$
Definition: Search Problem

A search problem is a problem on a set S of objects with operations $insert$, $delete$, and $query(x, S)$.
Definition: Search Problem
A search problem is a problem on a set S of objects with operations insert, delete, and $\text{query}(x, S)$

Definition: Decomposable Search Problem
A decomposable search problem is a search problem, with
- $\text{query}(x, A \cup B) = f(\text{query}(x, A), \text{query}(x, B))$
- with f requiring $O(1)$ time
Search Problems

Definition: Search Problem
A search problem is a problem on a set S of objects with operations *insert*, *delete*, and *query*(x, S)

Definition: Decomposable Search Problem
A decomposable search problem is a search problem, with

- $query(x, A \cup B) = f(query(x, A), query(x, B))$
- with f requiring $O(1)$ time

- which decomposable search problem have we seen? **PINGO**
Search Problems

Definition: Search Problem
A search problem is a problem on a set S of objects with operations $insert$, $delete$, and $query(x, S)$

Definition: Decomposable Search Problem
A decomposable search problem is a search problem, with

- $query(x, A \cup B) = f(query(x, A), query(x, B))$
- with f requiring $O(1)$ time

- predecessor and successor search
- range minimum queries
- nearest neighbor
- point location
- . . .

which decomposable search problem have we seen? PINGO
Definition: Search Problem
A search problem is a problem on a set S of objects with operations insert, delete, and $\text{query}(x, S)$.

Definition: Decomposable Search Problem
A decomposable search problem is a search problem, with

- $\text{query}(x, A \cup B) = f(\text{query}(x, A), \text{query}(x, B))$
- with f requiring $O(1)$ time

- predecessor and successor search
- range minimum queries
- nearest neighbor
- point location
- \ldots
- these types of problems are also “easy”

which decomposable search problem have we seen? PINGO
Lemma: Full Retroactivity for DSP

Every decomposable search problems can be made fully retroactive with a $O(\log m)$ overhead in space and time, where m is the number of operations.
Lemma: Full Retroactivity for DSP

Every decomposable search problems can be made fully retroactive with a $O(\log m)$ overhead in space and time, where m is the number of operations.

Proof (Sketch)

- use balances search tree / segment tree
- each leaf corresponds to an update
- node n corresponds to interval of time $[s_n, e_n]$
- if an object exists in the time interval $[s, e]$, then it appears in node n if $[s_n, e_n] \subseteq [s, e]$ if none of n's ancestors’ are $\subseteq [s, e]$
- each object occurs in $O(\log n)$ nodes
Decomposable Search Problems: Full Retroactivity

Lemma: Full Retroactivity for DSP

Every decomposable search problems can be made fully retroactive with a $O(\log m)$ overhead in space and time, where m is the number of operations.

Proof (Sketch)

- use balances search tree or segment tree
- each leaf corresponds to an update
- node n corresponds to interval of time $[s_n, e_n]$
- if an object exists in the time interval $[s, e]$, then it appears in node n if $[s_n, e_n] \subseteq [s, e]$ if none of n's ancestors’ are $\subseteq [s, e]$
- each object occurs in $O(\log n)$ nodes

Proof (Sketch, cnt.)

- to query find leaf corresponding to t
- look at ancestors to find all objects
- $O(\log m)$ results which can be combined in $O(\log m)$ time
Lemma: Full Retroactivity for DSP

Every decomposable search problems can be made fully retroactive with a $O(\log m)$ overhead in space and time, where m is the number of operations.

Proof (Sketch)

- Use balances search tree / segment tree
- Each leaf corresponds to an update
- Node n corresponds to interval of time $[s_n, e_n]$
- If an object exists in the time interval $[s, e]$, then it appears in node n if $[s_n, e_n] \subseteq [s, e]$ if none of n's ancestors' are $\subseteq [s, e]$
- Each object occurs in $O(\log n)$ nodes

Proof (Sketch, cnt.)

- To query find leaf corresponding to t
- Look at ancestors to find all objects
- $O(\log m)$ results which can be combined in $O(\log m)$ time

- Data structure is stored for each operation!
- $O(\log m)$ space overhead!
Lemma: Lower Bound

Rewinding m operations has a lower bound of $\Omega(m)$ overhead

- general case
Lemma: Lower Bound

Rewinding m operations has a lower bound of $\Omega(m)$ overhead

- general case

Proof (Sketch)

- two values X and Y
- initially $X = \emptyset$ and $Y = \emptyset$
- supported operations
 - $X = x$
 - $Y+ = value$
 - $Y = X \cdot Y$
 - query Y
Lemma: Lower Bound
Rewinding m operations has a lower bound of $\Omega(m)$ overhead.

