Text Indexing

Lecture 06: Wavelet Trees

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ©(1)(0): www.creativecommons.org/licenses/by-sa/4.0 |commit 0cd47f0 compiled at 2023-12-04-08:45

PINGO

https://pingo.scc.kit.edu/345678

Recap: Rank-Queries

- for a bit vector of size n
- blocks of size $s=\left\lfloor\frac{\lg n}{2}\right\rfloor$
- super blocks of size $s^{\prime}=s^{2}=\Theta\left(\lg ^{2} n\right)$
- information for 0s or 1s enough
(i) $\operatorname{rank}_{1}(i)=i-\operatorname{rank}_{0}(i)$

Recap: Rank-Queries

- for a bit vector of size n
- blocks of size $s=\left\lfloor\frac{\lg n}{2}\right\rfloor$
- super blocks of size $s^{\prime}=s^{2}=\Theta\left(\lg ^{2} n\right)$
- information for Os or 1s enough
(i) $\operatorname{rank}_{1}(i)=i-\operatorname{rank}_{0}(i)$
- for all $\left\lfloor\frac{n}{s^{\prime}}\right\rfloor$ super blocks, store number of 0 s from beginning of bit vector to end of super-block
- $n / s^{\prime} \cdot \lg n=O\left(\frac{n}{\lg n}\right)=o(n)$ bits of space

Recap: Rank-Queries

- for a bit vector of size n
- blocks of size $s=\left\lfloor\frac{\lg n}{2}\right\rfloor$
- super blocks of size $s^{\prime}=s^{2}=\Theta\left(\lg ^{2} n\right)$
- information for 0s or 1s enough
(i) $\operatorname{rank}_{1}(i)=i-\operatorname{rank}_{0}(i)$
- for all $\left\lfloor\frac{n}{s^{\prime}}\right\rfloor$ super blocks, store number of 0 s from beginning of bit vector to end of super-block
- $n / s^{\prime} \cdot \lg n=O\left(\frac{n}{\lg n}\right)=o(n)$ bits of space
- for all $\left\lfloor\frac{n}{s}\right\rfloor$ blocks, store number of 0s from beginning of super block to end of block
- $n / s \cdot \lg s^{\prime}=O\left(\frac{n \lg \lg n}{\lg n}\right)=O(n)$ bits of space

Recap: Rank-Queries

- for a bit vector of size n
- blocks of size $s=\left\lfloor\frac{\lg n}{2}\right\rfloor$
- super blocks of size $s^{\prime}=s^{2}=\Theta\left(\lg ^{2} n\right)$
- information for 0s or 1s enough
(i) $\operatorname{rank}_{1}(i)=i-\operatorname{rank}_{0}(i)$
- for all $\left\lfloor\frac{n}{s^{\prime}}\right\rfloor$ super blocks, store number of 0 s from beginning of bit vector to end of super-block
- $n / s^{\prime} \cdot \lg n=O\left(\frac{n}{\lg n}\right)=o(n)$ bits of space
- for all $\left\lfloor\frac{n}{s}\right\rfloor$ blocks, store number of 0s from beginning of super block to end of block
- $n / s \cdot \lg s^{\prime}=O\left(\frac{n \lg \lg n}{\lg n}\right)=O(n)$ bits of space
- for all length-s bit vectors, for every position i store number of Os up to i
- $2^{\frac{\lg n}{2}} \cdot s \cdot \lg s=O(\sqrt{n} \lg n \lg \lg n)=o(n)$ bits of space

Recap: Rank-Queries

- for a bit vector of size n
- blocks of size $s=\left\lfloor\frac{\lg n}{2}\right\rfloor$
- super blocks of size $s^{\prime}=s^{2}=\Theta\left(\lg ^{2} n\right)$
- information for 0s or 1s enough
(i) $\operatorname{rank}_{1}(i)=i-\operatorname{rank}_{0}(i)$
- for all $\left\lfloor\frac{n}{s^{\prime}}\right\rfloor$ super blocks, store number of 0 s from beginning of bit vector to end of super-block
- $n / s^{\prime} \cdot \lg n=O\left(\frac{n}{\lg n}\right)=o(n)$ bits of space
- for all $\left\lfloor\frac{n}{s}\right\rfloor$ blocks, store number of 0s from beginning of super block to end of block
- $n / s \cdot \lg s^{\prime}=O\left(\frac{n \lg \lg n}{\lg n}\right)=O(n)$ bits of space
- for all length-s bit vectors, for every position i store number of Os up to i
- $2^{\frac{\lg n}{2}} \cdot s \cdot \lg s=O(\sqrt{n} \lg n \lg \lg n)=o(n)$ bits of space
- query in $O(1)$ time using three subqueries
- one in super-block
- one in block
- one for remaining bitvector smaller than s

