Advanced Data Structures

Lecture 11: Minimal Perfect Hashing

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (®)(1)(0): www.creativecommons.org/licenses/by-sa/4.0 |commit c70729e compiled at 2023-07-10-13:34

https://pingo.scc.kit.edu/489786

Recap: Retroactive Data Structures

Operations

- INSERT(t, operation): insert operation at time t
- $\operatorname{DELETE}(t)$: delete operation at time t
- QUERY(t, query): ask query at time t
- for a priority queue updates are
- insert
- delete-min
- time is integer (i) for simplicity otherwise use order-maintenance data structure

Recap: Retroactive Data Structures

Operations

- INSERT(t, operation): insert operation at time t
- $\operatorname{DELETE}(t)$: delete operation at time t
- QUERY(t, query): ask query at time t
- for a priority queue updates are
- insert
- delete-min
- time is integer (i) for simplicity otherwise use order-maintenance data structure

Definition: Partial Retroactivity

QUERY is only allowed for $t=\infty$ (i) now

Recap: Retroactive Data Structures

Operations

- INSERT(t, operation): insert operation at time t
- $\operatorname{DELETE}(t)$: delete operation at time t
- QUERY(t, query): ask query at time t
- for a priority queue updates are
- insert
- delete-min
- time is integer (i) for simplicity otherwise use order-maintenance data structure

Definition: Partial Retroactivity

QUERY is only allowed for $t=\infty$ (i) now

Definition: Full Retroactivity

QUERY is allowed at any time t

Recap: Retroactive Data Structures

Operations

- INSERT(t, operation): insert operation at time t
- $\operatorname{DELETE}(t)$: delete operation at time t
- QUERY(t, query): ask query at time t
- for a priority queue updates are
- insert
- delete-min
- time is integer (i) for simplicity otherwise use order-maintenance data structure

Definition: Partial Retroactivity

QUERY is only allowed for $t=\infty$ (i) now

Definition: Full Retroactivity

QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity

INSERT, DELETE, and QUERY at any time t but also identify changed QUERY results

Hashing (1/2)

- $h:\{0, \ldots, u-1\} \rightarrow\{0, \ldots, m-1\}$
- n objects
- from universe $U=\{0, \ldots, u-1\}$
- hash table of size m (1) m close to n
- $m \ll u$

Hashing (1/2)

- $h:\{0, \ldots, u-1\} \rightarrow\{0, \ldots, m-1\}$
- n objects
- from universe $U=\{0, \ldots, u-1\}$
- hash table of size m (i) m close to n
- $m \ll u$

Definition: Totally Random

- $\mathbb{P}[h(x)=t]=1 / m$
- independent of $h(y)$ for all $x \neq y \in U$
- requires $\Theta(u \log m)$ bits of space to store (i) too big

Hashing (1/2)

- $h:\{0, \ldots, u-1\} \rightarrow\{0, \ldots, m-1\}$
- n objects
- from universe $U=\{0, \ldots, u-1\}$
- hash table of size m (i) m close to n
- $m \ll u$

Definition: Totally Random

- $\mathbb{P}[h(x)=t]=1 / m$
- independent of $h(y)$ for all $x \neq y \in U$
- requires $\Theta(u \log m)$ bits of space to store (i) too big

Definition: Universal

- choose h from family H with $\mathbb{P}_{h \in H}[h(x)=h(y)]=O(1 / m)$ for all $x \neq y \in U$
- family is small to enable efficient encoding

Hashing (1/2)

- $h:\{0, \ldots, u-1\} \rightarrow\{0, \ldots, m-1\}$
- n objects
- from universe $U=\{0, \ldots, u-1\}$
- hash table of size m (i) m close to n
- $m \ll u$

Definition: Totally Random

- $\mathbb{P}[h(x)=t]=1 / m$
- independent of $h(y)$ for all $x \neq y \in U$
- requires $\Theta(u \log m)$ bits of space to store (i) too big