Proof (Sketch)
- two values X and Y
- initially $X = \emptyset$ and $Y = \emptyset$
- supported operations
 - $X = x$
 - $Y+ = value$
 - $Y = X \cdot Y$
 - query Y

Proof (Sketch, cnt.)
- perform operations
 - $Y+ = a_n$
 - $Y = X \cdot Y$
 - $Y+ = a_{n-1}$
 - $Y = X \cdot Y$
 - ...
 - $Y+ = a_0$
- what are we computing here? PINGO
Lemma: Lower Bound
Rewinding m operations has a lower bound of $\Omega(m)$ overhead

Proof (Sketch)
- two values X and Y
- initially $X = \emptyset$ and $Y = \emptyset$
- supported operations
 - $X = x$
 - $Y+ = value$
 - $Y = X \cdot Y$
 - query Y

Proof (Sketch, cnt.)
- perform operations
 - $Y+ = a_n$
 - $Y = X \cdot Y$
 - $Y+ = a_{n-1}$
 - $Y = X \cdot Y$
 - …
 - $Y+ = a_0$
- what are we computing here?
- $Y = a_n \cdot X^n + a_{n-1}X^{n-1} + \cdots + a_0$
General Full Retroactivity

Lemma: Lower Bound

Rewinding m operations has a lower bound of $\Omega(m)$ overhead

Proof (Sketch)

- two values X and Y
- initially $X = \emptyset$ and $Y = \emptyset$
- supported operations
 - $X = x$
 - $Y+ = \text{value}$
 - $Y = X \cdot Y$
 - query Y

Proof (Sketch, cnt.)

- perform operations
 - $Y+ = a_n$
 - $Y = X \cdot Y$
 - $Y+ = a_{n-1}$
 - $Y = X \cdot Y$
 - ...
 - $Y+ = a_0$
- what are we computing here? PINGO
- $Y = a_n \cdot X^n + a_{n-1}X^{n-1} + \cdots + a_0$
- evaluate polynomial at $X = x$ using $t=0, X=x$
Lemma: Lower Bound
Rewinding \(m \) operations has a lower bound of \(\Omega(m) \) overhead.

Proof (Sketch)
- two values \(X \) and \(Y \)
- initially \(X = \emptyset \) and \(Y = \emptyset \)
- supported operations
 - \(X = x \)
 - \(Y = \text{value} \)
 - \(Y = X \cdot Y \)
 - \(\text{query} \ Y \)

Proof (Sketch, cnt.)
- perform operations
 - \(Y+ = a_n \)
 - \(Y = X \cdot Y \)
 - \(Y+ = a_{n=1} \)
 - \(Y = X \cdot Y \)
 - \(\ldots \)
 - \(Y+ = a_0 \)
- what are we computing here? PINGO
- \(Y = a_n \cdot X^n + a_{n-1} X^{n-1} + \cdots + a_0 \)
- evaluate polynomial at \(X = x \) using \(t=0, X=x \)
- this requires \(\Omega(n) \) time [FHM01]
Priority Queues: Partial Retroactivity (1/6)

- priority queue with
 - insert
 - delete-min
- delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ
A priority queue can be partial retroactive with only $O(\log n)$ overhead per partially retroactive operation.

![Graph](image)
Priority Queues: Partial Retroactivity (1/6)

- priority queue with
 - insert
 - delete-min
- delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ
A priority queue can be partial retroactive with only $O(\log n)$ overhead per partially retroactive operation.
Priority Queues: Partial Retroactivity (1/6)

- priority queue with
 - insert
 - delete-min
- delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only \(O(\log n) \) overhead per partially retroactive operation.
what is the problem with
- \text{INSERT}(t, \text{delete-min}())
- \text{INSERT}(t, \text{insert}(i))

Priority Queues: Partial Retroactivity (2/6)
what is the problem with
- INSERT(t, delete-min())
- INSERT(t, insert(i))

- INSERT(t, delete-min()) creates chain-reaction
- INSERT(t, insert(i)) creates chain-reaction
what is the problem with
- \text{INSERT}(t, \text{delete-min}())
- \text{INSERT}(t, \text{insert}(i))

- \text{INSERT}(t, \text{delete-min}()) \text{ creates chain-reaction}
- \text{INSERT}(t, \text{insert}(i)) \text{ creates chain-reaction}
what is the problem with

- \text{INSERT}(t, \text{delete-min}())
- \text{INSERT}(t, \text{insert}(i))

\text{INSERT}(t, \text{delete-min}()) \text{ creates chain-reaction}

- \text{INSERT}(t, \text{insert}(i)) \text{ creates chain-reaction}

\text{can we solve DELETE}(t, \text{delete-min}()) \text{ using} \\
\text{INSERT}(t, \text{insert}(i))?

