Recap: Text-Compression

Definition: LZ77 Factorization [ZL77]

Given a text T of length n over an alphabet Σ, the **LZ77 factorization** is:

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$ and for all $i \in [1, z]$ f_i is
- single character not occurring in $f_1 \ldots f_{i-1}$ or
- longest substring occurring ≥ 2 times in $f_1 \ldots f_i$

<table>
<thead>
<tr>
<th>$T = \text{abababbbabab}$</th>
<th>$f_1 = \text{a}$</th>
<th>$f_2 = \text{b}$</th>
<th>$f_3 = \text{abab}$</th>
<th>$f_4 = \text{bb}$</th>
<th>$f_5 = \text{aba}$</th>
<th>$f_6 = \text{b}$</th>
</tr>
</thead>
</table>

Definition: LZ78 Factorization [ZL78]

Given a text T of length n over an alphabet Σ, the **LZ78 factorization** is:

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$, $f_0 = \epsilon$ and for all $i \in [1, z]$
- if $f_1 \ldots f_{i-1} = T[1..j-1]$, then f_i is the longest prefix of $T[j..n]$, such that

\[\exists k \in [0, i), \alpha \in \Sigma \cup \{\$\} : f_k = f_i \alpha \]

<table>
<thead>
<tr>
<th>$T = \text{abababbbabab}$</th>
<th>$f_1 = \text{a}$</th>
<th>$f_2 = \text{b}$</th>
<th>$f_3 = \text{ab}$</th>
<th>$f_4 = \text{abb}$</th>
<th>$f_5 = \text{bb}$</th>
<th>$f_6 = \text{aba}$</th>
<th>$f_7 = $</th>
</tr>
</thead>
</table>
Burrows-Wheeler Transform [BW94] (1/2)

Definition: Burrows-Wheeler Transform

Given a text T of length n and its suffix array SA, for $i \in [1, n]$ the **Burrows-Wheeler transform** is

$$BWT[i] = \begin{cases}
T[SA[i] - 1] & \text{if } SA[i] > 1 \\
$ & \text{if } SA[i] = 1
\end{cases}$$
Burrows-Wheeler Transform [BW94] (1/2)

Definition: Burrows-Wheeler Transform

Given a text T of length n and its suffix array SA, for $i \in [1, n]$ the **Burrows-Wheeler transform** is

$$BWT[i] = \begin{cases} T[SA[i] - 1] & \text{if } SA[i] > 1 \\ \$ & \text{if } SA[i] = 1 \end{cases}$$

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>LCP</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>BWT</td>
<td>a</td>
<td>b</td>
<td>$</td>
<td>$</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>
Burrows-Wheeler Transform [BW94] (1/2)

Definition: Burrows-Wheeler Transform
Given a text T of length n and its suffix array SA, for $i \in [1, n]$ the Burrows-Wheeler transform is

$$BWT[i] = \begin{cases} T[SA[i] - 1] & SA[i] > 1 \\ \$ & SA[i] = 1 \end{cases}$$

- character before the suffix in SA-order
- choose characters cyclic $\$ for first suffix
Burrows-Wheeler Transform [BW94] (1/2)

Definition: Burrows-Wheeler Transform
Given a text T of length n and its suffix array SA, for $i \in [1, n]$ the Burrows-Wheeler transform is

$$BWT[i] = \begin{cases} T[SA[i] - 1] & \text{if } SA[i] > 1 \\ $ & \text{if } SA[i] = 1 \end{cases}$$

- character before the suffix in SA-order
- choose characters cyclic $\$ for first suffix

- can compute BWT in $O(n)$ time
- for binary alphabet $O(n/\sqrt{\lg n})$ time and $O(n/\lg n)$ words space is possible [KK19]
Burrows-Wheeler Transform [BW94] (1/2)

Definition: Burrows-Wheeler Transform

Given a text T of length n and its suffix array SA, for $i \in [1, n]$ the **Burrows-Wheeler transform** is

$$BWT[i] = \begin{cases} T[SA[i] - 1] & SA[i] > 1 \\ \$ & SA[i] = 1 \end{cases}$$

- character before the suffix in SA-order
- choose characters cyclic $\$ for first suffix

- can compute BWT in $O(n)$ time
- for binary alphabet $O(n/\sqrt{\lg n})$ time and $O(n/\lg n)$ words space is possible [KK19]

Example

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>LCP</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>BWT</td>
<td>a</td>
<td>b</td>
<td>$$</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

- definition is not very descriptive
- easy way to compute BWT
- what can we do with the BWT
Definition: Burrows-Wheeler Transform

Given a text T of length n and its suffix array SA, for $i \in [1, n]$ the Burrows-Wheeler transform is

$$BWT[i] = \begin{cases} T[SA[i] - 1] & SA[i] > 1 \\ $ & SA[i] = 1 \end{cases}$$

- character before the suffix in SA-order
- choose characters cyclic \$ for first suffix
- can compute BWT in $O(n)$ time
- for binary alphabet $O(n/\sqrt{\lg n})$ time and $O(n/\lg n)$ words space is possible [KK19]

PINGO can the BWT be reversed?
Definition: Cyclic Rotation

Given a text T of length n, the i-th cyclic rotation is

$$T^{(i)} = T[i..n]T[1..i]$$

- i-th cyclic rotation is concatenation of i-th suffix and $(i - 1)$-th prefix

Burrows-Wheeler Transform (2/2)

The Burrows-Wheeler Transform of the text is the last row of the matrix containing all its cyclic rotations in lexicographical order as columns.

<table>
<thead>
<tr>
<th>$T = ababcabcabba$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>$</td>
</tr>
</tbody>
</table>

$5/24$ 2023-11-26 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform
Institute of Theoretical Informatics, Algorithm Engineering
Definition: Cyclic Rotation

Given a text T of length n, the i-th cyclic rotation is

$$T^{(i)} = T[i..n]T[1..i]$$

- i-th cyclic rotation is concatenation of i-th suffix and $(i - 1)$-th prefix

Definition: Burrows-Wheeler Transform (alt.)

Given a text T and a matrix containing all its cyclic rotations in lexicographical order as columns, then the Burrows-Wheeler transform of the text is the last row of the matrix

$$T = \text{ababcabcabba}$

<table>
<thead>
<tr>
<th>$T^{(1)}$</th>
<th>$T^{(2)}$</th>
<th>$T^{(3)}$</th>
<th>$T^{(4)}$</th>
<th>$T^{(5)}$</th>
<th>$T^{(6)}$</th>
<th>$T^{(7)}$</th>
<th>$T^{(8)}$</th>
<th>$T^{(9)}$</th>
<th>$T^{(10)}$</th>
<th>$T^{(11)}$</th>
<th>$T^{(12)}$</th>
<th>$T^{(13)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>

$T = \text{ababcabcabba}$
Burrows-Wheeler Transform (2/2)

Definition: Cyclic Rotation

Given a text T of length n, the i-th **cyclic rotation** is

$$T^{(i)} = T[i..n]T[1..i)$$

- i-th cyclic rotation is concatenation of i-th suffix and $(i - 1)$-th prefix

Definition: Burrows-Wheeler Transform (alt.)