Select in $O(n)$ Space and $O(1)$ Time

- select t_{0} in a bit vector of size n that contains k zeros
- naive solutions
- scan bit vector: $O(n)$ time and no space overhead
- store k solutions in $S[1 . . k]$ and select $_{0}(i)=S[i]$ (if $k \in O(n / \lg n)$ this suffice

Select in $O(n)$ Space and $O(1)$ Time

- select t_{0} in a bit vector of size n that contains k zeros
- naive solutions
- scan bit vector: $O(n)$ time and no space overhead
- store k solutions in $S[1 . . k]$ and selecto $_{0}(i)=S[i]$ © if $k \in O(n / \lg n)$ this suffice
- better: k / b variable-sized super-blocks B_{i}, such that super-block contains $b=\lg ^{2} n$ zeros
- selecto $(i)=$ $\sum_{j=0}^{\lfloor i / b\rfloor-1}\left|B_{j}\right|+\operatorname{select}_{0}\left(B_{\lfloor i / b\rfloor}, j-(\lfloor i / b\rfloor b)\right)$

Select in $O(n)$ Space and $O(1)$ Time

- select t_{0} in a bit vector of size n that contains k zeros
- naive solutions
- scan bit vector: $O(n)$ time and no space overhead
- store k solutions in $S[1 . . k]$ and selecto $_{0}(i)=S[i]$ © if $k \in O(n / \lg n)$ this suffice
- better: k / b variable-sized super-blocks B_{i}, such that super-block contains $b=\lg ^{2} n$ zeros
- selecto $(i)=$ $\sum_{j=0}^{\lfloor i / b\rfloor-1}\left|B_{j}\right|+\operatorname{select}_{0}\left(B_{\lfloor i / b\rfloor}, j-(\lfloor i / b\rfloor b)\right)$

Select in $O(n)$ Space and $O(1)$ Time

- select t_{0} in a bit vector of size n that contains k zeros
- naive solutions
- scan bit vector: $O(n)$ time and no space overhead
- store k solutions in $S[1 . . k]$ and selecto $_{0}(i)=S[i]$ © if $k \in O(n / \lg n)$ this suffice
- better: k / b variable-sized super-blocks B_{i}, such that super-block contains $b=\lg ^{2} n$ zeros
- selecto $(i)=$ $\sum_{j=0}^{\lfloor i / b\rfloor-1}\left|B_{j}\right|+\operatorname{select}_{0}\left(B_{\lfloor i / b\rfloor}, j-(\lfloor i / b\rfloor b)\right)$
- storing all possible results for the (prefix) sum
- $O((k \lg n) / b)=o(n)$ bits of space
- select on block depends on size of block

Select in $O(n)$ Space and $O(1)$ Time

- select t_{0} in a bit vector of size n that contains k zeros
- naive solutions
- scan bit vector: $O(n)$ time and no space overhead
- store k solutions in $S[1 . . k]$ and selecto $_{0}(i)=S[i]$ © if $k \in O(n / \lg n)$ this suffice
- better: k / b variable-sized super-blocks B_{i}, such that super-block contains $b=\lg ^{2} n$ zeros
- selecto $(i)=$ $\sum_{j=0}^{\lfloor i / b\rfloor-1}\left|B_{j}\right|+\operatorname{select}_{0}\left(B_{\lfloor i / b\rfloor}, j-(\lfloor i / b\rfloor b)\right)$
- storing all possible results for the (prefix) sum
- $O((k \lg n) / b)=O(n)$ bits of space
- select on block depends on size of block
- $\left|B_{\lfloor i / b\rfloor}\right| \geq \mid g^{4} n$: store answers naively
- requires $O(b \lg n)=O\left(\lg ^{3} n\right)$ bits of space
- there are at most $O\left(n / \lg ^{4} n\right)$ such blocks
- total $O(n / \lg n)=o(n)$ bits of space