PINGO
what is the problem with
- `INSERT(t, delete-min())`
- `INSERT(t, insert(i))`

- `INSERT(t, delete-min())` creates chain-reaction
- `INSERT(t, insert(i))` creates chain-reaction

can we solve `DELETE(t, delete-min())` using `INSERT(t, insert(i))`? PINGO
- insert deleted minimum right after deletion
let Q_t be elements in PQ at time t

- what values are in Q_∞? **partial retroactivity**
- what value inserts $\text{INSERT}(t, \text{insert}(\nu))$ in Q_∞
- values is $\max\{\nu, \nu': \nu' \text{ deleted at time } \geq t\}$
- maintaining deleted elements is hard **can change a lot**
Priority Queues: Partial Retroactivity (3/6)

- let Q_t be elements in PQ at time t

- what values are in Q_{∞}? partial retroactivity
- what value inserts $\text{INSERT}(t, \text{insert}(v))$ in Q_{∞}
- values is $\max\{v, v': v' \text{ deleted at time } \geq t\}$
- maintaining deleted elements is hard can change a lot

Definition: Bridge

A time t' is a bridge if $Q_{t'} \subseteq Q_{\infty}$

- all elements present at t' are present at t_{∞}
Priority Queues: Partial Retroactivity (3/6)

- Let Q_t be elements in PQ at time t
- What values are in Q_∞? partial retroactivity
- What value inserts $\text{INSERT}(t, \text{insert}(v))$ in Q_∞
- Values is $\max\{v, v': v' \text{ deleted at time } \geq t\}$
- Maintaining deleted elements is hard can change a lot

Definition: Bridge

A time t' is a bridge if $Q_{t'} \subseteq Q_\infty$

- All elements present at t' are present at t_∞

What times are bridges? PINGO
Priority Queues: Partial Retroactivity (3/6)

- let Q_t be elements in PQ at time t

- what values are in Q_∞? partial retroactivity
- what value inserts $\text{INSERT}(t, \text{insert}(v))$ in Q_∞
- values is $\max\{v, v': v' \text{ deleted at time } \geq t\}$
- maintaining deleted elements is hard can change a lot

Definition: Bridge

A time t' is a bridge if $Q_{t'} \subseteq Q_\infty$

- all elements present at t' are present at t_∞
Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

$$\max\{v': v' \text{ deleted at time } \geq t\} = \max\{v' \in Q_\infty: v' \text{ inserted at time } \geq t'\}$$
Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

$$\max\{v': v' \text{ deleted at time } \geq t\} = \max\{v' \notin Q_\infty: v' \text{ inserted at time } \geq t'\}$$

Proof (Sketch)

- $\max\{v' \notin Q_\infty: v' \text{ inserted at time } \geq t'\} \in \{v': v' \text{ deleted at time } \geq t\}$
 - if maximum value is deleted between t' and t
 - then this time is a bridge
 - contradicting that t' is bridge preceding t
Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

$$\max\{v' : v' \text{ deleted at time } \geq t\} = \max\{v' \notin Q_\infty : v' \text{ inserted at time } \geq t'\}$$

Proof (Sketch)

- $\max\{v' \notin Q_\infty : v' \text{ inserted at time } \geq t'\} \in \{v' : v' \text{ deleted at time } \geq t\}$
 - if maximum value is deleted between t' and t
 - then this time is a bridge
 - contradicting that t' is bridge preceding t

Proof (Sketch, cnt.)

- $\max\{v' \notin Q_\infty : v' \text{ inserted at time } \geq t'\} \in \{v' \notin Q_\infty : v' \text{ inserted at time } \geq t'\}$
 - if v' is deleted at some time $\geq t$
 - then it is not in Q_∞
Priority Queues: Partial Retroactivity (4/6)

Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

$$\max\{v' : v' \text{ deleted at time } \geq t\}$$

$$= \max\{v' \notin Q_\infty : v' \text{ inserted at time } \geq t'\}$$

Proof (Sketch)

- $\max\{v' \notin Q_\infty : v' \text{ inserted at time } \geq t'\} \in \{v' : v' \text{ deleted at time } \geq t\}$
 - if maximum value is deleted between t' and t
 - then this time is a bridge
 - contradicting that t' is bridge preceding t

- $\max\{v, v' \notin Q_\infty : v' \text{ inserted at time } \geq t'\}$

Proof (Sketch, cnt.)