Given a text T and a matrix containing all its cyclic rotations in lexicographical order as columns, then the **Burrows-Wheeler transform** of the text is the last row of the matrix:

$$T = \text{ababcabcabba}$
Burrows-Wheeler Transform (2/2)

Definition: Cyclic Rotation
Given a text T of length n, the i-th cyclic rotation is

$$T^{(i)} = T[i..n]T[1..i]$$

- i-th cyclic rotation is concatenation of i-th suffix and $(i - 1)$-th prefix

Definition: Burrows-Wheeler Transform (alt.)
Given a text T and a matrix containing all its cyclic rotations in lexicographical order as columns, then the Burrows-Wheeler transform of the text is the last row of the matrix

$$T = \text{ababcabcabba}\$$

<table>
<thead>
<tr>
<th>(\tau(1))</th>
<th>(\tau(2))</th>
<th>(\tau(3))</th>
<th>(\tau(4))</th>
<th>(\tau(5))</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>$</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>
two important rows in the matrix
other rows are not needed at all
there is a special relation between the two rows

later this lecture

First Row **F**
- contains all characters or the text in sorted order

Last Row **L**
- is the *BWT* itself

$$T = \text{ababcabcabba}$

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>$</td>
<td>$</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

Properties of the BWT: Rank of Characters

Definition: Rank

Given a text T over an alphabet Σ, the **rank** of a character at position $i \in [1, n]$ is

$$\text{rank}(i) = |\{j \in [1, i] : T[i] = T[j]\}|$$

- rank is number of same characters that occur before in the text
- mark ranks of characters **w.r.t.** text not BWT

Example

$T = \text{ababcabcabba}$

$$\begin{array}{cccccccccccc}
T_{13} & T_{12} & T_{11} & T_{10} & T_{9} & T_{8} & T_{7} & T_{6} & T_{5} \\
F & $ & a & a & a & a & b & b & b & b & c & c \\
a & $ & b & b & b & b & a & a & b & c & c & a \\
b & a & a & b & c & c & $ & b & a & a & b & b \\
a & b & b & a & a & a & c & $ & b & b & b & c \\
b & a & c & $ & b & b & b & a & a & b & c & a \\
c & b & a & a & b & c & a & b & b & a & a & $ \\
a & c & b & b & a & b & c & a & $ & b & a & b \\
b & a & c & a & $ & b & c & a & b & a & b & a \\
c & b & a & b & a & b & a & b & c & b & a & a \\
a & c & b & c & b & a & b & a & a & $ & b & a \\
b & a & b & a & a & $ & c & a & b & b & a & c \\
b & b & a & b & a & a & $ & c & c & b & a & a \\
L & a & b & $ & c & c & b & b & a & a & a & b & b \\
\end{array}$$
Properties of the BWT: Rank of Characters

Definition: Rank

Given a text T over an alphabet Σ, the **rank** of a character at position $i \in [1, n]$ is

$$rank(i) = |\{j \in [1, i] : T[i] = T[j]\}|$$

- rank is number of same characters that occur before in the text
- mark ranks of characters w.r.t. text not BWT

Example

Consider the text $T = ababcabcabba$.

<table>
<thead>
<tr>
<th>Rank</th>
<th>1 1 2 2 1 3 3 2 4 4 5 5 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a b a b c a b c a b b a $</td>
</tr>
</tbody>
</table>

Rank Table

<table>
<thead>
<tr>
<th>Rank</th>
<th>1 1 2 2 1 3 3 2 4 4 5 5 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a b a b c a b c a b b a $</td>
</tr>
</tbody>
</table>

Example Calculation

- $rank(1) = |\{j \in [1, 1] : T[1] = T[j]\}| = 1$
- $rank(2) = |\{j \in [1, 2] : T[2] = T[j]\}| = 1$
- $rank(3) = |\{j \in [1, 3] : T[3] = T[j]\}| = 2$
- $rank(5) = |\{j \in [1, 5] : T[5] = T[j]\}| = 1$

BWT Transform

<table>
<thead>
<tr>
<th>BWT</th>
<th>T(1)T(2)T(3)T(4)T(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>ababcabcabba$</td>
</tr>
</tbody>
</table>

BWT Details

- BWT is a technique that transforms a text into a permuted version that can be used for indexing.
- It is used in text indexing and compression.

Properties of the BWT

- **Rank of Characters**: The BWT preserves the rank of characters w.r.t. the text.
- **Order**: The order of ranks is the same in the first and last row of the BWT.

Institute of Theoretical Informatics, Algorithm Engineering
Definition: Rank

Given a text T over an alphabet Σ, the rank of a character at position $i \in [1, n]$ is

$$\text{rank}(i) = |\{j \in [1, i]: T[i] = T[j]\}|$$

- rank is number of same characters that occur before in the text
- mark ranks of characters w.r.t. text not BWT

$T = \text{ababcabcabba}$

<table>
<thead>
<tr>
<th>T</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
Properties of the BWT: Rank of Characters

Definition: Rank

Given a text T over an alphabet Σ, the rank of a character at position $i \in [1, n]$ is

$$\text{rank}(i) = |\{j \in [1, i] : T[i] = T[j]\}|$$

- rank is number of same characters that occur before in the text
- mark ranks of characters w.r.t. text not BWT

$T = \text{ababcabcabba}$

<table>
<thead>
<tr>
<th>T</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

$\tau(13)\tau(12)\tau(1)\tau(9)\tau(6)\tau(3)\tau(11)\tau(2)\tau(10)\tau(7)\tau(4)\tau(8)\tau(5)$

- F:
 - a: $1, 3, 5, 1, 4, 2, 5, 1, 4, 3, 2, 1, 2$
 - b: $a, a, a, a, a, b, b, a, b, b, b, b, a, b$
 - c: $a, a, a, a, b, b, b, a, a, a, a, c, c, b$

- L:
 - a: $b, b, a, b, a, b, a, a, a, a, b, b$
 - b: $a, a, b, a, b, b, b, b, a, b, b, a$
 - c: $c, c, b, b, b, a, a, a, a, a, a, a$
Properties of the BWT: Rank of Characters

Definition: Rank

Given a text T over an alphabet Σ, the rank of a character at position $i \in [1, n]$ is

$$\text{rank}(i) = |\{j \in [1, i] : T[i] = T[j]\}|$$

- rank is number of same characters that occur before in the text
- mark ranks of characters w.r.t. text not BWT

```
T = ababcabcbabba$
```

```
T(a) 1 1 2 1 3 3 2 4 4 5 5 1
T(b) 2 2 1 2 3 4 5 1 3 2 1 2
T(c) 3 1 4 1 2 3 2 1 2 3 2 1
```

```
Definition: Rank

Given a text $T$ over an alphabet $\Sigma$, the rank of a character at position $i \in [1, n]$ is

$$\text{rank}(i) = |\{j \in [1, i]: T[i] = T[j]\}|$$

- rank is number of same characters that occur before in the text
- mark ranks of characters w.r.t. text not BWT
- order of ranks is the same in first and last row
**LF-Mapping (1/2)**

- want to map characters from last to first row
- why do we want this?
  - helps with pattern matching
  - transform BWT back to $T$

**Definition: LF-mapping**

Given a text $T$ of length $n$ and its suffix array $SA$, then the LF-mapping is a permutation of $[1, n]$, such that

$$LF(i) = j \iff SA[j] = SA[i] - 1$$

- similar to definition of BWT
- requires $SA$ or explicitly saving LF-mapping

---

**$T = \text{ababcabcabba}$**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$a$</td>
<td>$a$</td>
<td>$a$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
<td>$b$</td>
<td>$b$</td>
<td>$b$</td>
<td>$b$</td>
<td>$c$</td>
<td>$c$</td>
</tr>
<tr>
<td></td>
<td>$b$</td>
<td>$b$</td>
<td>$b$</td>
<td>$b$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
<td>$c$</td>
<td>$c$</td>
<td>$a$</td>
<td>$a$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$b$</td>
<td>$b$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
<td>$c$</td>
<td>$c$</td>
<td>$a$</td>
<td>$a$</td>
</tr>
<tr>
<td></td>
<td>$a$</td>
<td>$b$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$a$</td>
<td>$c$</td>
<td>$c$</td>
<td>$b$</td>
<td>$b$</td>
<td>$b$</td>
<td>$c$</td>
</tr>
<tr>
<td></td>
<td>$b$</td>
<td>$a$</td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$c$</td>
<td>$b$</td>
</tr>
<tr>
<td></td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
<td>$b$</td>
<td>$a$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
</tr>
<tr>
<td></td>
<td>$a$</td>
<td>$c$</td>
<td>$b$</td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$c$</td>
</tr>
<tr>
<td>$L$</td>
<td>$a$</td>
<td>$b$</td>
<td>$c$</td>
<td>$c$</td>
<td>$b$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
<td>$b$</td>
</tr>
</tbody>
</table>
want to map characters from last to first row
why do we want this?
helps with pattern matching
transform BWT back to $T$

Definition: $LF$-mapping
Given a text $T$ of length $n$ and its suffix array $SA$, then the $LF$-mapping is a permutation of $[1, n]$, such that

$$LF(i) = j \iff SA[j] = SA[i] - 1$$

similar to definition of $BWT$
requires $SA$ or explicitly saving $LF$-mapping

$T = \text{ababcabcabba}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\multicolumn{10}{|c|}{\(T^{(1)}T^{(2)}T^{(3)}T^{(4)}T^{(5)}T^{(6)}T^{(7)}T^{(10)}T^{(11)}T^{(9)}\)} \\
\hline
F & $\$$ & a & a & a & a & a & b & b & b & b \\
\hline
& a & b & b & b & b & a & a & b & c & c \\
\hline
& b & a & a & b & c & c & $\$$ & b & a & a \\
\hline
& a & b & b & a & a & a & c & $\$$ & b & b & b \\
\hline
& b & a & c & $\$$ & b & b & b & a & a & b & c \\
\hline
& c & b & a & a & a & a & a & b & a & a & $\$$ \\
\hline
& a & c & b & b & a & a & b & c & a & $\$$ & b & a \\
\hline
& b & a & c & a & $\$$ & b & c & a & b & a & b \\
\hline
& c & b & a & a & a & a & b & b & a & a & a \\
\hline
& a & c & b & c & b & a & b & a & a & $\$$ \\
\hline
& b & a & b & a & a & $\$$ & c & a & b & b & a \\
\hline
& b & a & b & a & a & $\$$ & c & c & b & a & a \\
\hline
& a & b & b & a & a & a & a & a & b & b \\
\hline
\end{tabular}
want to map characters from last to first row
why do we want this?
- helps with pattern matching
- transform BWT back to $T$

**Definition: LF-mapping**

Given a text $T$ of length $n$ and its suffix array $SA$, then the LF-mapping is a permutation of $[1, n]$, such that

$$LF(i) = j \iff SA[j] = SA[i] - 1$$

- similar to definition of BWT
- requires $SA$ or explicitly saving LF-mapping

---

**Definition (1/2)**

Given a text $T$ of length $n$ and its suffix array $SA$, then the LF-mapping is a permutation of $[1, n]$, such that

$$LF(i) = j \iff SA[j] = SA[i] - 1$$

- similar to definition of BWT
- requires $SA$ or explicitly saving LF-mapping
**LF-Mapping (1/2)**

- want to map characters from last to first row
- why do we want this?
  - helps with pattern matching
  - transform BWT back to $T$

**Definition: LF-mapping**

Given a text $T$ of length $n$ and its suffix array $SA$, then the LF-mapping is a permutation of $[1, n]$, such that

$$LF(i) = j \iff SA[j] = SA[i] - 1$$

- similar to definition of BWT
- requires $SA$ or explicitly saving LF-mapping
LF-Mapping (1/2)

- Want to map characters from last to first row
- Why do we want this?
  - Helps with pattern matching
  - Transform BWT back to \( T \)

**Definition: LF-mapping**

Given a text \( T \) of length \( n \) and its suffix array \( SA \), then the LF-mapping is a permutation of \([1, n] \), such that

\[
LF(i) = j \iff SA[j] = SA[i] - 1
\]

- Similar to definition of BWT
- Requires SA or explicitly saving LF-mapping

\( T = \text{ababcabcabba}$\)

\[
\begin{array}{cccccccccccc}
T(13) & T(12) & T(11) & T(10) & T(9) & T(8) & T(7) & T(6) & T(5) \\
\hline
 F & \$ & a & a & a & a & b & b & b & b & b & b & c & c & c \\
 & a & b & b & b & b & b & a & a & b & c & c & c & a & a \\
 & b & a & a & b & c & c & $ & b & a & a & a & b & b \\
 & a & b & b & a & a & a & c & $ & b & b & b & c \\
 & b & a & c & $ & b & b & b & a & a & b & c & a & a \\
 & c & b & a & a & a & c & a & b & b & a & a & $ & b \\
 & a & b & b & b & a & a & b & c & c & $ & b & b & a \\
 & b & a & c & $ & b & c & a & b & a & b & b & a \\
 & c & b & a & b & a & b & b & a & b & c & b & a & a \\
 & a & c & b & c & b & a & b & b & a & a & $ & b & a \\
 & b & a & b & a & a & $ & c & a & b & b & a & c & b \\
 & b & b & a & b & a & a & $ & c & c & b & a & a \\
 & b & b & a & b & a & a & $ & c & c & b & a & a \\
 & b & b & a & b & a & a & $ & c & c & b & a & a \\
 & b & b & a & b & a & a & $ & c & c & b & a & a \\
 & b & b & a & b & a & a & $ & c & c & b & a & a \\
 & b & b & a & b & a & a & $ & c & c & b & a & a \\
\end{array}
\]
want to map characters from last to first row
why do we want this?
- helps with pattern matching
- transform BWT back to $T$

**Definition: LF-mapping**

Given a text $T$ of length $n$ and its suffix array $SA$, then the LF-mapping is a permutation of $[1, n]$, such that

$$LF(i) = j \iff SA[j] = SA[i] - 1$$

similar to definition of BWT
- requires $SA$ or explicitly saving LF-mapping

$$T = \text{ababcabcabba}$$
Definition: \textit{C-Array} and \textit{Rank}-Function

Given a text $T$ of length $n$ over an alphabet $\Sigma$, $\alpha \in \Sigma$, and $i \in [1, n]$ then

$$C[\alpha] = |i \in [1, n]: T[i] < \alpha|$$

and

$$\text{rank}_\alpha(i) = |\{j \in [1, i]: T[j] = \alpha\}|$$

- $C$ contains total number of smaller characters
- $\text{rank}_\alpha$ contains number of $\alpha$'s in prefix $T[1..i]$
- $\text{rank}_\alpha$ can be computed in $O(1)$ time [FM00]
**Definition: C-Array and Rank-Function**

Given a text $T$ of length $n$ over an alphabet $\Sigma$, $\alpha \in \Sigma$, and $i \in [1, n]$ then

\[ C[\alpha] = |i \in [1, n]: T[i] < \alpha| \]

and

\[ rank_\alpha(i) = |\{j \in [1, i]: T[j] = \alpha\}| \]

- $C$ contains total number of smaller characters
- $rank_\alpha$ contains number of $\alpha$'s in prefix $T[1..i]$
- $rank_\alpha$ can be computed in $O(1)$ time [FM00]

---

**LF-Mapping (2/2)**

Given a text $T$ of length $n$ over an alphabet $\Sigma$, $\alpha \in \Sigma$, and $i \in [1, n]$ then

\[ C[\alpha] = |i \in [1, n]: T[i] < \alpha| \]

and

\[ rank_\alpha(i) = |\{j \in [1, i]: T[j] = \alpha\}| \]

- rank now on BWT
- $C$ is exclusive prefix sum over histogram

---

<table>
<thead>
<tr>
<th>$T$</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>$$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
**Definition: C-Array and Rank-Function**

Given a text $T$ of length $n$ over an alphabet $\Sigma$, $\alpha \in \Sigma$, and $i \in [1, n]$ then

$$C[\alpha] = |i \in [1, n]: T[i] < \alpha|$$

and

$$\text{rank}_{\alpha}(i) = |\{j \in [1, i]: T[j] = \alpha\}|$$

- $C$ contains total number of smaller characters
- $\text{rank}_{\alpha}$ contains number of $\alpha$’s in prefix $T[1..i]$
- $\text{rank}_{\alpha}$ can be computed in $O(1)$ time [FM00]

**Definition: LF-Mapping (alt.)**

Given a $BWT$, its $C$-array, and its $\text{rank}$-Function, then

$$LF(i) = C[BWT[i]] + \text{rank}_{BWT[i]}(i)$$

- rank now on $BWT$
- $C$ is exclusive prefix sum over histogram

---

**Example:**

<table>
<thead>
<tr>
<th>$T$</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{rank}$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

---

**Notes:**

- $\text{rank}$ now on $BWT$
- $C$ is exclusive prefix sum over histogram

---

**Institute of Theoretical Informatics, Algorithm Engineering**

**Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform**
Reversing the BWT (1/2)

- characters (w.r.t. text) preserve order in $L$ and $F$
- $LF$-mapping returns previous character in text
Reversing the BWT (1/2)

- characters (w.r.t. text) preserve order in $L$ and $F$
- $LF$-mapping returns previous character in text
Reversing the BWT (1/2)

- characters (w.r.t. text) preserve order in \( L \) and \( F \)
- \( LF \)-mapping returns previous character in text
Reversing the BWT (1/2)

- characters (w.r.t. text) preserve order in $L$ and $F$
- $LF$-mapping returns previous character in text

$T = ababcabcabba$

<table>
<thead>
<tr>
<th>$F$</th>
<th>$a$</th>
<th>$a$</th>
<th>$a$</th>
<th>$a$</th>
<th>$a$</th>
<th>$b$</th>
<th>$b$</th>
<th>$b$</th>
<th>$b$</th>
<th>$b$</th>
<th>$c$</th>
<th>$c$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$a$</td>
<td>$b$</td>
<td>$b$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
<td>$c$</td>
<td>$c$</td>
<td>$a$</td>
<td>$a$</td>
<td>$a$</td>
</tr>
<tr>
<td></td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
<td>$c$</td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
<td>$b$</td>
<td>$c$</td>
</tr>
<tr>
<td></td>
<td>$a$</td>
<td>$b$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$a$</td>
<td>$c$</td>
<td>$c$</td>
<td>$b$</td>
<td>$b$</td>
<td>$b$</td>
<td>$b$</td>
</tr>
<tr>
<td></td>
<td>$b$</td>
<td>$a$</td>
<td>$c$</td>
<td>$b$</td>
<td>$b$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
</tr>
<tr>
<td></td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
<td>$b$</td>
<td>$a$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
</tr>
<tr>
<td></td>
<td>$b$</td>
<td>$a$</td>
<td>$c$</td>
<td>$b$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
<td>$b$</td>
</tr>
<tr>
<td></td>
<td>$a$</td>
<td>$b$</td>
<td>$a$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
<td>$b$</td>
</tr>
<tr>
<td></td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
<td>$c$</td>
<td>$c$</td>
<td>$b$</td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
</tr>
<tr>
<td></td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
<td>$c$</td>
<td>$c$</td>
<td>$b$</td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
</tr>
<tr>
<td></td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
<td>$c$</td>
<td>$c$</td>
<td>$b$</td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$L$</th>
<th>$a$</th>
<th>$b$</th>
<th>$c$</th>
<th>$c$</th>
<th>$b$</th>
<th>$b$</th>
<th>$a$</th>
<th>$a$</th>
<th>$a$</th>
<th>$a$</th>
<th>$b$</th>
<th>$b$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$a$</td>
<td>$b$</td>
<td>$b$</td>
<td>$b$</td>
<td>$a$</td>
<td>$b$</td>
<td>$c$</td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
</tr>
<tr>
<td></td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
</tr>
<tr>
<td></td>
<td>$a$</td>
<td>$b$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
<td>$c$</td>
<td>$b$</td>
<td>$a$</td>
<td>$a$</td>
<td>$b$</td>
</tr>
</tbody>
</table>

$LF$:

<table>
<thead>
<tr>
<th>$i$</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>8</th>
<th>9</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$j$</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reversing the BWT (1/2)

- characters (w.r.t. text) preserve order in $L$ and $F$
- $LF$-mapping returns previous character in text

$T = ababcabcabba$
Reversing the BWT (2/2)

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

<table>
<thead>
<tr>
<th>L</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>7</td>
</tr>
<tr>
<td>$</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>12</td>
</tr>
<tr>
<td>c</td>
<td>13</td>
</tr>
<tr>
<td>b</td>
<td>8</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>a</td>
<td>4</td>
</tr>
<tr>
<td>a</td>
<td>5</td>
</tr>
<tr>
<td>a</td>
<td>6</td>
</tr>
<tr>
<td>a</td>
<td>10</td>
</tr>
<tr>
<td>b</td>
<td>11</td>
</tr>
</tbody>
</table>
Reversing the BWT (2/2)

- characters (w.r.t. text) preserve order in $L$ and $F$
- $LF$-mapping returns previous character in text
- $T[n] = $ and $T^{(n)}$ in first row
- apply $LF$-mapping on result to obtain any character

$$T[n - i] = L[LF(LF(\ldots(LF(1))\ldots))]$$

\[
\begin{array}{cccccccccccccc}
& & & & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 11 & 12 & 13 \\
\text{L} & a & b & $ & c & c & b & b & a & a & a & a & b & b & \\
\text{LF} & 2 & 7 & 1 & 12 & 13 & 8 & 9 & 3 & 4 & 5 & 6 & 10 & 11 & \\
\end{array}
\]
Reversing the BWT (2/2)

- characters (w.r.t. text) preserve order in $L$ and $F$
- $LF$-mapping returns previous character in text

- $T[n] = \$$ and $T^{(n)}$ in first row
- apply $LF$-mapping on result to obtain any character

\[
T[n - i] = L[LF(LF(\ldots(LF(1))\ldots))]_{i-1 \text{ times}}
\]

- $T[13] = \$$ and $k = 1$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L$</td>
<td>a</td>
<td>b</td>
<td>$$$</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>$LF$</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
Reversing the BWT (2/2)

- characters (w.r.t. text) preserve order in $L$ and $F$
- $LF$-mapping returns previous character in text

- $T[n] = \$ \text{ and } T^{(n)}$ in first row
- apply $LF$-mapping on result to obtain any character

$$T[n - i] = L[LF(LF(\ldots(LF(1))\ldots))]$$

$i-1$ times

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L$</td>
<td>a</td>
<td>b</td>
<td>$$</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>$LF$</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

- $T[13] = \$ \text{ and } k = 1$
- $T[12] = L[1] = a \text{ and } k = LF(1) = 2$
Reversing the BWT (2/2)

- characters (w.r.t. text) preserve order in $L$ and $F$
- $LF$-mapping returns previous character in text

- $T[n] = $ and $T^{(n)}$ in first row
- apply $LF$-mapping on result to obtain any character

$$T[n - i] = L[LF(LF(\ldots (LF(1))\ldots))]$$

<table>
<thead>
<tr>
<th>L</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{a}$</td>
<td>$\text{b}$</td>
<td>$$$</td>
<td>$\text{c}$</td>
<td>$\text{c}$</td>
<td>$\text{b}$</td>
<td>$\text{b}$</td>
<td>$\text{a}$</td>
<td>$\text{a}$</td>
<td>$\text{a}$</td>
<td>$\text{a}$</td>
<td>$\text{b}$</td>
<td>$\text{b}$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $T[13] = $ and $k = 1$
- $T[12] = L[1] = \text{a}$ and $k = LF(1) = 2$
Reversing the BWT (2/2)

- Characters (w.r.t. text) preserve order in \( L \) and \( F \)
- \( LF \)-mapping returns previous character in text

- \( T[n] = $ \) and \( T^{(n)} \) in first row
- apply \( LF \)-mapping on result to obtain any character

\[
T[n - i] = L[LF(LF(\ldots(LF(1))\ldots))]^{i-1 \text{ times}}
\]

<table>
<thead>
<tr>
<th>( L )</th>
<th>( a )</th>
<th>( b )</th>
<th>$</th>
<th>c</th>
<th>c</th>
<th>( b )</th>
<th>( b )</th>
<th>( a )</th>
<th>( a )</th>
<th>( a )</th>
<th>( a )</th>
<th>( b )</th>
<th>( b )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( LF )</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

- \( T[13] = $ \) and \( k = 1 \)
- \( T[12] = L[1] = a \) and \( k = LF(1) = 2 \)
- \( T[11] = L[2] = b \) and \( k = LF(2) = 7 \)
- \( T[10] = L[7] = b \) and \( k = LF(7) = 9 \)
Reversing the BWT (2/2)

- characters (w.r.t. text) preserve order in $L$ and $F$
- $LF$-mapping returns previous character in text

- $T[n] = $ and $T^{(n)}$ in first row
- apply $LF$-mapping on result to obtain any character

$$T[n - i] = L[LF(LF(\ldots(LF(1))\ldots))]$$

$i-1$ times

<table>
<thead>
<tr>
<th>L</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>a</td>
<td>b</td>
<td>$</td>
<td>$</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th>2</th>
<th>7</th>
<th>1</th>
<th>12</th>
<th>13</th>
<th>8</th>
<th>9</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

- $T[13] = $ and $k = 1$
- $T[12] = L[1] = a$ and $k = LF(1) = 2$
- $T[9] = L[9] = a$ and $k = LF(9) = 4$
Reversing the BWT (2/2)

- characters (w.r.t. text) preserve order in $L$ and $F$
- $LF$-mapping returns previous character in text

- $T[n] = \$ \text{ and } T^{(n)} \text{ in first row}$
- apply $LF$-mapping on result to obtain any character

\[
T[n - i] = L[LF(LF(\ldots(LF(1))\ldots))] \\
\text{ } i - 1 \text{ times}
\]

<table>
<thead>
<tr>
<th>L</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>a</td>
<td>b</td>
<td>$$</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

- $T[13] = \$ \text{ and } k = 1$
- $T[12] = L[1] = a \text{ and } k = LF(1) = 2$
- $T[10] = L[7] = b \text{ and } k = LF(7) = 9$
- $T[9] = L[9] = a \text{ and } k = LF(9) = 4$
Reversing the BWT (2/2)

- characters (w.r.t. text) preserve order in $L$ and $F$.
- $LF$-mapping returns previous character in text.
- $T[n] = \$ \text{ and } T^{(n)}$ in first row.
- apply $LF$-mapping on result to obtain any character.

$$T[n - i] = L[LF(LF(\ldots (LF(1)) \ldots))]$$

$i - 1$ times

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L$</td>
<td>a</td>
<td>b</td>
<td>$$</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>$LF$</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

- $T[13] = \$ \text{ and } k = 1$.
- $\ldots$
Properties of the BWT: Runs

- BWT is reversible
- can be used for lossless compression

Definition: Run (simplified)

Given a text $T$ of length $n$, we call its substring $T[i..j]$ a run, if
- $T[k] = T[\ell]$ for all $k, \ell \in [i, j]$ and
- $T[i - 1] \neq T[i]$ and $T[j + 1] \neq T[j]$

(To be more precise, this is a definition for a run of a periodic substring with smallest period 1, but this is not important for this lecture.)
Properties of the BWT: Runs

- **BWT** is reversible
- can be used for lossless compression

**Definition: Run (simplified)**

Given a text $T$ of length $n$, we call its substring $T[i..j]$ a **run**, if

- $T[k] = T[\ell]$ for all $k, \ell \in [i, j]$ and
- $T[i - 1] \neq T[i]$ and $T[j + 1] \neq T[j]$

(to be more precise, this is a definition for a run of a periodic substring with smallest period 1, but this is not important for this lecture)

- **BWT** contains lots of runs
- same context is often grouped together