Definition: Universal

- choose h from family H with $\mathbb{P}_{h \in H}[h(x)=h(y)]=O(1 / m)$ for all $x \neq y \in U$
- family is small to enable efficient encoding
- $h(x)=(a x \bmod u) \bmod m$ for $0<a<p$ and p being prime $>u$
- $h(x)=a x$ » $(\log u-\log m)$ for m, u being powers of two
- Why is this family easier to store? 羂 PINGO

Hashing (2/2)

Definition: k-wise Independent

- choose h from family H with
$\mathbb{P}\left[h\left(x_{1}\right)=t_{1} \& \ldots \& h\left(x_{k}\right)=t_{k}\right]=O\left(1 / m^{k}\right)$ for distinct $x_{1}, \ldots, x_{k} \in U$

Hashing (2/2)

Definition: k-wise Independent

- choose h from family H with
$\mathbb{P}\left[h\left(x_{1}\right)=t_{1} \& \ldots \& h\left(x_{k}\right)=t_{k}\right]=O\left(1 / m^{k}\right)$ for distinct $x_{1}, \ldots, x_{k} \in U$
- implies universal

Hashing (2/2)

Definition: k-wise Independent

- choose h from family H with
$\mathbb{P}\left[h\left(x_{1}\right)=t_{1} \& \ldots \& h\left(x_{k}\right)=t_{k}\right]=O\left(1 / m^{k}\right)$ for distinct $x_{1}, \ldots, x_{k} \in U$
- implies universal
- $h(x)=\left(\left(\sum_{i=0}^{k-1} a_{i} x^{i}\right) \bmod p\right) \bmod m$ for $0 \leq a_{i}<p$ and $0<a_{k-1}<p$
- pairwise $(k=2)$ independence is stronger than universal
- $h(x)=((a x+b) \bmod u) \bmod m$

Hashing (2/2)

Definition: k-wise Independent

- choose h from family H with $\mathbb{P}\left[h\left(x_{1}\right)=t_{1} \& \ldots \& h\left(x_{k}\right)=t_{k}\right]=O\left(1 / m^{k}\right)$ for distinct $x_{1}, \ldots, x_{k} \in U$
- implies universal
- $h(x)=\left(\left(\sum_{i=0}^{k-1} a_{i} x^{i}\right) \bmod p\right) \bmod m$ for $0 \leq a_{i}<p$ and $0<a_{k-1}<p$
- pairwise $(k=2)$ independence is stronger than universal
- $h(x)=((a x+b) \bmod u) \bmod m$

Definition: Simple Tabulation Hashing

- view x as vector x_{1}, \ldots, x_{c} of characters
- totally random hash table T_{i} for each character
- $h(x)=T_{1}\left(x_{1}\right)$ xor \ldots xor $T_{c}\left(x_{c}\right)$

Hashing (2/2)

Definition: k-wise Independent

- choose h from family H with
$\mathbb{P}\left[h\left(x_{1}\right)=t_{1} \& \ldots \& h\left(x_{k}\right)=t_{k}\right]=O\left(1 / m^{k}\right)$ for distinct $x_{1}, \ldots, x_{k} \in U$
- implies universal
- $h(x)=\left(\left(\sum_{i=0}^{k-1} a_{i} x^{i}\right) \bmod p\right) \bmod m$ for $0 \leq a_{i}<p$ and $0<a_{k-1}<p$
- pairwise $(k=2)$ independence is stronger than universal
- $h(x)=((a x+b) \bmod u) \bmod m$

Definition: Simple Tabulation Hashing

- view x as vector x_{1}, \ldots, x_{c} of characters
- totally random hash table T_{i} for each character
- $h(x)=T_{1}\left(x_{1}\right)$ xor \ldots xor $T_{c}\left(x_{c}\right)$
- Why can we use totally random hash tables?