- $\max\{v' : v' \text{ deleted at time } \geq t\} \in \{v' \notin Q_\infty : v' \text{ inserted at time } \geq t'\}$
 - if v' is deleted at some time $\geq t$
 - then it is not in Q_∞

- what values are in Q_∞? partial retroactivity
- what value inserts $\text{INSERT}(t, \text{insert}(v))$ in Q_∞
- $\max\{v, v' \notin Q_\infty : v' \text{ inserted at time } \geq t'\}$
keep track of inserted values
use balanced binary search trees for $O(\log n)$ overhead
Priority Queues: Partial Retroactivity (5/6)

- keep track of inserted values
- use balanced binary search trees for $O(\log n)$ overhead

- BBST for Q_{∞} changed for each update
Priority Queues: Partial Retroactivity (5/6)

- keep track of inserted values
- use balanced binary search trees for $O(\log n)$ overhead

- BBST for Q_∞ changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store $\max\{v' \not\in Q_\infty : v' \text{ inserted in subtree of } x\}$

- use third BBST and find prefix of updates summing to 0 requires $O(\log n)$ time as we traverse tree at most twice this results in bridge t'
- use second BBST to identify maximum value not in Q_∞ on path to t' since BBST is augmented with these values, this requires $O(\log n)$ time
- update all BBSTs in $O(\log n)$ time
Priority Queues: Partial Retroactivity (5/6)

- keep track of inserted values
- use balanced binary search trees for $O(\log n)$ overhead

- BBST for Q_∞ changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store
 $\max\{v' \notin Q_\infty : v' \text{ inserted in subtree of } x\}$
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with $v \in Q_\infty$, 1 for inserts with $v \notin Q_\infty$ and -1 for delete-mins
 - inner nodes store subtree sums
Priority Queues: Partial Retroactivity (5/6)

- keep track of inserted values
- use balanced binary search trees for $O(\log n)$ overhead

BBST for Q_{∞} changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store
 $\max\{v' \notin Q_{\infty} : v' \text{ inserted in subtree of } x\}$
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with $v \in Q_{\infty}$, 1 for
 inserts with $v \notin Q_{\infty}$ and -1 for delete-mins
 - inner nodes store subtree sums

how can we find bridges? PINGO
Priority Queues: Partial Retroactivity (5/6)

- keep track of inserted values
- use balanced binary search trees for $O(\log n)$ overhead

- BBST for Q_∞ changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store
 $\max\{v' \not\in Q_\infty : v' \text{ inserted in subtree of } x\}$
 - BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with $v \in Q_\infty$, 1 for inserts with $v \not\in Q_\infty$ and -1 for delete-mins
 - inner nodes store subtree sums

- how can we find bridges? PINGO
- use third BBST and find prefix of updates summing to 0
- requires $O(\log n)$ time as we traverse tree at most twice
- this results in bridge t'
keep track of inserted values
use balanced binary search trees for $O(\log n)$ overhead

BBST for Q_∞ changed for each update
BBST where leaves are inserts ordered by time augmented with
 for each node x store $\max\{v' \notin Q_\infty : v'$ inserted in subtree of $x\}$
BBST where leaves are all updates ordered by time augmented with
 leaves store 0 for inserts with $v \in Q_\infty$, 1 for inserts with $v \notin Q_\infty$ and -1 for delete-mins
 inner nodes store subtree sums

how can we find bridges?
use third BBST and find prefix of updates summing to 0
requires $O(\log n)$ time as we traverse tree at most twice
this results in bridge t'

use second BBST to identify maximum value not in Q_∞ on path to t'
since BBST is augmented with these values, this requires $O(\log n)$ time
keep track of inserted values
use balanced binary search trees for $O(\log n)$ overhead

BBST for Q_∞ changed for each update
BBST where leaves are inserts ordered by time augmented with
 for each node x store
 $\max\{v' \notin Q_\infty : v'$ inserted in subtree of $x\}$
BBST where leaves are all updates ordered by time augmented with
 leaves store 0 for inserts with $v \in Q_\infty$, 1 for inserts with $v \notin Q_\infty$ and -1 for delete-mins
 inner nodes store subtree sums

how can we find bridges? PINGO
use third BBST and find prefix of updates summing to 0
requires $O(\log n)$ time as we traverse tree at most twice
this results in bridge t'

use second BBST to identify maximum value not in Q_∞ on path to t'
since BBST is augmented with these values, this requires $O(\log n)$ time

update all BBSTs in $O(\log n)$ time
Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only $O(\log n)$ overhead per partially retroactive operation.

- requires three BBSTs
- updates need to update all BBSTs
Conclusion and Outlook

This Lecture
- retroactive data structures

Advanced Data Structures
- retroactive PQ
- String B-tree
- SA & LCP
- Successor
- CSA
- RMQ
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs
Conclusion and Outlook

This Lecture
- retroactive data structures

Next Lecture
- (minimal) perfect hashing

Advanced Data Structures
- retroactive PQ
- String B-tree
- SA & LCP
- Successor
- CSA
- RMQ
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs