
Advanced Data Structures

Lecture 12: Dynamic Bit Vectors and Succinct Trees

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2023-07-17-08:26

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

https://pingo.scc.kit.edu/737426

2/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

PINGO

https://pingo.scc.kit.edu/737426
https://pingo.scc.kit.edu/737426

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)
select1(5)

2

3/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Recap: Rank Queries on Bit Vectors

a

i

kj

hc

e

gf

d

b

LOUDS
ab ch id ejkfg

10111100110011001100000

BP
ab cd ef g h ij k

(()(()(()()))()(()()))

DFUDS
a bc de fghi jk

((((())(())(())))(()))

4/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Recap: Succinct Trees

Dynamic Bit Vector Operations
insert(BV , i, b) inserts b between BV [i − 1]
and BV [i]

delete(BV , i) deletes BV [i]

bitset(BV , i) sets B[i] = 1

bitclear(BV , i) sets B[i] = 0

bitset and bitclear easy without rank and select

insert and delete require more work

10011010001111

01001101001111

what update time do we want to have?
O(n)
O(log n)
O(1)

is doubling the length sufficient ò amortized
analysis PINGO

why not using a linked list? PINGO

Next
dynamic bit vector including rank and select

5/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

What is a Dynamic Bit Vector?

https://kurpicz.org
https://kurpicz.org

for dynamic bit vector of size n

use slowdown factor O(w)

if n is large, O(w) becomes similar to O(log n)

query time O(w)

n + O(n/w) bits of space

trade off between query time and space

use pointer-based balanced search tree

leaves store pointer to Θ(w2) bits

inner nodes store total number of bits (num)
and number of ones (ones) in left subtree

10000010 00000100 10000001

00001010 00001011

num = 16 ones = 3

num = 8 ones = 2 num = 16 ones = 5

num = 8 ones = 2

BV = 10000010 00000100 10000001 00001010 00001011

6/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Practical Dynamic Bit Vectors (1/2) [Nav16]

Lemma: Practical Dynamic Bit Vectors
Space
The dynamic bit vector requires n + O(n/w) bits of
space

Proof
Θ(w2) bits per leaf

O(n/w2) nodes

each (inner) node stores 2 pointers (and 2
integers)

O(n/w) bits of space in addition to n bits

10000010 00000100 10000001

00001010 00001011

num = 16 ones = 3

num = 8 ones = 2 num = 16 ones = 5

num = 8 ones = 2

BV = 10000010 00000100 10000001 00001010 00001011

7/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Practical Dynamic Bit Vectors (2/2)

Access
follow path based on num

requires O(log n) time ò tree is balanced

return bit

example on the board �

can return O(w2) bits at the same cost

unlike std::vector<bool>

10000010 00000100 10000001

00001010 00001011

num = 16 ones = 3

num = 8 ones = 2 num = 16 ones = 5

num = 8 ones = 2

BV = 10000010 00000100 10000001 00001010 00001011

8/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Practical Dynamic Bit Vectors: Access

Rank
keep track of ones to the left

update based on ones stored in node

traverse tree accordingly in O(log n) time

popcount on the leaf in O(w) time

example on the board �

10000010 00000100 10000001

00001010 00001011

num = 16 ones = 3

num = 8 ones = 2 num = 16 ones = 5

num = 8 ones = 2

BV = 10000010 00000100 10000001 00001010 00001011

9/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Practical Dynamic Bit Vectors: Rank

Select
similar to rank

keep track of ones

or number of bits minus ones for select0
traverse tree accordingly in O(log n) time

popcount and scan on the leaf in O(w) time

example on the board �

10000010 00000100 10000001

00001010 00001011

num = 16 ones = 3

num = 8 ones = 2 num = 16 ones = 5

num = 8 ones = 2

BV = 10000010 00000100 10000001 00001010 00001011

10/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Practical Dynamic Bit Vectors: Select

