Advanced Data Structures

Lecture 12: Dynamic Bit Vectors and Succinct Trees

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ©(i)(0): www.creativecommons.org/licenses/by-sa/4.0 commit c70729e compiled at 2023-07-17-08:26

PINGO

https://pingo.scc.kit.edu/737426

Recap: Rank Queries on Bit Vectors

rank $_{\alpha}(i) \#$ of α s before i
select $_{\alpha}(j)$ position of j-th α
block
super-block

Recap: Succinct Trees

LOUDS

ab ch id ejkfg
10111100110011001100000

BP

$$
\begin{aligned}
& \text { ab cd ef g h ij k } \\
& (()(()(()()))()(()()))
\end{aligned}
$$

DFUDS

$$
\begin{aligned}
& \text { a bc de fghi jk } \\
& ((()())(())(())))(()))
\end{aligned}
$$

What is a Dynamic Bit Vector?

Dynamic Bit Vector Operations

- insert $(B V, i, b)$ inserts b between $B V[i-1]$ and $B V[i]$
- delete($B V, i$) deletes $B V[i]$
- bitset $(B V, i)$ sets $B[i]=1$
- bitclear $(B V, i)$ sets $B[i]=0$
- bitset and bitclear easy without rank and select
- insert and delete require more work
- 10011010001111
- 01001101001111
- what update time do we want to have?
- $O(n)$
- $O(\log n)$
- $O(1)$
- is doubling the length sufficient (i) amortized

Next

- dynamic bit vector including rank and select

Practical Dynamic Bit Vectors (1/2) [Nav16]

- for dynamic bit vector of size n
- use slowdown factor $O(w)$
- if n is large, $O(w)$ becomes similar to $O(\log n)$
- query time $O(w)$
- $n+O(n / w)$ bits of space
- trade off between query time and space
- use pointer-based balanced search tree
- leaves store pointer to $\Theta\left(w^{2}\right)$ bits
- inner nodes store total number of bits (num) and number of ones (ones) in left subtree

$B V=1000001000000100100000010000101000001011$

Practical Dynamic Bit Vectors (2/2)

Lemma: Practical Dynamic Bit Vectors Space

The dynamic bit vector requires $n+O(n / w)$ bits of space

Proof

- $\Theta\left(w^{2}\right)$ bits per leaf
- $O\left(n / w^{2}\right)$ nodes
- each (inner) node stores 2 pointers (and 2 integers)
- $O(n / w)$ bits of space in addition to n bits

$B V=1000001000000100100000010000101000001011$

Practical Dynamic Bit Vectors: Access

Access

- follow path based on num
- requires $O(\log n)$ time (i) tree is balanced
- return bit
- example on the board

```
8
```

- can return $O\left(w^{2}\right)$ bits at the same cost
- unlike std::vector<bool>

$B V=1000001000000100100000010000101000001011$

Practical Dynamic Bit Vectors: Rank

Rank

- keep track of ones to the left
- update based on ones stored in node
- traverse tree accordingly in $O(\log n)$ time
- popcount on the leaf in $O(w)$ time
- example on the board

$B V=1000001000000100100000010000101000001011$

Practical Dynamic Bit Vectors: Select

Select

- similar to rank
- keep track of ones
- or number of bits minus ones for selecto
- traverse tree accordingly in $O(\log n)$ time
- popcount and scan on the leaf in $O(w)$ time
- example on the board \qquad

$B V=1000001000000100100000010000101000001011$

Practical Dynamic Bit Vectors: Insert

- inserting bit traverses down to leaf
- update num and ones on the path
- insert in bit vector at leaf
- allocate additional w bits if necessary
- tracking used space requires $O(n / w)$ bits space
- at most every w inserts a new allocation
- constant time copy of computer word

$B V=1000001000000100100000010000101000001011$

Maintaining Leaf Sizes (Insert)

- ensure leaves contain $\Theta\left(w^{2}\right)$ bits
- here $<2 w^{2}$ bits
- if leaf contains too many bits split leaf
- splitting can require rebalancing of tree
- (left/right) rotation is sufficient
- example on the board \square

Lemma: Practical Dynamic Bit Vector Insert Time

Inserting a bit in the bit vector requires $O(w+\log n)$ time

Proof

- finding leaf takes $O(w)$ time
- splitting leaf takes $O(w)$ time
- balancing tree takes $O(\log n)$ time

Practical Dynamic Rank Data Structure: Delete

- deleting bit traverses down to leaf
- update num and ones on the path
- delete in bit vector at leaf
- free w bits if possible
- tracking used space requires $O(m / w)$ bits space
- at most every w deletes a free
- are we done?

$B V=100000000100100000010000101000001011$

Maintaining Leaf Sizes (Delete)

- ensure leaves contain $\Theta\left(w^{2}\right)$ bits
- here $>w^{2} / 2$ bits
- if leaf contains not enough bits steal bits from preceding or following leaf or
- merge leaves (i) merging does not result in overflow
- merging can require rebalancing of tree
- (left/right) rotation is sufficient
- example on the board

Lemma: Practical Dynamic Bit Vector Insert Time

Deleting a bit in the bit vector requires $O(w+\log n)$ time

Proof

- finding leaf takes $O(w)$ time
- stealing bit requires $O(1)$ time
- merging leaves takes $O(1)$ time
- balancing tree takes $O(\log n)$ time

Practical Dynamic Rank Data Structure: Set/Unset

- if bit toggles, traverse and update ones
- toggle bit in leaf
- otherwise (unsure if bit toggles) find bit and
- if necessary backtrack path and update ones