Select in $O(n)$ Space and $O(1)$ Time

- select t_{0} in a bit vector of size n that contains k zeros
- naive solutions
- scan bit vector: $O(n)$ time and no space overhead
- store k solutions in $S[1 . . k]$ and selecto $_{0}(i)=S[i]$ © if $k \in O(n / \lg n)$ this suffice
- better: k / b variable-sized super-blocks B_{i}, such that super-block contains $b=\lg ^{2} n$ zeros
- selecto $(i)=$
$\sum_{j=0}^{\lfloor i / b\rfloor-1}\left|B_{j}\right|+\operatorname{select}_{0}\left(B_{\lfloor i / b\rfloor}, j-(\lfloor i / b\rfloor b)\right)$
- storing all possible results for the (prefix) sum
- $O((k \lg n) / b)=O(n)$ bits of space
- select on block depends on size of block
- $\left|B_{\lfloor i / b\rfloor}\right| \geq \lg ^{4} n$: store answers naively
- requires $O(b \lg n)=O\left(\lg ^{3} n\right)$ bits of space
- there are at most $O\left(n / \lg ^{4} n\right)$ such blocks
- total $O(n / \lg n)=O(n)$ bits of space
- $\left|B_{\lfloor i / b\rfloor}\right|<\lg ^{4} n$: divide super-block into blocks
- same idea: variable-sized blocks containing $b^{\prime}=\sqrt{\lg n}$ zeros
- (prefix) sum $O\left((k \lg \lg n) / b^{\prime}\right)=o(n)$ bits
- if size $\geq \lg n$ store all answers
- if size $<\lg n$ store lookup table

Rank- and Select-Queries on Bit Vectors

Lemma: Binary Rank- and Select-Queries

Given a bit vector of size n, there exists data structures that can be computed in time $O(n)$ of size $o(n)$ bits that can answer rank and select queries on the bit vector in $O(1)$ time

Preliminaries

Definition: Bit Representation

Given a text T over an alphabet of size σ, each character can be represented using $\lceil\lg \sigma\rceil$ bits.

- the leftmost bit is the most significant bit and
- the rightmost bit is the least significant bit

Preliminaries

Definition: Bit Representation

Given a text T over an alphabet of size σ, each character can be represented using $\lceil\lg \sigma\rceil$ bits.

- the leftmost bit is the most significant bit and
- the rightmost bit is the least significant bit

Preliminaries

Definition: Bit Representation

Given a text T over an alphabet of size σ, each character can be represented using $\lceil\lg \sigma\rceil$ bits.

- the leftmost bit is the most significant bit and
- the rightmost bit is the least significant bit
- for simplicity characters are integers
- bit representation is integer in binary

Definition: Bit Prefix

A bit prefix of length k are the k MSBs of a characters bit representation

Wavelet Trees [GGV03] (1/2)

Definition: Wavelet Tree

Given a text T of length n over an alphabet $\Sigma=[1, \sigma]$, a wavelet tree is a binary tree, where

- each node represents characters in $[\ell, r] \subseteq[1, \sigma]$,
- if a node represents characters in [$\ell, r]$, then its left and right child
- represent characters in $[\ell,(\ell+r) / 2)$ and $[(\ell+r) / 2, r]$
- a node is a leaf if $\ell+2 \geq r$
- characters are represented using a bit vector
- an entry is 1 if the character is represented in the right child and 0 otherwise

Wavelet Trees [GGV03] (1/2)

Definition: Wavelet Tree

Given a text T of length n over an alphabet $\Sigma=[1, \sigma]$, a wavelet tree is a binary tree, where

- each node represents characters in $[\ell, r] \subseteq[1, \sigma]$,
- if a node represents characters in $[\ell, r]$, then its left and right child
- represent characters in $[\ell,(\ell+r) / 2)$ and $[(\ell+r) / 2, r]$
- a node is a leaf if $\ell+2 \geq r$
- characters are represented using a bit vector
- an entry is 1 if the character is represented in the right child and 0 otherwise

Definition: Level-wise Wavelet Tree

A wavelet tree, where all bit vectors on the same depth in the tree are concatenated is called level-wise wavelet tree

Wavelet Trees [GGV03] (1/2)

Definition: Wavelet Tree

Given a text T of length n over an alphabet $\Sigma=[1, \sigma]$, a wavelet tree is a binary tree, where