Hashing (2/2)

Definition: k-wise Independent

- choose h from family H with $\mathbb{P}\left[h\left(x_{1}\right)=t_{1} \& \ldots \& h\left(x_{k}\right)=t_{k}\right]=O\left(1 / m^{k}\right)$ for distinct $x_{1}, \ldots, x_{k} \in U$
- implies universal
- $h(x)=\left(\left(\sum_{i=0}^{k-1} a_{i} x^{i}\right) \bmod p\right) \bmod m$ for $0 \leq a_{i}<p$ and $0<a_{k-1}<p$
- pairwise $(k=2)$ independence is stronger than universal
- $h(x)=((a x+b) \bmod u) \bmod m$

Definition: Simple Tabulation Hashing

- view x as vector x_{1}, \ldots, x_{c} of characters
- totally random hash table T_{i} for each character
- $h(x)=T_{1}\left(x_{1}\right)$ xor \ldots xor $T_{c}\left(x_{c}\right)$
- Why can we use totally random hash tables?羄緮 PINGO
- $O\left(c u^{1 / c}\right)$ space
- $O(c)$ time to compute
- 3-wise independent

Minimal Perfect Hashing

Definition: Perfect Hash Function

- injective hash function
- maps n objects to m slots
- lower space bound for $m=(1+\epsilon) n$ is

$$
\log e-\epsilon \log \frac{1+\epsilon}{\epsilon}
$$

- for m close to n there are likely collisions

Minimal Perfect Hashing

Definition: Perfect Hash Function

- injective hash function
- maps n objects to m slots
- lower space bound for $m=(1+\epsilon) n$ is

$$
\log e-\epsilon \log \frac{1+\epsilon}{\epsilon}
$$

- for m close to n there are likely collisions

Definition: Minimal Perfect Hash Function

- bijective hash function
- maps n objects to $m=n$ slots
- $h: N \rightarrow[0, n)$
- lower space bound as for PHF with $\epsilon=0$:

$$
\log e \approx 1.44
$$

- no collisions

Minimal Perfect Hashing

Definition: Perfect Hash Function

- injective hash function
- maps n objects to m slots
- lower space bound for $m=(1+\epsilon) n$ is

$$
\log e-\epsilon \log \frac{1+\epsilon}{\epsilon}
$$

- for m close to n there are likely collisions

Definition: Minimal Perfect Hash Function

- bijective hash function
- maps n objects to $m=n$ slots
- $h: N \rightarrow[0, n)$
- lower space bound as for PHF with $\epsilon=0$:

$$
\log e \approx 1.44
$$

- no collisions

BDZ (RAM) Algorithm [BPZ13]

- for each object calculate three potential slots $\left(h_{0}, h_{1}\right.$, and $\left.h_{2}\right)$
- for each slot that contains only one object, remove the object from all its other slots
- one slot per object
- if that does not work use other hash functions
- use rank data structure to map slots to $[0, n)$
- example on the board
- 1.95 bits per object when $m=1.23 n$

BDZ (RAM) Algorithm [BPZ13]

- for each object calculate three potential slots $\left(h_{0}, h_{1}\right.$, and $\left.h_{2}\right)$
- for each slot that contains only one object, remove the object from all its other slots
- one slot per object
- if that does not work use other hash functions
- use rank data structure to map slots to $[0, n)$
- example on the board
- 1.95 bits per object when $m=1.23 n$
- how to check if hash function works
- interpret each slot as node in a hypergraph
- objects are edges
- if graph is peelable, we have a feasible mapping

Definition: Peelable

A hypergraph is peelable, if it is possible to obtain a graph without edges by iteratively taking away edges that contain a node with degree 1

[^0]
Compress, Hash, and Displace [BBD09a]

- partition keys into buckets
- set $m=(1+\epsilon) n$ (i) $1.01 n$
- sort partitions by size
- starting with largest bucket, find universal hash function mapping all keys to empty slots
- if key mapped to non-empty slot, try next hash function
- for each bucket store universal hash function
- use rank data structure to map slots to $[0, n)$
- example on the board

Compress, Hash, and Displace [BBD09a]

- partition keys into buckets
- set $m=(1+\epsilon) n$ (i) $1.01 n$
- sort partitions by size
- starting with largest bucket, find universal hash function mapping all keys to empty slots
- if key mapped to non-empty slot, try next hash function
- for each bucket store universal hash function
- use rank data structure to map slots to $[0, n)$
- can be used as PHF
- there are a lot of tricks w.r.t. bucket sizes and size distributions
- requires around 2.05 bits per object
- example on the board