```
1 2 3 4 5 6 7 8 9 0 11 12 13
L: abccbbaaaaab$`b`
```
Compressing the BWT: Run-Length Compression

Definition: Run-Length Encoding

Given a text $T$, represent each run $T[i..i + \ell)$ as tuple

$(T[i], \ell)$

$T = \text{ababcabcabba}$

$\text{BWT} = (a, 1) \ (b, 1) \ ($ $c, 2) \ (b, 2) \ (a, 4) \ (b, 2)$
Compressing the BWT: Move-to-Front

**Definition: Move-To-Front Encoding**

Given a text $T$ over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding $MTF(T)$ of the text is computed as follows:

- Start with a list $X = \Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$.
- Scan text from left to right, for character $T[i]$
  - Append position of $T[i]$ in $X$ to $MTF(T)$ and
  - Move $T[i]$ to front of $X$.

- MTF encoding can easily be reverted.
- Consists of many small numbers.
- Runs are preserved.
- Use Huffman on encoding (no theoretical improvement but good in practice).
**Compressing the BWT: Move-to-Front**

**Definition: Move-To-Front Encoding**

Given a text $T$ over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding $MTF(T)$ of the text is computed as follows:

- Start with a list $X = \Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]
- Scan text from left to right, for character $T[i]$
  - Append position of $T[i]$ in $X$ to $MTF(T)$ and
  - Move $T[i]$ to front of $X$

- MTF encoding can easily be reverted
- Consists of many small numbers
- Runs are preserved
- Use Huffman on encoding no theoretical improvement but good in practice

$T = ababcabcabba$

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>$</td>
<td>$</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>
Compressing the BWT: Move-to-Front

**Definition: Move-To-Front Encoding**

Given a text $T$ over an alphabet $\Sigma = [1, \sigma]$, the **MTF encoding** $MTF(T)$ of the text is computed as follows:

- Start with a list $X = \Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$.
- Scan text from left to right, for character $T[i]$:
  - Append position of $T[i]$ in $X$ to $MTF(T)$ and
  - Move $T[i]$ to front of $X$.

- MTF encoding can easily be reverted.
- Consists of many small numbers.
- Runs are preserved.
- Use Huffman on encoding.

MTF encoding can easily be reverted.
Consists of many small numbers.
Runs are preserved.
Use Huffman on encoding.

**Example**

$T = \text{ababcabcabba}$

<table>
<thead>
<tr>
<th>BWT</th>
<th>1 2 3 4 5 6 7 8 9 0 11 12 13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a b $ c c b b a a a b b</td>
</tr>
</tbody>
</table>

$X = $, a, b, c
Definition: Move-To-Front Encoding

Given a text $T$ over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding $MTF(T)$ of the text is computed as follows:

- start with a list $X = \Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$
- scan text from left to right, for character $T[i]$
  - append position of $T[i]$ in $X$ to $MTF(T)$ and
  - move $T[i]$ to front of $X$

MTF encoding can easily be reverted.
- consists of many small numbers
- runs are preserved
- use Huffman on encoding

$T = ababcabcabba$

$X = $, a, b, c

$MTF = 2$ and $X = a, $, b, c

$T = ababcabcabba$

$MTF = 2$ and $X = a, $, b, c

$X = $, a, b, c

$MTF = 2$ and $X = a, $, b, c

$X = $, a, b, c

$MTF = 2$ and $X = a, $, b, c

$X = $, a, b, c

$MTF = 2$ and $X = a, $, b, c

$X = $, a, b, c

$MTF = 2$ and $X = a, $, b, c

$X = $, a, b, c

$MTF = 2$ and $X = a, $, b, c

$X = $, a, b, c

$MTF = 2$ and $X = a, $, b, c

$X = $, a, b, c

$MTF = 2$ and $X = a, $, b, c

$X = $, a, b, c

$MTF = 2$ and $X = a, $, b, c

$X = $, a, b, c

$MTF = 2$ and $X = a, $, b, c

$X = $, a, b, c

$MTF = 2$ and $X = a, $, b, c

$X = $, a, b, c

$MTF = 2$ and $X = a, $, b, c

$X = $, a, b, c

$MTF = 2$ and $X = a, $, b, c

$X = $, a, b, c

$MTF = 2$ and $X = a, $, b, c
Compressing the BWT: Move-to-Front

**Definition: Move-To-Front Encoding**

Given a text $T$ over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding $MTF(T)$ of the text is computed as follows:

- Start with a list $X = \Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$
- Scan text from left to right, for character $T[i]$
  - Append position of $T[i]$ in $X$ to $MTF(T)$ and
  - Move $T[i]$ to front of $X$

- MTF encoding can easily be reverted
- Consists of many small numbers
- Runs are preserved
- Use Huffman on encoding

**Example**

$T = ababcabcabba$

<table>
<thead>
<tr>
<th>1 2 3 4 5 6 7 8 9 0 11 12 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b $ c c b b a a a b b</td>
</tr>
</tbody>
</table>

$BWT$

- $X = $, a, b, c
- $MTF = 2$ and $X = a, $, b, c
- $MTF = 23$ and $X = b, a, $, c
Definition: Move-To-Front Encoding

Given a text $T$ over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding $MTF(T)$ of the text is computed as follows:

- start with a list $X = \Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$
- scan text from left to right, for character $T[i]$
  - append position of $T[i]$ in $X$ to $MTF(T)$ and
  - move $T[i]$ to front of $X$

MTF encoding can easily be reverted
- consists of many small numbers
- runs are preserved
- use Huffman on encoding

Compressing the BWT: Move-to-Front

$T = ababcabcabba$

<table>
<thead>
<tr>
<th>BWT</th>
<th>a</th>
<th>b</th>
<th>$</th>
<th>c</th>
<th>c</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTF</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$X = $, a, b, c$</td>
<td></td>
</tr>
<tr>
<td>$MTF = 2$ and $X = a, $, b, c$</td>
<td></td>
</tr>
<tr>
<td>$MTF = 23$ and $X = b, a, $, c$</td>
<td></td>
</tr>
<tr>
<td>$MTF = 233$ and $X = $, b, a, c$</td>
<td></td>
</tr>
</tbody>
</table>
Compressing the BWT: Move-to-Front

**Definition: Move-To-Front Encoding**

Given a text $T$ over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding $MTF(T)$ of the text is computed as follows:

- Start with a list $X = \Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$.
- Scan text from left to right, for character $T[i]$
  - Append position of $T[i]$ in $X$ to $MTF(T)$ and
  - Move $T[i]$ to front of $X$.

- MTF encoding can easily be reverted.
- Consists of many small numbers.
- Runs are preserved.
- Use Huffman on encoding no theoretical improvement but good in practice.

**Example:**

Let $T = \text{ababcabcabba}$

<table>
<thead>
<tr>
<th>$T$</th>
<th>$\text{MTF}$</th>
<th>$X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>$$</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>4</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>5</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>6</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>7</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>8</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>9</td>
<td>$$</td>
</tr>
<tr>
<td>$$</td>
<td>0</td>
<td>$$</td>
</tr>
<tr>
<td>$$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

$BWT = \text{cbbacababca}$

- $X = $, a, b, c
- $MTF = 2$ and $X = $, a, b, c
- $MTF = 23$ and $X = $, c, a, b
- $MTF = 233$ and $X = $, $\$, b, a
- $MTF = 2334$ and $X = $, c, $\$, b, a
Definition: Move-To-Front Encoding

Given a text $T$ over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding $MTF(T)$ of the text is computed as follows:

- Start with a list $X = \Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$
- Scan text from left to right, for character $T[i]$
  - Append position of $T[i]$ in $X$ to $MTF(T)$ and
  - Move $T[i]$ to front of $X$

MTF encoding can easily be reverted.

- Consists of many small numbers
- Runs are preserved
- Use Huffman on encoding

Compressing the BWT: Move-to-Front

$T = \text{ababcabcabba}$

<table>
<thead>
<tr>
<th>BWT</th>
<th>$a$</th>
<th>$b$</th>
<th>$$</th>
<th>$c$</th>
<th>$c$</th>
<th>$b$</th>
<th>$b$</th>
<th>$a$</th>
<th>$a$</th>
<th>$a$</th>
<th>$b$</th>
<th>$b$</th>
</tr>
</thead>
</table>

- $X = \$, $a$, $b$, $c$
- $MTF = 2$ and $X = a, \$, $b$, $c$
- $MTF = 23$ and $X = b, a, \$, $c$
- $MTF = 233$ and $X = \$, $b$, $a$, $c$
- $MTF = 2334$ and $X = c, \$, $b$, $a$
- $MTF = 23341$ and $X = c, \$, $b$, $a$
Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding

Given a text $T$ over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding $MTF(T)$ of the text is computed as follows:

- Start with a list $X = \Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$
- Scan text from left to right, for character $T[i]$:
  - Append position of $T[i]$ in $X$ to $MTF(T)$ and
  - Move $T[i]$ to front of $X$

- MTF encoding can easily be reverted
- Consists of many small numbers
- Runs are preserved
- Use Huffman on encoding

| $T$ = ababcabcabba$ |
| BWT = a b $ c c b b a a a a b b |
| $X = $, a, b, c |
| $MTF = 2$ and $X = a, $, b, c |
| $MTF = 2 3$ and $X = b, a, $, c |
| $MTF = 2 3 3$ and $X = $, b, a, c |
| $MTF = 2 3 3 4$ and $X = c, $, b, a |
| $MTF = 2 3 3 4 1$ and $X = c, $, b, a |
| $MTF = 2 3 3 4 1 1$ and $X = c, $, b, a |
Compressing the BWT: Move-to-Front

**Definition: Move-To-Front Encoding**

Given a text $T$ over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding $MTF(T)$ of the text is computed as follows:

- Start with a list $X = \Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]

- Scan text from left to right, for character $T[i]$
  - Append position of $T[i]$ in $X$ to $MTF(T)$ and
  - Move $T[i]$ to front of $X$

- MTF encoding can easily be reverted
- Consists of many small numbers
