Recap: Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]
Given a text T of length n, the suffix array (SA) is a permutation of $[1..n]$, such that for $i \leq j \in [1..n]$

$$T[SA[i]..n] \leq T[SA[j]..n]$$

Definition: Longest Common Prefix Array
Given a text T of length n and its SA, the LCP-array is defined as

$$LCP[i] = \begin{cases}
0 & i = 1 \\
\max\{\ell : T[SA[i]..SA[i] + \ell) = T[SA[i-1]..SA[i-1] + \ell)\} & i \neq 1
\end{cases}$$
Naive Computation of the LCP-Array

<table>
<thead>
<tr>
<th>Task</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>given: text T of length n and its suffix array</td>
<td>naive construction requires $O(n^2)$ time</td>
</tr>
<tr>
<td>wanted: longest common prefix array</td>
<td>all-a texts are worst case</td>
</tr>
</tbody>
</table>

Naive Construction
- for each pair $(SA[i - 1], SA[i])$
- compare $T[SA[i - 1] + \ell]$ and $T[SA[i] + \ell]$ until mismatch

- here $LCP[1] = 0, LCP[1] = 0,$ and $LCP[i] = i - 2$
- only distinguishable character is $\$
Properties of the LCP-Array

- do not compare all suffixes naively
- compare only unknown parts

Lemma: Values in LCP-array

Given a text T of length n, its suffix array SA and LCP-array LCP, then

$$\exists i \in [1, n): LCP[i] = \ell > 0 \Rightarrow \exists j \in [1, n): LCP[j] = \ell - 1$$

Proof (Sketch)

- let $LCP[i] = k > 0$
- $T[SA[i]..SA[i] + k) = T[SA[i - 1]..SA[i - 1] + k)$
- $T[SA[i] + 1..SA[i] + k) = T[SA[i - 1] + 1..SA[i - 1] + k)$
- not necessarily next to each other in SA
The Inverse Suffix Array

Definition: Inverse Suffix Array

Given a suffix array SA of length n, the inverse suffix array ($ISA = SA^{-1}$) is

$$ISA[SA[i]] = i$$

for $n \in [1..n]$

- inverse permutation ⬠ as hinted by the name
- where is a suffix in the suffix array

<table>
<thead>
<tr>
<th>T</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>ISA</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>11</td>
<td>13</td>
<td>5</td>
<td>10</td>
<td>12</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Function LinearTimeLCP(T, SA[1..n]):
1. for i = 1, ..., n do $ISA[SA[i]] = i$
2. $\ell = 0$, $LCP[1] = 0$
3. for i = 1, ..., n do
 4. if $ISA[i] \neq 1$ then
 5. $j = SA[ISA[i] - 1]$
 6. while $T[i + \ell] = T[j + \ell]$ do
 7. $\ell = \ell + 1$
 8. $LCP[ISA[i]] = \ell$
 9. $\ell = \max\{0, \ell - 1\}$
6. return LCP

- compute suffixes in text order
- use ISA to find lex. smaller suffix

<table>
<thead>
<tr>
<th>1 2 3 4 5 6 7 8 9 10 11 12 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
</tr>
<tr>
<td>13 12 1 9 6 3 11 2 10 7 4 8 5</td>
</tr>
<tr>
<td>3 8 6 11 13 5 10 12 4 9 7 2 1</td>
</tr>
<tr>
<td>0 \</td>
</tr>
</tbody>
</table>

- correctness and running time

Linear Time Construction [Kas+01]

2023-11-13 Florian Kurpicz | Text Indexing | 04 LCP-Array
Institute of Theoretical Informatics, Algorithm Engineering
The Φ-Array

Definition: Φ-Array

Given a text T of length n and its suffix array SA, the Φ-array is defined (for $i > 1$) as

$$\Phi[SA[i]] = SA[i - 1]$$

- $\Phi[i]$ gives suffix that is needed for comparison
- not a permutation of SA
Better Linear Time Construction [KMP09]

Function Φ-Algorithm(T, $SA[1..n]$):

1. $\Phi[n] = SA[n] \circ SA[1] = n$; T has sentinel
2. for $i = 2, \ldots, n$ do $\Phi[SA[i]] = SA[i-1]$
3. $\ell = 0$
4. for $i = 1, \ldots, n$ do
 5. $j = \Phi[i]$
 6. while $T[i + \ell] = T[j + \ell]$ do
 7. $\ell = \ell + 1$
 8. $\Phi[i] = \ell$
 9. $\ell = \max\{0, \ell - 1\}$
6. for $i = 1, \ldots, n$ do $LCP[i] = \Phi[SA[i]]$
7. return LCP

- compute LCP-array in text order
- reorder LCP-array as final step

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Φ</td>
<td>12</td>
<td>11</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>LCP</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

- example:
- correctness and running time similar

PINGO why better?
Brief Remainder: Cache & Cache Misses

- cache is small but fast memory
- located on CPU
- cache miss is failure to retrieve data from cache
- instead data has to be loaded from main memory

PINGO how much slower is a main memory compared to L1 cache?

Latency Numbers
- L1 cache reference ≈ 1 ns
- L2 cache reference ≈ 4 ns
- main memory reference ≈ 100 ns

Cache Sizes (AMD Ryzen 7 PRO 4750U)
- L1: 256 KiB (8 instances)
- L2: 4 MiB (8 instances)
- L3: 8 MiB (2 instances)
Better Due to Less Cache Misses

Function LinearTimeLCP\((T, SA[1..n])\):

1. for \(i = 1, \ldots, n\) do \(ISA[SA[i]] = i\)
2. \(\ell = 0, LCP[1] = 0\)
3. for \(i = 1, \ldots, n\) do
4. if \(ISA[i] \neq 1\) then
5. \(j = SA[ISA[i] - 1]\)
6. while \(T[i + \ell] = T[j + \ell]\) do
7. \(\ell = \ell + 1\)
8. \(LCP[ISA[i]] = \ell\)
9. \(\ell = \max\{0, \ell - 1\}\)
10. return \(LCP\)

Function \(\Phi\)-Algorithm\((T, SA[1..n])\):

1. \(\Phi[n] = SA[n] \quad SA[1] = n; T\) has sentinel
2. for \(i = 2, \ldots, n\) do \(\Phi[SA[i]] = SA[i - 1]\)
3. \(\ell = 0\)
4. for \(i = 1, \ldots, n\) do
5. \(j = \Phi[i]\)
6. while \(T[i + \ell] = T[j + \ell]\) do
7. \(\ell = \ell + 1\)
8. \(\Phi[i] = \ell\)
9. \(\ell = \max\{0, \ell - 1\}\)
10. for \(i = 1, \ldots, n\) do \(LCP[i] = \Phi[SA[i]]\)
11. return \(LCP\)
<table>
<thead>
<tr>
<th>Pizza & Chili Corpus</th>
<th>Experimental Setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://pizzachili.dcc.uchile.cl/</td>
<td>used text described above</td>
</tr>
<tr>
<td>de facto standard text corpus</td>
<td>on T14s with AMD Ryzen 7 PRO 4750U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Used in Experiment (50 MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dblp XML-Data providing bibliographic information</td>
</tr>
<tr>
<td>DNA DNA reads from the Gutenberg Project</td>
</tr>
<tr>
<td>english English texts of the Gutenberg Project</td>
</tr>
<tr>
<td>sources Source code from the Linux kernel</td>
</tr>
</tbody>
</table>
Practical Comparison of Both Algorithms (2/2)

<table>
<thead>
<tr>
<th>Text</th>
<th>Naive (ms)</th>
<th>[Kas+01] (ms)</th>
<th>[KMP09] (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dblp</td>
<td>9121.6</td>
<td>3479.0</td>
<td>2567.2</td>
</tr>
<tr>
<td>DNA</td>
<td>6763.0</td>
<td>6152.2</td>
<td>4174.6</td>
</tr>
<tr>
<td>english</td>
<td>99811.4</td>
<td>4899.8</td>
<td>3316.2</td>
</tr>
<tr>
<td>sources</td>
<td>12687.6</td>
<td>3486.4</td>
<td>2536.6</td>
</tr>
</tbody>
</table>
Permutated LCP-Array [KMP09]

Definition: PLCP-Array

- \(PLCP[SA[i]] = LCP[i] \)
- \(PLCP[i] = lcp(i, SA[i - 1]) = lcp(i, \Phi[i]) \)

- \(PLCP[i] \geq PLCP[i - 1] - 1 \)
- \(T[i - 1] = T[\Phi[i] - 1] \Rightarrow PLCP[i] \) is reducible
- \(PLCP[i] \) is reducible \(\Rightarrow PLCP[i] = PLCP[i - 1] - 1 \)

- only compute irreducible PLCP-values
- sum of all irreducible PLCP-values is \(\leq n \lg n \)
Recap: Pattern Matching with the Suffix Array

Function SeachSA(T, SA[1..n], P[1..m]):
1 \(\ell = 1, r = n + 1 \)
2 while \(\ell < r \) do
3 \(i = \left\lfloor \frac{\ell + r}{2} \right\rfloor \)
4 if \(P > T[SA[i]..SA[i] + m] \) then
5 \(\ell = i + 1 \)
6 else \(r = i \)
7 \(s = \ell, \ell = \ell - 1, r = n \)
8 while \(\ell < r \) do
9 \(i = \left\lceil \frac{\ell + r}{2} \right\rceil \)
10 if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
11 else \(r = i - 1 \)
12 return \([s, r]\)

Lemma: Running Time SeachSA

The SeachSA answers counting queries in \(O(m \lg n) \) time and reporting queries in \(O(m \lg n + \text{occ}) \) time

Proof (Sketch)
- two binary searches on the SA in \(O(\lg n) \) time
- each comparison requires \(O(m) \) time
- counting in \(O(1) \) additional time
- reporting in \(O(\text{occ}) \) additional time
- comparison of pattern is expensive
Speeding Up Pattern Matching with the LCP-Array (1/4)

- remember how many characters of the pattern and suffix match
- identify how long the prefix of the old and next suffix is
- do so using the LCP-array and
- range minimum queries in Advanced Data Structures

Definition: Range Minimum Queries

Given an array $A[1..m]$, a range minimum query for a range $\ell \leq r \in [1, n)$ returns

$$RMQ_A(\ell, r) = \arg \min \{ A[k] : k \in [\ell, r] \}$$

- $lcp(i, j) = \max\{k : T[i..i+k)\}$
- $lcp(i, j) = T[j..j+k) = LCP[RMQ_{LCP}(i+1, j)]$
- RMQs can be answered in $O(1)$ time and
- require $O(n)$ space
during binary search matched

\(\lambda \) characters with left border \(\ell \) and

\(\rho \) characters with right border \(r \)

w.l.o.g. let \(\lambda \geq \rho \)

middle position \(i \)

decide if continue in \([\ell, i]\) or \([i, r]\)

let \(\xi = lcp(SA[\ell], SA[i]) \) \(\Theta O(1) \) time with RMQs
Speeding Up Pattern Matching with the LCP-Array (3/4)

- Let $\xi = lcp(SA[\ell], SA[i])$

<table>
<thead>
<tr>
<th>$\xi > \lambda$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$</td>
</tr>
<tr>
<td>$\ell = i$ without character comparison</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\xi = \lambda$</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare as before</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\xi < \lambda$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\xi \geq \rho$ and $P[\xi + 1] < T[SA[i] + \xi]$</td>
</tr>
<tr>
<td>$r = i$ and $\rho = \xi$ without character comparison</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ℓ</th>
<th>i</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ</td>
<td>λ</td>
<td>\neq</td>
</tr>
<tr>
<td>$P[\lambda]$</td>
<td>$T[\cdot]$</td>
<td>$T[\cdot]$</td>
</tr>
<tr>
<td>ξ</td>
<td>$P[\rho]$</td>
<td>ρ</td>
</tr>
</tbody>
</table>
Lemma:
Using RMQs, SearchSA answers counting queries in $O(m + \lg n)$ time and reporting queries in $O(m + \lg n + \text{occ})$ time.

Proof (Sketch)
- either halve the range in the suffix array ($\xi \neq \lambda$)
 or
- compare characters of the pattern (at most m)
Back to the Roots: Suffix Tree Construction

- naive in $O(n^2)$ time
- use SA and LCP
- only look at rightmost path in tree
- find deepest node with string-depth $\leq LCP[i]$
- total $O(n)$ time

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>$$$</td>
</tr>
<tr>
<td>SA</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>LCP</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Conclusion and Outlook

This Lecture
- linear time LCP-array construction
- suffix tree construction based on SA and LCP
- engineered LCP-Array construction algorithms
- cache misses are costly
- interesting properties of the PLCP-array

Linear Time Construction

Next Lecture
- text compression using SA and LCP
Bibliography I