RecSplit Overview [EGV20a]

- partition keys into buckets of size b
- for each bucket compute splitting trees
- split keys into smaller sets
- stop when sets have size ℓ

RecSplit Overview [EGV20a]

- partition keys into buckets of size b
- for each bucket compute splitting trees
- split keys into smaller sets
- stop when sets have size ℓ
- upper aggregation levels have fanout 2
- lower two aggregation levels have fanout

- $\max \{2,\lceil 0.35 \ell+0.55\rceil\}$
- $\max \{2,\lceil 0.21 \ell+0.9\rceil\}$

RecSplit Overview [EGV20a]

- partition keys into buckets of size b
- for each bucket compute splitting trees
- split keys into smaller sets
- stop when sets have size ℓ
- upper aggregation levels have fanout 2

- $\max \{2,\lceil 0.35 \ell+0.55\rceil\}$
- $\max \{2,\lceil 0.21 \ell+0.9\rceil\}$
- last level is leaf level
- find bijections

RecSplit Splitting Tree

- tree structure is well defined
- store information for each node in preorder
- store hash function for each splitter
- encode function using Golomb-Rice

RecSplit Splitting Tree

- tree structure is well defined
- store information for each node in preorder
- store hash function for each splitter
- encode function using Golomb-Rice
- encodings of splitting trees stored in one bit vector
- use Elias-Fano to store
- size of buckets
- starting position of bucket in bit vector

Golomb Encoding [Gol66]

Definition: Golomb Code

Given an integer $x>0$ and a constant $b>0$, the
Golomb code consists of

- $q=\left\lfloor\frac{x}{b}\right\rfloor$
- $r=x-q b=x \% b$
- $c=\lceil\lg b\rceil$
with

$$
(x)_{\mathrm{Gol}(b)}=(q)_{1}(r)_{2}
$$

where $(r)_{2}$ depends on its size

- $r<2^{\lfloor\lg b\rfloor-1}: r$ requires $\lfloor\lg b\rfloor$ bits and starts with a 0
- $r \geq 2^{\lfloor\lg b\rfloor-1}: r$ requires $\lceil\lg b\rceil$ bits and starts with a 1 and it encodes $r-2^{\lfloor\lg b\rfloor-1}$

Golomb Encoding [Gol66]

Definition: Golomb Code

Given an integer $x>0$ and a constant $b>0$, the Golomb code consists of

- $q=\left\lfloor\frac{x}{b}\right\rfloor$
- $r=x-q b=x \% b$
- $c=\lceil\lg b\rceil$
with

$$
(x)_{\mathrm{Gol}(b)}=(q)_{1}(r)_{2}
$$

where $(r)_{2}$ depends on its size

- $r<2^{\lfloor\lg b\rfloor-1}: r$ requires $\lfloor\lg b\rfloor$ bits and starts with a 0
- $r \geq 2\lfloor\lg b\rfloor-1: r$ requires $\lceil\lg b\rceil$ bits and starts with a 1 and it encodes $r-2^{\lfloor\lg b\rfloor-1}$

Golomb Encoding [Gol66]

Definition: Golomb Code

Given an integer $x>0$ and a constant $b>0$, the Golomb code consists of

- $q=\left\lfloor\frac{x}{b}\right\rfloor$
- $r=x-q b=x \% b$
- $c=\lceil\lg b\rceil$
with

$$
(x)_{\mathrm{Gol}(b)}=(q)_{1}(r)_{2}
$$

where $(r)_{2}$ depends on its size

- $r<2^{\lfloor\lg b\rfloor-1}: r$ requires $\lfloor\lg b\rfloor$ bits and starts with a 0
- $r \geq 2^{\lfloor\lg b\rfloor-1}: r$ requires $\lceil\lg b\rceil$ bits and starts with a 1 and it encodes $r-2^{\lfloor\lg b\rfloor-1}$

Golomb Encoding [Gol66]