- Runs are preserved
- Use Huffman on encoding — no theoretical improvement but good in practice

**Example:**

$T = \text{ababcabcabba}$$

<table>
<thead>
<tr>
<th>BWT</th>
<th>$abcabcabba$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>$</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
</tr>
<tr>
<td>5</td>
<td>c</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
</tr>
<tr>
<td>7</td>
<td>a</td>
</tr>
<tr>
<td>8</td>
<td>a</td>
</tr>
<tr>
<td>9</td>
<td>a</td>
</tr>
<tr>
<td>10</td>
<td>a</td>
</tr>
<tr>
<td>11</td>
<td>b</td>
</tr>
<tr>
<td>12</td>
<td>b</td>
</tr>
<tr>
<td>13</td>
<td>$</td>
</tr>
</tbody>
</table>

$X = $, a, b, c

$MTF = 2$ and $X = a, $, b, c

$MTF = 23$ and $X = b, a, $, c

$MTF = 233$ and $X = $, b, a, c

$MTF = 2334$ and $X = c, $, b, a

$MTF = 23341$ and $X = c, $, b, a

$MTF = 233411$ and $X = c, $, b, a

...
Compressing the BWT: Move-to-Front

**Definition: Move-To-Front Encoding**

Given a text $T$ over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding $MTF(T)$ of the text is computed as follows:

- Start with a list $X = \Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$.
- Scan text from left to right, for character $T[i]$:  
  - Append position of $T[i]$ in $X$ to $MTF(T)$ and  
  - Move $T[i]$ to front of $X$.

**MTF encoding can easily be reverted**.

- Consists of many small numbers.
- Runs are preserved.
- Use Huffman on encoding but no theoretical improvement but good in practice.

**Example**:

Let $T = \text{ababcabcabba}$

1. Start with $X = \Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$.  
   - $X = $, a, b, c
2. Append position of $T[i]$ in $X$ to $MTF(T)$ and move $T[i]$ to front of $X$.
   - $MTF = 2$ and $X = a, $, b, c$
   - $MTF = 23$ and $X = b, a, $, c$
   - $MTF = 233$ and $X = $, b, a, c
   - $MTF = 2334$ and $X = c, $, b, a
   - $MTF = 23341$ and $X = c, $, b, a
   - $MTF = 233411$ and $X = c, $, b, a
   - $\ldots$
   - $MTF = 2334111$ and $X = c, $, b, a

**BWT**

<table>
<thead>
<tr>
<th>$T$ = ababcabcabba$</th>
<th>1 2 3 4 5 6 7 8 9 0 11 12 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWT</td>
<td>a b $ c c b b a a a b b</td>
</tr>
</tbody>
</table>

**MTF**

- $MTF = 2$ and $X = a, $, b, c
- $MTF = 23$ and $X = b, a, $, c
- $MTF = 233$ and $X = $, b, a, c
- $MTF = 2334$ and $X = c, $, b, a
- $MTF = 23341$ and $X = c, $, b, a
- $\ldots$
- $MTF = 2334111$ and $X = c, $, b, a

Recap

Given a text $T$ of length $n$ over an alphabet $\Sigma$, $\alpha \in \Sigma$, and $i \in [1, n]$ then

$$C[\alpha] = \left| \{i \in [1, n] : T[i] < \alpha \} \right|$$

and

$$rank_\alpha(i) = \left| \{j \in [1, i] : T[j] = \alpha \} \right|$$

- interval for $\alpha$ is $[C[\alpha - 1], C[\alpha + 1]]$
- find sub-interval using $rank_\alpha$
- example on the board

- find interval of occurrences in $SA$ using $BWT$
- $SA$ is divided into intervals based on first character of suffix as seen during SAIS
- text from $BWT$ is backwards
- search pattern backwards
Function BackwardsSearch($P[1..n]$, $C$, $rank$):

1. $s = 1, \, e = n$
2. for $i = m, \ldots, 1$ do
3. \hspace{1em} $s = C[P[i]] + rank_{P[i]}(s - 1) + 1$
4. \hspace{1em} $e = C[P[i]] + rank_{P[i]}(e)$
5. \hspace{1em} if $s > e$ then
6. \hspace{2em} return $\emptyset$
7. return $[s, e]$

- no access to text or SA required
- no binary search
- existential queries are easy
- counting queries are easy
- reporting queries require additional information
- example on the board
Sampling the Suffix Array

- reporting queries require SA
- storing whole SA requires too much space
- better: sample every s-th SA position in SA′
Sampling the Suffix Array

- reporting queries require $SA$
- storing whole $SA$ requires too much space
- better: sample every $s$-th $SA$ position in $SA'$

how to find sampled position?
- mark sampled positions in bit vector of size $n$
- if match occurs check if position is sampled
- otherwise find sample using $LF$
- if $SA[i] = j$ then $SA[LF(i)] = j - 1$
Sampling the Suffix Array

- Reporting queries require SA
- Storing whole SA requires too much space
- Better: sample every s-th SA position in $SA'$

How to find sampled position?
- Mark sampled positions in bit vector of size $n$
- If match occurs check if position is sampled
- Otherwise find sample using $LF$
- If $SA[i] = j$ then $SA[LF(i)] = j - 1$

- $rank_1(i)$ in bit vector is number of sample
- $SA'[rank_1(i)]$ is sampled value
- $SA'[rank_1(i)] + \#$ steps till sample found is correct SA value
Sampling the Suffix Array

- reporting queries require SA
- storing whole SA requires too much space
- better: sample every $s$-th SA position in $SA'$

- how to find sampled position?
- mark sampled positions in bit vector of size $n$
- if match occurs check if position is sampled
- otherwise find sample using $LF$
- if $SA[i] = j$ then $SA[LF(i)] = j - 1$

- $rank_1(i)$ in bit vector is number of sample
- $SA'[rank_1(i)]$ is sampled value
- $SA'[rank_1(i)] + \#$steps till sample found is correct SA value

- finding a sample requires $O(s \cdot t_{rank})$ time
Efficient Bit Vectors in Practice (1/3)

std::vector<char/int/...>

- easy access
- very big: 1, 4, ... bytes per bit
Efficient Bit Vectors in Practice (1/3)

std::vector<char/int/...>
- easy access
- very big: 1, 4, ... bytes per bit

std::vector<bool>
- bit vector in C++ (1 bit per byte)
- easy access
- layout depending on implementation
### std::vector<char/int/...>
- easy access
- very big: 1, 4, ... bytes per bit

### std::vector<bool>
- bit vector in C++ (1 bit per byte)
- easy access
- layout depending on implementation

### std::vector<uint64_t>
- requires 8 bytes per bit (?)
- store 64 bits in 8 bytes
- how to access bits
## Efficient Bit Vectors in Practice (1/3)

<table>
<thead>
<tr>
<th>std::vector&lt;char/int/...&gt;</th>
<th>std::vector&lt;uint64_t&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>easy access</td>
<td>requires 8 bytes per bit(?)</td>
</tr>
<tr>
<td>very big: 1, 4, ... bytes per bit</td>
<td>store 64 bits in 8 bytes</td>
</tr>
<tr>
<td></td>
<td>how to access bits</td>
</tr>
<tr>
<td><strong>std::vector&lt;bool&gt;</strong></td>
<td></td>
</tr>
<tr>
<td>bit vector in C++ (1 bit per byte)</td>
<td>i/64 is position in 64-bit word</td>
</tr>
<tr>
<td>easy access</td>
<td>i%64 is position in word</td>
</tr>
<tr>
<td>layout depending on implementation</td>
<td></td>
</tr>
</tbody>
</table>
Efficient Bit Vectors in Practice (1/3)

std::vector<char/int/...>
- easy access
- very big: 1, 4, ... bytes per bit

std::vector<bool>
- bit vector in C++ (1 bit per byte)
- easy access
- layout depending on implementation

std::vector<uint64_t>
- requires 8 bytes per bit(?)
- store 64 bits in 8 bytes
- how to access bits

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
64 \text{ bits} & 64 \text{ bits} \\
\end{array}
\]

\[
\begin{array}{cccccccc}
63 & 0 & 1 & 2 & 3 & 4 & 5 & \ldots \\
\hline
0 & 1 & 1 & 1 & 0 & 1 & 0 & \ldots \\
\end{array}
\]

\[
\begin{array}{cccc}
62 & 63 & 0 & \\
\hline
1 & 0 & 0 & \ldots
\end{array}
\]
// There is a bit vector
std::vector<uint64_t> bit_vector;

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> (63 - (i % 64))) & 1ULL;
// There is a bit vector
std::vector<uint64_t> bit_vector;

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> (63 - (i % 64))) & 1ULL;

shift bits right

0 1 2 3 4 5 ... 62 63
1 1 1 0 1 0 ... 1 0
// There is a bit vector
std::vector<uint64_t> bit_vector;

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> (63 - (i % 64))) & 1ULL;
// There is a bit vector
std::vector<uint64_t> bit_vector;

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> (63 - (i % 64))) & 1ULL;

// Shift bits right by 60
... 0 1 2 3 4 5 ... 62 63
1 1 1 0 1 0 ... 1 0
... 0 0 0 0 0 0 ... 62 63
and 1

// Logical and 1
Efficient Bit Vectors in Practice (3/3)

(block >> (63-(i%64))) & 1ULL;
- fill bit vector from left to right

0 1 2 3 4 5 ... 62 63
1 1 1 0 1 0 ... 1 0

0 0 0 0 0 0 ... 1 0

(block >> (i%64)) & 1ULL;
- fill bit vector right to left

63 62 ... 5 4 3 2 1 0
0 1 ... 0 1 0 1 1 1

0 0 ... 1 1 0 0 1 0

assembler code: mov ecx, edi
not ecx
shr rsi, cl
mov eax, esi
and eax, 1
Efficient Bit Vectors in Practice (3/3)

(block >> (63-(i%64))) & 1ULL;
- fill bit vector from left to right

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 0 0 0 0 0 0 0 0 0 0 0 0

(block >> (i%64)) & 1ULL;
- fill bit vector right to left

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>62</td>
<td>61</td>
<td>60</td>
<td>59</td>
<td>58</td>
<td>57</td>
<td>56</td>
<td>55</td>
<td>54</td>
<td>53</td>
<td>52</td>
<td>51</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

0 0 0 0 1 1 0 0 1 1 1 1 1

0 0 0 0 1 1 0 0 1 1 0 0 0
### Efficient Bit Vectors in Practice (3/3)

**Assemble code:**
```
mov ecx, edi
not ecx
shr rsi, cl
mov eax, esi
and eax, 1
```

- **fill bit vector from left to right**

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
<th>62</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

| 0 | 0 | 0 | 0 | 0 | 0 | ... | 1  | 0  |

- **fill bit vector right to left**

<table>
<thead>
<tr>
<th>63</th>
<th>62</th>
<th>...</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

| 0  | 0  | ... | 1  | 1  | 0  | 0  | 1  | 0  |
Efficient Bit Vectors in Practice (3/3)

(block >> (63-(i%64))) & 1ULL;

- fill bit vector from left to right