Partial Sums

Definition: Partial Sum

Given an array A containing n non-negative numbers all $\leq \ell$

- $\operatorname{sum}(A, i)$ returns $\sum_{j=0}^{i-1} A[j]$ (i) $\operatorname{sum}(A, 0)=0$
- $\operatorname{search}(A, j)$ returns $\min \{i \geq 0, \operatorname{sum}(A, i) \geq j\}$
- what has this to do with rank and select PINGO
- sum can be answered in $O(1)$ time using $O(w n)$ bits of space
- using $S[i]=\operatorname{sum}(A, i)$
- search can be answered in $O(\log n)$ time on S

Sampling

- sample every k-th sum in S of length $\lfloor n / k\rfloor$
- $S[i]=\operatorname{sum}(A, i k)$
- $\operatorname{sum}(A, i)=S[\lfloor i / k\rfloor]+\sum_{j=\lfloor i / k\rfloor k+1}^{i-1} A[j]$
- sum requires $O(k)$ time
- search requires $O(\log n+k)$
- requiring $O(w\lceil n / k\rceil)$ bits of space

Theoretical Dynamic Rank and Select Data Structure

- for $\ell=1$ partial sums is rank and select on bit vectors
- $O(\log n / \log \log n)$ query time [RRR01]
- $n+o(n)$ bits of space
- amortized update times
- $n H_{0}(B V)+o(n)$ bits of space with optimal query [HM14; NS14]
- H_{0} means 0-th order empirical entropy [KM99]
- more on measurements for compressibility in lecture Text-Indexierung

What is a Dynamic Succinct Tree

deletenode(T, v)

- deletes node v such that
- v's children are now children of v 's parent
- cannot delete the root

insertchild(T, v, i, k)

- insert new i-th child of node v such that
- the new node becomes parent of
- the previously i-th to $(i+k-1)$-th child of v
- insertchild ($T, v, i, 0)$ inserts new leaf
- insertchild ($T, v, i, 1$) inserts new parent of only the previously i-th child
- insertchild $(T, v, 1, \delta(v))$ inserts new parent of all v 's children

Example of insertchild

- which one is the hardest representation to insert and delete \square PINGO

Dynamic LOUDS

Definition: LOUDS

Starting at the root, all nodes on the same depth

- are visited from left to right and
- for node $v, \delta(v) 1$'s followed by a 0 are appended to the bit vector that contains an initial 10

insertchild($T, v, i, k)$

- add 1 to node
- add 0 at next level accordingly
- only works efficiently with leaves

deletenode(T, v)

- remove 0 representing leaf
- remove 1 representing edge/child
- only works efficiently with leaves

Dynamic BP

Definition: BP

Starting at the root, traverse the tree in depth-first order and append a

- left parenthesis if a node is visited the first time
- right parenthesis if a node is visited the last time to the bit vector

insertchild(T, v, i, k)

- find parentheses representing subtree under new node
- can be empty if new leaf is inserted
- enclose these parentheses to add new node

deletenode(T, v)

- remove both parentheses belonging to node

Dynamic DFUDS

Definition: DFUDS

Starting at the root, traverse tree in depth-first order and append

- for node $v, \delta(v)$ left parentheses and
- a right parenthesis if v is visited the first time to the bit vector that initially contains a left parenthesis (i) to make them balanced

insertchild(T, v, i, k)

- find position where node is inserted
- if $i=\delta(v)+1$ insert at end of subtree
- insert (${ }^{k}$) © $O(w)$ time if $k=O\left(w^{2}\right)$
- if $k>1$ remove $k-1$ left parentheses from v

deletenode(T, v)

- find node v to delete and remove it from bit vector
- update arity of parent by inserting $\left(^{\delta(v)-1}\right.$ before v 's parent
- if v is leaf remove one left parenthesis instead

Update Times and Dependencies

- LOUDS and BP can be updated in time $O\left(t_{\text {update }}\right)$, where
- $t_{\text {update }}$ is the time to update the bit vector
- LOUDS can be updated in the same time, if the dynamic bit vector supports updates of blocks of size $\delta(v)$ for any node v

Dynamic Range Min-Max Tree

- range min-max trees needed for BP and DFUDS
- support operations in $O(\log n)$ time
- now range min-max trees must be dynamic
- we will see this later when introducing range min-max trees

Conclusion and Outlook

This Lecture

- dynamic bit vectors with rank and select support
- dynamic succinct trees
- partial sum
- theoretical results for dynamic bit vectors

Next Lecture

- recap
- Q\& A
- discussion project

Advanced Data Structures

Bibliography I

[HM14] Meng He and J. Ian Munro. "Space efficient data structures for dynamic orthogonal range counting". In: Comput. Geom. 47.2 (2014), pages 268-281. DOI: 10.1016/j. comgeo. 2013.08.007.
[KM99] S. Rao Kosaraju and Giovanni Manzini. "Compression of Low Entropy Strings with Lempel-Ziv Algorithms". In: SIAM J. Comput. 29.3 (1999), pages 893-911. DOI: 10.1137/S0097539797331105.
[Nav16] Gonzalo Navarro. Compact Data Structures - A Practical Approach. Cambridge University Press, 2016. ISBN: 978-1-10-715238-0.
[NS14] Gonzalo Navarro and Kunihiko Sadakane. "Fully Functional Static and Dynamic Succinct Trees". In: ACM Trans. Algorithms 10.3 (2014), 16:1-16:39. DOI: 10.1145/2601073.
[RRR01] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. "Succinct Dynamic Data Structures". In: WADS. Volume 2125. Lecture Notes in Computer Science. Springer, 2001, pages 426-437. DOI: 10.1007/3-540-44634-6_39.