Definition: Golomb Code

Given an integer $x>0$ and a constant $b>0$, the Golomb code consists of

- $q=\left\lfloor\frac{x}{b}\right\rfloor$
- $r=x-q b=x \% b$
- $c=\lceil\lg b\rceil$
with

$$
(x)_{\mathrm{Gol}(b)}=(q)_{1}(r)_{2}
$$

where $(r)_{2}$ depends on its size

- $r<2^{\lfloor\lg b\rfloor-1}: r$ requires $\lfloor\lg b\rfloor$ bits and starts with a 0
- $r \geq 2\lfloor\lg b\rfloor-1: r$ requires $\lceil\lg b\rceil$ bits and starts with a 1 and it encodes $r-2^{\lfloor\lg b\rfloor-1}$
- b has to be fixed for all codes
- still variable length
- Golomb-Rice is special case where r is power of two
- for $b=5$, there are 4 remainders: $00,01,100,101$, and 110
- $2^{\lfloor\lg 5\rfloor-1}=2$
- $0,1<2$: 00 and 01 require 2 bits
- $2,3,4 \geq 2$: require 3 bits and encode $0,1,2$ starting with 1

Comparison of Codes (1/2)

Comparison of Codes (2/2)

RecSplit Leaves

- find perfect hash function for keys in leaves
- test hash functions brute force
- use hash value modulo ℓ
- set bit in "bit vector" of length ℓ
- all bits set indicates bijection

RecSplit Queries

- find bucket
- follow splitting tree
- accumulate number of objects to the left
- use bijection in leaf
- result is sum of
- objects in previous buckets
- objects to the left in splitting tree
- value of bijection

Parallel RecSplit

- Dominik Bez, Florian Kurpicz, Hans-Peter Lehmann, and Peter Sanders. "High Performance Construction of RecSplit Based Minimal Perfect Hash Functions". In: CoRR abs/2212.09562 (2022)
- results to be presented at ESA'23
- based on a Domink Bez' Master's thesis
- randomly distribute objects in leaf in two sets A and B
- hash objects in both set
- two "bit vectors": cyclic shift one until all bits are set when ORed
- store hash function and rotation
- randomly distribute objects in leaf in two sets A and B
- hash objects in both set
- two "bit vectors": cyclic shift one until all bits are set when ORed
- store hash function and rotation

- randomly distribute objects in leaf in two sets A and B
- hash objects in both set
- two "bit vectors": cyclic shift one until all bits are set when ORed
- store hash function and rotation

Lemma: Rotation Fitting

Let $|A|=\mathbb{A},|B|=\mathbb{B}$, and $\mathbb{P}(R)$ be the probability of finding a bijection using rotation fitting. Let $\mathbb{P}(B)$ denote the probability of finding a bijection using RecSplit's brute force strategy. Then, $\mathbb{P}(R) \rightarrow m \mathbb{P}(B)$ for $m \rightarrow \infty$.

Rotation Fitting (2/3)

Proof (Sketch)

- consider number of different injective functions under cyclic shifts
- bit vector of length m with \mathbb{B} set bits
- total number of equivalence classes under rotation is $\frac{1}{m} \sum_{d \text { divides } \operatorname{gcd}(\mathbb{A}, \mathbb{B})} \phi(d)\binom{m / d}{\mathbb{B} / d}$
- probability of the event \mathcal{I} that there is a rotation has the m least significant bits set is

$$
\mathbb{P}(\mathcal{I}) \geq m \frac{1}{\sum_{d \text { divides } \operatorname{gcd}(\mathbb{A}, \mathbb{B})} \phi(d)\binom{m / d}{\mathbb{B} / d}},
$$

- $\phi(i)=|\{j \leq i: \operatorname{gcd}(i, j)=1\}|$ is Euler's totient function

Proof (Sketch, cnt.)