```
0 1 2 3 4 5 ... 62 63
1 1 1 0 1 0 ... 1 0
```

- assembler code:
  
  ```assembly
 mov ecx, edi
 not ecx
 shr rsi, cl
 mov eax, esi
 and eax, 1
  ```

(block >> (i%64)) & 1ULL;

- fill bit vector right to left

```
63 62 ... 5 4 3 2 1 0
0 1 ... 0 1 0 1 1 1
```

- assembler code:
  
  ```assembly
 mov ecx, edi
 shr rsi, cl
 mov eax, esi
 and eax, 1
  ```
rank\(\alpha(i)\) # of \(\alpha\)s before \(i\)
select\(\alpha(j)\) position of \(j\)-th \(\alpha\)
Rank Queries in Bit Vectors (1/2)

\[ \text{rank}_\alpha(i) \ #: \text{of } \alpha \text{s before } i \]
\[ \text{select}_\alpha(j) \ #: \text{position of } j\text{-th } \alpha \]

\[ \text{rank}_0(5) \]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Rank Queries in Bit Vectors (1/2)

\[ \text{rank}_\alpha(i) \] \# of \( \alpha \)s before \( i \)
\[ \text{select}_\alpha(j) \] position of \( j \)-th \( \alpha \)

\[ \text{rank}_0(5) \]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Rank Queries in Bit Vectors (1/2)

\[ \text{rank}_\alpha(i) \] \# of \( \alpha \)s before \( i \)

\[ \text{select}_\alpha(j) \] position of \( j \)-th \( \alpha \)

\[ \text{rank}_0(5) \]

2

0 1 2 3 4 5 6 7 8 9

| 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
Rank Queries in Bit Vectors (1/2)

\[ \text{rank}_\alpha(i) \] # of \( \alpha \)'s before \( i \)

\[ \text{select}_\alpha(j) \] position of \( j \)-th \( \alpha \)

\[ \text{rank}_0(5) \]

\[ \text{select}_1(5) \]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rank Queries in Bit Vectors (1/2)

\[ \text{rank}_\alpha(i) \] \# of \( \alpha \)s before \( i \)

\[ \text{select}_\alpha(j) \] position of \( j \)-th \( \alpha \)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
</table>

\[ \text{rank}_0(5) \]
\[ \text{select}_1(5) \]
Rank Queries in Bit Vectors (1/2)

\[ \text{rank}_\alpha(i) \] \# of \( \alpha \)s before \( i \)
\[ \text{select}_\alpha(j) \] position of \( j \)-th \( \alpha \)

\[ \text{rank}_0(5) \]
\text{rank}_\alpha(i) \# \text{ of } \alpha \text{s before } i \\
\text{select}_\alpha(j) \text{ position of } j\text{-th } \alpha
Rank Queries in Bit Vectors (1/2)

\[ \text{rank}_\alpha(i) \] \# of \( \alpha \)'s before \( i \)

\[ \text{select}_\alpha(j) \] position of \( j \)-th \( \alpha \)

\[ \text{rank}_0(5) \]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
</table>

# of 0s w.r.t. BV

# of 0s w.r.t. super-block

block

super-block
Rank Queries in Bit Vectors (1/2)

- \( \text{rank}_\alpha(i) \) \# of \( \alpha \)s before \( i \)
- \( \text{select}_\alpha(j) \) position of \( j \)-th \( \alpha \)

- \( \text{rank}_0(5) \)

- # of 0s w.r.t. super-block
- # of 0s w.r.t. BV

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
</table>

Block

Super-block
for a bit vector of size \( n \)
- blocks of size \( s = \lfloor \frac{\lg n}{2} \rfloor \)
- super blocks of size \( s' = s^2 = \Theta(\lg^2 n) \)
Rank Queries in Bit Vectors (2/2)

- for a bit vector of size $n$
- blocks of size $s = \left\lfloor \frac{\lg n}{2} \right\rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$

- for all $\left\lfloor \frac{n}{s'} \right\rfloor$ super blocks, store number of 0s from beginning of bit vector to end of super-block
- $n/s' \cdot \lg n = O\left(\frac{n}{\lg n}\right) = o(n)$ bits of space
Rank Queries in Bit Vectors (2/2)

- for a bit vector of size $n$
- blocks of size $s = \lfloor \frac{\log n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\log^2 n)$

- for all $\lfloor \frac{n}{s'} \rfloor$ blocks, store number of 0s from beginning of super block to end of block
- $n/s \cdot \log s' = O\left(\frac{n \log \log n}{\log n}\right) = o(n)$ bits of space

- for all $\lfloor \frac{n}{s} \rfloor$ super blocks, store number of 0s from beginning of bit vector to end of super-block
- $n/s' \cdot \log n = O\left(\frac{n}{\log n}\right) = o(n)$ bits of space
for a bit vector of size \( n \)
- blocks of size \( s = \left\lfloor \frac{\lg n}{2} \right\rfloor \)
- super blocks of size \( s' = s^2 = \Theta(\lg^2 n) \)

for all \( \left\lfloor \frac{n}{s} \right\rfloor \) super blocks, store number of 0s from beginning of super block to end of block
- \( n/s \cdot \lg s' = O\left(\frac{n \lg n}{\lg n}\right) = o(n) \) bits of space

for all length-\( s \) bit vectors, for every position \( i \) store number of 0s up to \( i \)
- \( 2^{\frac{\lg n}{2}} \cdot s \cdot \lg s = O\left(\sqrt{n} \lg n \lg \lg n\right) = o(n) \) bits of space
Rank Queries in Bit Vectors (2/2)

- for a bit vector of size $n$
  - blocks of size $s = \lceil \frac{\lg n}{2} \rceil$
  - super blocks of size $s' = s^2 = \Theta(\lg^2 n)$

- for all $\lfloor \frac{n}{s'} \rfloor$ super blocks, store number of 0s from beginning of super block to end of block
  - $n/s' \cdot \lg s' = O(\frac{n \lg \lg n}{\lg n}) = o(n)$ bits of space

- for all length-$s$ bit vectors, for every position $i$
  - store number of 0s up to $i$
  - $2^{\frac{\lg n}{2}} \cdot s \cdot \lg s = O(\sqrt{n} \lg n \lg \lg n) = o(n)$ bits of space

PINGO how fast can rank queries be answered?
Rank Queries in Bit Vectors (2/2)

- for a bit vector of size $n$
- blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$

- for all $\lfloor \frac{n}{s'} \rfloor$ super blocks, store number of 0s from beginning of super block to end of block
- $n/s' \cdot \lg s' = O(\frac{n \lg \lg n}{\lg n}) = o(n)$ bits of space

- for all length-$s$ bit vectors, for every position $i$
  - store number of 0s up to $i$
  - $2^{\frac{\lg n}{2}} \cdot s \cdot \lg s = O(\sqrt{n} \lg n \lg \lg n) = o(n)$ bits of space

PINGO how fast can rank queries be answered?

- query in $O(1)$ time 📡
- $\text{rank}_0(i) = i - \text{rank}_1(i)$
The FM-Index (First Look) [FM00]

Building Blocks of FM-Index
- wavelet tree on BWT providing rank-function
- wavelet trees are topic of next lecture!
- C-array
- sampled suffix array with sample rate $s$
- bit vector marking sampled suffix array positions

Lemma: FM-Index Space Requirements
Given a text $T$ of length $n$ over an alphabet of size $\sigma$, the FM-index requires $O(n \lg \sigma)$ bits of space.

Space Requirements
- wavelet tree: $n [\lg \sigma] (1 + o(1))$ bits
- $C$-array: $\sigma [\lg n]$ bits if $\sigma \geq \frac{n}{\lg n}$ bits
- sampled suffix array: $\frac{n}{s} [\lg n]$ bits
- bit vector: $n (1 + o(1))$ bits

- space and time bounds can be achieved with $s = \lg \sigma n$
Conclusion and Outlook

This Lecture
- Burrows-Wheeler transform
- introduction to FM-index

Linear Time Construction

Graphical representation of linear time construction with nodes labeled ST, SA, LZ, LCP, and BWT.
Conclusion and Outlook

This Lecture

- Burrows-Wheeler transform
- introduction to FM-index
- efficient bit vectors
- rank queries on bit vectors

Linear Time Construction

- ST
- SA
- LZ
- LCP
- BWT
Conclusion and Outlook

This Lecture
- Burrows-Wheeler transform
- introduction to FM-index
- efficient bit vectors
- rank queries on bit vectors

Next Lecture
- wavelet trees
- more on FM-index

Linear Time Construction

- ST
- SA
- LZ
- LCP
- BWT
Bibliography I