inserting bit traverses down to leaf

update num and ones on the path

insert in bit vector at leaf �

allocate additional w bits if necessary

tracking used space requires O(n/w) bits
space

at most every w inserts a new allocation

constant time copy of computer word

are we done? PINGO

10000010 00000100 10000001

00001010 00001011

num = 16 ones = 3

num = 8 ones = 2 num = 16 ones = 5

num = 8 ones = 2

BV = 10000010 00000100 10000001 00001010 00001011

11/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Practical Dynamic Bit Vectors: Insert

https://kurpicz.org

ensure leaves contain Θ(w2) bits

here < 2w2 bits

if leaf contains too many bits split leaf

splitting can require rebalancing of tree

(left/right) rotation is sufficient

example on the board �

Lemma: Practical Dynamic Bit Vector Insert
Time
Inserting a bit in the bit vector requires O(w + log n)
time

Proof
finding leaf takes O(w) time

splitting leaf takes O(w) time

balancing tree takes O(log n) time

12/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Maintaining Leaf Sizes (Insert)

deleting bit traverses down to leaf

update num and ones on the path

delete in bit vector at leaf

free w bits if possible

tracking used space requires O(m/w) bits
space

at most every w deletes a free

are we done?

1000 00000100 10000001

00001010 00001011

num = 16 ones = 3

num = 8 ones = 2 num = 16 ones = 5

num = 8 ones = 2

BV = 1000 00000100 10000001 00001010 00001011

13/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Practical Dynamic Rank Data Structure: Delete

ensure leaves contain Θ(w2) bits

here > w2/2 bits

if leaf contains not enough bits steal bits from
preceding or following leaf or

merge leaves ò merging does not result in
overflow

merging can require rebalancing of tree

(left/right) rotation is sufficient

example on the board �

Lemma: Practical Dynamic Bit Vector Insert
Time
Deleting a bit in the bit vector requires O(w + log n)
time

Proof
finding leaf takes O(w) time

stealing bit requires O(1) time

merging leaves takes O(1) time

balancing tree takes O(log n) time

14/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Maintaining Leaf Sizes (Delete)

if bit toggles, traverse and update ones

toggle bit in leaf

otherwise (unsure if bit toggles) find bit and

if necessary backtrack path and update ones

15/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Practical Dynamic Rank Data Structure: Set/Unset

Definition: Partial Sum
Given an array A containing n non-negative numbers
all ≤ ℓ

sum(A, i) returns
∑i−1

j=0 A[j] ò sum(A,0)=0

search(A, j) returns min{i ≥ 0, sum(A, i) ≥ j}

what has this to do with rank and select
PINGO

sum can be answered in O(1) time using
O(wn) bits of space

using S[i] = sum(A, i)

search can be answered in O(log n) time on S

Sampling
sample every k -th sum in S of length ⌊n/k⌋
S[i] = sum(A, ik)

sum(A, i) = S[⌊i/k⌋] +
∑i−1

j=⌊i/k⌋k+1 A[j]

sum requires O(k) time

search requires O(log n + k)

requiring O(w⌈n/k⌉) bits of space

16/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Partial Sums

https://kurpicz.org

for ℓ = 1 partial sums is rank and select on bit
vectors

O(log n/ log log n) query time [RRR01]

n + o(n) bits of space

amortized update times

nH0(BV) + o(n) bits of space with optimal
query [HM14; NS14]

H0 means 0-th order empirical entropy [KM99]

more on measurements for compressibility in
lecture Text-Indexierung

17/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Theoretical Dynamic Rank and Select Data Structure

deletenode(T , v)
deletes node v such that

v ’s children are now children of v ’s parent

cannot delete the root

insertchild(T , v , i, k)
insert new i-th child of node v such that

the new node becomes parent of

the previously i-th to (i + k − 1)-th child of v

insertchild(T , v , i, 0) inserts new leaf

insertchild(T , v , i, 1) inserts new parent of only
the previously i-th child

insertchild(T , v , 1, δ(v)) inserts new parent of
all v ’s children

18/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

What is a Dynamic Succinct Tree

r r r r

insertchild(T , r , 2, 1) insertchild(T , r , 3, 0) PINGO
PINGO

insertchild(T , r , 2, 3)