- determine the probability $\mathbb{P}(R)$ using the events
- \mathcal{A} : popcount $(\mathrm{a})=\mathbb{A}$
- B: popcount $(\mathrm{b})=\mathbb{B}$
- B: found bijection using brute-force

Rotation Fitting (3/3)

Proof (Sketch, ctn.)

$$
\begin{aligned}
\mathbb{P}(R) & =\mathbb{P}(\mathcal{A}) \mathbb{P}(\mathcal{B}) \mathbb{P}(\mathcal{I}) \\
& \geq \frac{m!}{(m-\mathbb{A})!m^{\mathbb{A}}} \cdot \frac{m!}{(m-\mathbb{B})!m^{\mathbb{B}}} \cdot \mathbb{P}(\mathcal{I})=\frac{m!}{m^{m}} \cdot \frac{m!}{\mathbb{A}!\mathbb{B}!} \cdot \mathbb{P}(\mathcal{I})=\mathbb{P}(B) \cdot \frac{m!}{\mathbb{A}!\mathbb{B}!} \cdot \mathbb{P}(\mathcal{I}) \\
& \geq \mathbb{P}(B) \cdot \frac{m!}{\mathbb{A}!\mathbb{B}!} \cdot m \frac{1}{\sum_{d \mid \operatorname{gcd}(\mathbb{A}, \mathbb{B})} \phi(d)\binom{m / d}{b / d}}=\mathbb{P}(B) \cdot m \cdot \frac{1}{m!+(\mathbb{A}!\mathbb{B}!) \sum_{d \mid \operatorname{ccd}(\mathbb{A}, \mathbb{B}), d \neq 1} \phi(d)\binom{m / d}{b / d}} \\
& =\mathbb{P}(B) \cdot m \cdot \frac{1}{1+\sum_{d \mid \operatorname{ccd}(\mathbb{A}, \mathbb{B}), d \neq 1} \phi(d) \frac{(m / d)!\mathbb{A}!\mathbb{B}!}{m!(\mathbb{A} / d)!(\mathbb{B} / d)!}} \\
& \sim \mathbb{P}(B) \cdot m \cdot \frac{1}{1+\sum_{d \mid \operatorname{gcd}(\mathbb{A}, \mathbb{B}), d \neq 1} \phi(d) \sqrt{d} \frac{\mathbb{A}^{\mathbb{A}-\mathrm{A} / d / d \mathbb{B}-\mathbb{B} / d}}{m^{m-m / d}}} \\
& \rightarrow \mathbb{P}(B) \cdot m \text { for } m \rightarrow \infty
\end{aligned}
$$

Parallel RecSplit on the GPU

Computing on the GPU

- several streaming multiprocessors (SMs)
- each SM contains many arithmetic logic units (ALUs)
- several threads operat in lock-step (warp)
- to hide latencies, each SM is oversubscribed with more threads than ALUs
- in CUDA, kernels are functions that can be executed on the GPU
- a kernel is executed on a grid of thread blocks
- use GPU to determine splitting and bijections

Experimental Evaluation

- Intel i7 11700 processor with 8 cores (16 hardware threads (HT)), base clock: 2.5 GHz
- AVX-512.
- Ubuntu 22.04 with Linux 5.15.0
- NVIDIA RTX 3090 GPU
- AMD EPYC 7702P processor with 64 cores (128 hardware threads), base clock: 2.0 GHz
- AVX2
- Ubuntu 20.04 with Linux 5.4.0
- GNU C++ compiler v.11.2.0 (-03
-march=native)

Rotation Fitting

$$
\begin{aligned}
& -\infty \text { Brute force } \\
& \triangle \text { Rotation fitting }
\end{aligned}
$$

