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instead of storing all solutions

store solutions for intervals of length 2k for
every k

M[0..n)[0..⌊log n⌋)

Queries
query rmq(A, s, e) is answered using two
subqueries

let ℓ = ⌊log(e − s+1)⌋
m1 = rmq(A, s, s + 2ℓ − 1) and
m2 = rmq(A, e − 2ℓ + 1, e)

rmq(A, s, e) = argminm∈{m1,m2} A[m]

Construction

M[x][ℓ] = rmq(A, x , x + 2ℓ − 1)

= argmin{A[i] : i ∈ [x , x + 2ℓ)}

= argmin{A[i] : i ∈ {rmq(A, x , x + 2ℓ−1 − 1),

= rmq(A, x + 2ℓ−1, x + 2ℓ − 1)}}
= argmin{A[i] : i ∈ {M[x][ℓ− 1],

= M[x + 2ℓ−1][ℓ− 1]}}

dynamic programming in O(n log n) time
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lecture based on: http://courses.csail.mit.
edu/6.851/spring12/lectures/L01

Persistence
change in the past creates new branch

similar to version control

everything old/new remains the same

Retroactivity
change in the past affects future

make change in earlier version changes all later
versions

Definition: Partial Persistence
Only the latest version can be updated

Definition: Full Persistence
Any version can be updated

Definition: Confluent Persistence
Like full persistence, but two versions can be
combined to a new version

Definition: Functional
Nodes cannot be modified, only new nodes can be
created
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Operations
INSERT(t, operation): insert operation at time t

DELETE(t): delete operation at time t

QUERY(t, query): ask query at time t

for a priority queue updates are
insert
delete-min

time is integer ò for simplicity otherwise use
order-maintenance data structure

0 1 2 3 4 now time

insert(7) insert(2) insert(3) del-min del-min queries

Definition: Partial Retroactivity
QUERY is only allowed for t = ∞ ò now

Definition: Full Retroactivity
QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity
INSERT, DELETE, and QUERY at any time t but also
identify changed QUERY results

6/18 2023-07-03 Florian Kurpicz | Advanced Data Structures | 10 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Retroactive Data Structures



Operations
INSERT(t, operation): insert operation at time t

DELETE(t): delete operation at time t

QUERY(t, query): ask query at time t

for a priority queue updates are
insert
delete-min

time is integer ò for simplicity otherwise use
order-maintenance data structure

0 1 2 3 4 now time

insert(7) insert(2) insert(3) del-min del-min queries

Definition: Partial Retroactivity
QUERY is only allowed for t = ∞ ò now

Definition: Full Retroactivity
QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity
INSERT, DELETE, and QUERY at any time t but also
identify changed QUERY results

6/18 2023-07-03 Florian Kurpicz | Advanced Data Structures | 10 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Retroactive Data Structures



Operations
INSERT(t, operation): insert operation at time t

DELETE(t): delete operation at time t

QUERY(t, query): ask query at time t

for a priority queue updates are
insert
delete-min

time is integer ò for simplicity otherwise use
order-maintenance data structure

0 1 2 3 4 now time

insert(7) insert(2) insert(3) del-min del-min queries

Definition: Partial Retroactivity
QUERY is only allowed for t = ∞ ò now

Definition: Full Retroactivity
QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity
INSERT, DELETE, and QUERY at any time t but also
identify changed QUERY results

6/18 2023-07-03 Florian Kurpicz | Advanced Data Structures | 10 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Retroactive Data Structures



Operations
INSERT(t, operation): insert operation at time t

DELETE(t): delete operation at time t

QUERY(t, query): ask query at time t

for a priority queue updates are
insert
delete-min

time is integer ò for simplicity otherwise use
order-maintenance data structure

0 1 2 3 4 now time

insert(7) insert(2) insert(3) del-min del-min queries

Definition: Partial Retroactivity
QUERY is only allowed for t = ∞ ò now

Definition: Full Retroactivity
QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity
INSERT, DELETE, and QUERY at any time t but also
identify changed QUERY results

6/18 2023-07-03 Florian Kurpicz | Advanced Data Structures | 10 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Retroactive Data Structures



invertible updates
operation op−1 such that op−1(op(·)) = ∅
DELETE becomes INSERT inverse operation

makes partial retroactivity easy

INSERT(t, operation) = INSERT(∞, operation)

DELETE(t, op) = INSERT(∞, op−1)

Partial Retroactivity
hashing

dynamic dictionaries

array with updates only ò A[i]+ = value
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Definition: Search Problem
A search problem is a problem on a set S of objects
with operations insert , delete, and query(x ,S)

Definition: Decomposable Search Problem
A decomposable search problem is a search
problem, with

query(x ,A ∪ B) = f (query(x ,A), query(x ,B))

with f requiring O(1) time

which decomposable search problem have we
seen PINGO

predecessor and successor search

range minimum queries

nearest neighbor

point location

. . .

these types of problems are also “easy”

8/18 2023-07-03 Florian Kurpicz | Advanced Data Structures | 10 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Search Problems

https://kurpicz.org


Definition: Search Problem
A search problem is a problem on a set S of objects
with operations insert , delete, and query(x ,S)

Definition: Decomposable Search Problem
A decomposable search problem is a search
problem, with

query(x ,A ∪ B) = f (query(x ,A), query(x ,B))

with f requiring O(1) time

which decomposable search problem have we
seen PINGO

predecessor and successor search

range minimum queries

nearest neighbor

point location

. . .

these types of problems are also “easy”

8/18 2023-07-03 Florian Kurpicz | Advanced Data Structures | 10 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Search Problems

https://kurpicz.org


Definition: Search Problem
A search problem is a problem on a set S of objects
with operations insert , delete, and query(x ,S)

Definition: Decomposable Search Problem
A decomposable search problem is a search
problem, with

query(x ,A ∪ B) = f (query(x ,A), query(x ,B))

with f requiring O(1) time

which decomposable search problem have we
seen PINGO

predecessor and successor search

range minimum queries

nearest neighbor

point location

. . .

these types of problems are also “easy”

8/18 2023-07-03 Florian Kurpicz | Advanced Data Structures | 10 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Search Problems

https://kurpicz.org


Definition: Search Problem
A search problem is a problem on a set S of objects
with operations insert , delete, and query(x ,S)

Definition: Decomposable Search Problem
A decomposable search problem is a search
problem, with

query(x ,A ∪ B) = f (query(x ,A), query(x ,B))

with f requiring O(1) time

which decomposable search problem have we
seen PINGO

predecessor and successor search

range minimum queries

nearest neighbor

point location

. . .

these types of problems are also “easy”

8/18 2023-07-03 Florian Kurpicz | Advanced Data Structures | 10 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Search Problems

https://kurpicz.org


Definition: Search Problem
A search problem is a problem on a set S of objects
with operations insert , delete, and query(x ,S)

Definition: Decomposable Search Problem
A decomposable search problem is a search
problem, with

query(x ,A ∪ B) = f (query(x ,A), query(x ,B))

with f requiring O(1) time

which decomposable search problem have we
seen PINGO

predecessor and successor search

range minimum queries

nearest neighbor

point location

. . .

these types of problems are also “easy”

8/18 2023-07-03 Florian Kurpicz | Advanced Data Structures | 10 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Search Problems

https://kurpicz.org


Lemma: Full Retroactivity for DSP
Every decomposable search problems can be made
fully retroactive with a O(logm) overhead in space
and time, where m is the number of operations

Proof (Sketch)
use balances search tree ò segment tree

each leaf corresponds to an update

node n corresponds to interval of time [sn, en]

if an object exists in the time interval [s, e], then
it appears in node n if [sn, en] ⊆ [s, e] if none of
n’s ancestors’ are ⊆ [s, e] �

each object occurs in O(log n) nodes

Proof (Sketch, cnt.)
to query find leaf corresponding to t

look at ancestors to find all objects

O(logm) results which can be combined in
O(logm) time

data structure is stored for each operation!

O(logm) space overhead!
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Lemma: Lower Bound
Rewinding m operations has a lower bound of Ω(m)
overhead

general case

Proof (Sketch)
two values X and Y

initially X = ∅ and Y = ∅
supported operations

X = x
Y+ = value
Y = X · Y
query Y

Proof (Sketch, cnt.)
perform operations

Y+ = an

Y = X · Y
Y+ = an=1

Y = X · Y
. . .
Y+ = a0

what are we computing here? PINGO

Y = an · X n + an−1X n−1 + · · ·+ a0

evaluate polynomial at X = x using t=0,X=x

this requires Ω(n) time [FHM01]
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priority queue with
insert
delete-min

delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ
A priority queue can be partial retroactive with only
O(log n) overhead per partially retroactive operation

va
lu

e

time
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what is the problem with
INSERT(t,delete-min())
INSERT(t,insert(i))

INSERT(t,delete-min()) creates chain-reaction

INSERT(t,insert(i)) creates chain-reaction

can we solve DELETE(t,delete-min()) using
INSERT(t,insert(i))? PINGO

insert deleted minimum right after deletion

va
lu

e

time
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let Qt be elements in PQ at time t

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

values is max{v , v ′ : v ′ deleted at time ≥ t}
maintaining deleted elements is hard ò can
change a lot

Definition: Bridge
A time t ′ is a bridge if Qt′ ⊆ Q∞

all elements present at t ′ are present at t∞

va
lu

e

time

A CB

what times are bridges? PINGO
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Lemma: Deletions after Bridges
If time t ′ is closest bridge preceding time t , then

max{v ′ : v ′ deleted at time ≥ t}

=

max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

Proof (Sketch)
max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′} ∈
{v ′ : v ′ deleted at time ≥ t}

if maximum value is deleted between t ′ and t
then this time is a bridge
contradicting that t ′ is bridge preceding t

Proof (Sketch, cnt.)
max{v ′ : v ′ deleted at time ≥ t} ∈ {v ′ /∈
Q∞ : v ′ inserted at time ≥ t ′}

if v ′ is deleted at some time ≥ t
then it is not in Q∞

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

max{v , v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}
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keep track of inserted values

use balanced binary search trees for O(log n)
overhead

BBST for Q∞ ò changed for each update

BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

15/18 2023-07-03 Florian Kurpicz | Advanced Data Structures | 10 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org


keep track of inserted values

use balanced binary search trees for O(log n)
overhead

BBST for Q∞ ò changed for each update

BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

15/18 2023-07-03 Florian Kurpicz | Advanced Data Structures | 10 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org


keep track of inserted values

use balanced binary search trees for O(log n)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

15/18 2023-07-03 Florian Kurpicz | Advanced Data Structures | 10 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org


keep track of inserted values

use balanced binary search trees for O(log n)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

15/18 2023-07-03 Florian Kurpicz | Advanced Data Structures | 10 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org


keep track of inserted values

use balanced binary search trees for O(log n)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

15/18 2023-07-03 Florian Kurpicz | Advanced Data Structures | 10 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org


keep track of inserted values

use balanced binary search trees for O(log n)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

15/18 2023-07-03 Florian Kurpicz | Advanced Data Structures | 10 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org


keep track of inserted values

use balanced binary search trees for O(log n)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

15/18 2023-07-03 Florian Kurpicz | Advanced Data Structures | 10 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org


keep track of inserted values

use balanced binary search trees for O(log n)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

15/18 2023-07-03 Florian Kurpicz | Advanced Data Structures | 10 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org


Lemma: Partial Retroactive PQ
A priority queue can be partial retroactive with only
O(log n) overhead per partially retroactive operation

requires three BBSTs

updates need to update all BBSTs
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