which one is the hardest representation to insert and delete PINGO

19/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Example of insertchild

https://kurpicz.org
https://kurpicz.org
https://kurpicz.org

Definition: LOUDS
Starting at the root, all nodes on the same depth

are visited from left to right and

for node v , δ(v) 1’s followed by a 0 are

appended to the bit vector that contains an initial 10

insertchild(T , v , i, k)
add 1 to node

add 0 at next level accordingly

only works efficiently with leaves �

deletenode(T , v)
remove 0 representing leaf

remove 1 representing edge/child

only works efficiently with leaves �

20/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Dynamic LOUDS

Definition: BP
Starting at the root, traverse the tree in depth-first
order and append a

left parenthesis if a node is visited the first time

right parenthesis if a node is visited the last time

to the bit vector

insertchild(T , v , i, k)
find parentheses representing subtree under
new node

can be empty if new leaf is inserted

enclose these parentheses to add new node

deletenode(T , v)
remove both parentheses belonging to node

21/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Dynamic BP

Definition: DFUDS
Starting at the root, traverse tree in depth-first order
and append

for node v , δ(v) left parentheses and

a right parenthesis if v is visited the first time

to the bit vector that initially contains a left
parenthesis ò to make them balanced

insertchild(T , v , i, k)
find position where node is inserted

if i = δ(v) + 1 insert at end of subtree

insert (k) ò O(w) time if k = O(w2)

if k > 1 remove k − 1 left parentheses from v

deletenode(T , v)
find node v to delete and remove it from bit
vector

update arity of parent by inserting (δ(v)−1

before v ’s parent

if v is leaf remove one left parenthesis instead

22/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Dynamic DFUDS

LOUDS and BP can be updated in time
O(tupdate), where

tupdate is the time to update the bit vector

LOUDS can be updated in the same time, if the
dynamic bit vector supports updates of blocks
of size δ(v) for any node v

Dynamic Range Min-Max Tree
range min-max trees needed for BP and
DFUDS

support operations in O(log n) time

now range min-max trees must be dynamic

we will see this later when introducing range
min-max trees

23/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Update Times and Dependencies

This Lecture
dynamic bit vectors with rank and select support

dynamic succinct trees

partial sum

theoretical results for dynamic bit vectors

Next Lecture
recap

Q& A

discussion project

Advanced Data Structures

static

BV
static

succ. trees

range min-max tree succ. graphs

Successor RMQ

SA & LCPString B-tree

CSAPaCHash

Kd- & Range

Tree

24/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

[HM14] Meng He and J. Ian Munro. “Space efficient data structures for dynamic orthogonal range counting”.
In: Comput. Geom. 47.2 (2014), pages 268–281. DOI: 10.1016/j.comgeo.2013.08.007.

[KM99] S. Rao Kosaraju and Giovanni Manzini. “Compression of Low Entropy Strings with Lempel-Ziv
Algorithms”. In: SIAM J. Comput. 29.3 (1999), pages 893–911. DOI: 10.1137/S0097539797331105.

[Nav16] Gonzalo Navarro. Compact Data Structures - A Practical Approach. Cambridge University Press,
2016. ISBN: 978-1-10-715238-0.

[NS14] Gonzalo Navarro and Kunihiko Sadakane. “Fully Functional Static and Dynamic Succinct Trees”. In:
ACM Trans. Algorithms 10.3 (2014), 16:1–16:39. DOI: 10.1145/2601073.

[RRR01] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. “Succinct Dynamic Data Structures”. In:
WADS. Volume 2125. Lecture Notes in Computer Science. Springer, 2001, pages 426–437. DOI:
10.1007/3-540-44634-6_39.

25/24 2023-07-17 Florian Kurpicz | Advanced Data Structures | 12 Dynamic Bit Vectors & Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1016/j.comgeo.2013.08.007
https://doi.org/10.1137/S0097539797331105
https://doi.org/10.1145/2601073
https://doi.org/10.1007/3-540-44634-6_39

	Appendix