Overview Results

Configuration	Method	Bijections	Threads	B/Obj	Constr.	Speedup
$\ell=16, b=2000$	RecSplit [EGV20b]	Brute force	1	1.560	1175.4	1
	RecSplit	Brute force	16	1.560	206.5	5
	SIMDRecSplit	Rotation fitting	1	1.560	138.0	8
	SIMDRecSplit	Rotation fitting	16	1.560	27.9	42
	GPURecSplit	Brute force	GPU	1.560	1.8	655
	GPURecSplit	Rotation fitting	GPU	1.560	1.0	1173
$\ell=18, b=50$	RecSplit [EGV20b]	Brute force	1	1.707	2942.9	1
	RecSplit	Brute force	16	1.713	504.0	5
	SIMDRecSplit	Rotation fitting	1	1.709	58.3	50
	SIMDRecSplit	Rotation fitting	16	1.708	12.3	239
	GPURecSplit	Brute force	GPU	1.708	5.2	564
	GPURecSplit	Rotation fitting	GPU	1.709	0.5	5438
$\ell=24, b=2000$	GPURecSplit	Brute force	GPU	1.496	2300.9	-
	GPURecSplit	Rotation fitting	GPU	1.496	467.9	-

Comparison with Competitors

8-core Intel
1 Thread

8-core Intel 16 Threads

64-core AMD
1 Thread

64-core AMD 128 Threads

$$
\begin{array}{|llll}
\hline- \text { BBHash [Lim+17] } & \rightarrow \text { CHD [BBD09b] } & - \text { - PTHash [PT21b] } & \rightarrow * \text { PTHash-HEM [PT21a] } \\
-\square \text { RecSplit [EGV20b] } & + \text { SIMDRecSplit } & - \text { SicHash [LSW23] } & \\
\hline
\end{array}
$$

Conclusion and Outlook

This Lecture

- minimal perfect hash functions

Advanced Data Structures

Conclusion and Outlook

This Lecture

- minimal perfect hash functions

Next Lecture

- dynamic data structures

Advanced Data Structures

Bibliography I

[BBD09a] Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. "Hash, Displace, and Compress". In: ESA. Volume 5757. Lecture Notes in Computer Science. Springer, 2009, pages 682-693. DOI: 10.1007/978-3-642-04128-0_61.
[BBD09b] Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. "Hash, Displace, and Compress". In: ESA. Volume 5757. Lecture Notes in Computer Science. Springer, 2009, pages 682-693. DOI: 10.1007/978-3-642-04128-0_61.
[Bez+22] Dominik Bez, Florian Kurpicz, Hans-Peter Lehmann, and Peter Sanders. "High Performance Construction of RecSplit Based Minimal Perfect Hash Functions". In: CoRR abs/2212.09562 (2022).
[BPZ13] Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. "Practical perfect hashing in nearly optimal space". In: Inf. Syst. 38.1 (2013), pages 108-131. DOI: 10.1016/j.is.2012.06.002.

Bibliography II

[EGV20a] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. "RecSplit: Minimal Perfect Hashing via Recursive Splitting". In: ALENEX. SIAM, 2020, pages 175-185. DOI: 10.1137/1.9781611976007.14.
[EGV20b] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. "RecSplit: Minimal Perfect Hashing via Recursive Splitting". In: ALENEX. SIAM, 2020, pages 175-185. DOI: 10.1137/1.9781611976007.14.
[Gol66] Solomon W. Golomb. "Run-length Encodings (Corresp.)". In: IEEE Trans. Inf. Theory 12.3 (1966), pages 399-401. DOI: 10.1109/TIT. 1966.1053907.
[Lim+17] Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. "Fast and Scalable Minimal Perfect Hashing for Massive Key Sets". In: SEA. Volume 75. LIPIcs. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2017, 25:1-25:16. DOI: 10.4230/LIPICS. SEA. 2017. 25.

Bibliography III

[LSW23] Hans-Peter Lehmann, Peter Sanders, and Stefan Walzer. "SicHash - Small Irregular Cuckoo Tables for Perfect Hashing". In: ALENEX. SIAM, 2023, pages 176-189. DOI: 10.1137/1.9781611977561. CH15.
[PT21a] Giulio Ermanno Pibiri and Roberto Trani. "Parallel and External-Memory Construction of Minimal Perfect Hash Functions with PTHash". In: CoRR abs/2106.02350 (2021).
[PT21b] Giulio Ermanno Pibiri and Roberto Trani. "PTHash: Revisiting FCH Minimal Perfect Hashing". In: SIGIR. ACM, 2021, pages 1339-1348. DOI: 10.1145/3404835.3462849.

[^0]: - example on the board