- each node represents characters in $[\ell, r] \subseteq[1, \sigma]$,
- if a node represents characters in $[\ell, r]$, then its left and right child
- represent characters in $[\ell,(\ell+r) / 2)$ and $[(\ell+r) / 2, r]$
- a node is a leaf if $\ell+2 \geq r$
- characters are represented using a bit vector
- an entry is 1 if the character is represented in the right child and 0 otherwise

Definition: Level-wise Wavelet Tree

A wavelet tree, where all bit vectors on the same depth in the tree are concatenated is called level-wise wavelet tree

- in practice, level-wise wavelet trees have less overhead
- navigation still easy

Wavelet Trees (2/2)

$[0,7]$									
0	1	6	7	1	5	4	2	6	3
0	0	1	1	0	1	1	0	1	0

0	1	6	7	1	5	4	2	6	3
0	0	1	1	0	1	1	0	1	0
0	0	1	1	0	0	0	1	1	1
0	1	0	1	1	1	0	0	0	1

Wavelet Trees (2/2)

[0, 7]

0	1	6	7	1	5	4	2	6	3
0	0	1	1	0	1	1	0	1	0

0	1	6	7	1	5	4	2	6	3
0	0	1	1	0	1	1	0	1	0
0	0	1	1	0	0	0	1	1	1
0	1	0	1	1	1	0	0	0	1

Wavelet Trees (2/2)

Wavelet Trees (2/2)

\rightarrow| 0 | 1 | 6 | 7 | 1 | 5 | 4 | 2 | 6 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |

Wavelet Trees (2/2)

Wavelet Trees (2/2)

0	1	6	7	1	5	4	2	6	3
0	0	1	1	0	1	1	0	1	0
0	0	1	1	0	0	0	1	1	1
0	1	0	1	1	1	0	0	0	1

Wavelet Trees (2/2)

Wavelet Trees (2/2)

0	1	6	7	1	5	4	2	6	3
0	0	1	1	0	1	1	0	1	0
0	0	1	1	0	0	0	1	1	1
0	1	0	1	1	1	0	0	0	1

$\operatorname{rank}_{6}(9)$

110

Wavelet Trees (2/2)

Wavelet Trees (2/2)

Wavelet Trees (2/2)

0	1	6	7	1	5	4	2	6	3
0	0	1	1	0	1	1	0	1	0
0	0	1	1	0	0	0	1	1	1
0	1	0	1	1	1	0	0	0	1

rank $_{6}$ (9)

Wavelet Trees (2/2)

0	1	6	7	1	5	4	2	6	3
0	0	1	1	0	1	1	0	1	0
0	0	1	1	0	0	0	1	1	1
0	1	0	1	1	1	0	0	0	1

Wavelet Trees (2/2)

0	1	6	7	1	5	4	2	6	3
0	0	1	1	0	1	1	0	1	0
0	0	1	1	0	0	0	1	1	1
0	1	0	1	1	1	0	0	0	1

The Intervals of a Wavelet Tree

- in each node, all represented characters share a bit prefix
- on depth ℓ the longest common bit prefix has length $\ell-1$
- the bit prefixes form intervals

The Intervals of a Wavelet Tree

- in each node, all represented characters share a bit prefix
- on depth ℓ the longest common bit prefix has length $\ell-1$
- the bit prefixes form intervals

$(\epsilon)_{2}$			
$(0)_{2}$		$(1)_{2}$	
$(00)_{2}$	$\left(01_{2}\right)$	$(10)_{2}$	$(11)_{2}$

The Intervals of a Wavelet Tree

- in each node, all represented characters share a bit prefix
- on depth ℓ the longest common bit prefix has length $\ell-1$
- the bit prefixes form intervals

$(\epsilon)_{2}$			
$(0)_{2}$		$(1)_{2}$	
$(00)_{2}$	$\left(01_{2}\right)$	$(10)_{2}$	$(11)_{2}$

- finding characters in the wavelet tree requires finding the correct interval
- finding the position of a character requires finding the position in the last interval

Rank-, Select-, and Access-Queries in Wavelet Trees (1/2)

Rank-Queries

- use rank queries on bit vectors
- at depth ℓ as for ℓ-th MSB
- follow through tree according to bit
- as seen on a previous slide

Rank-, Select-, and Access-Queries in Wavelet Trees (1/2)

Rank-Queries

- use rank queries on bit vectors
- at depth ℓ as for ℓ-th MSB
- follow through tree according to bit
- as seen on a previous slide

Select-Queries

- identify leaf containing character
- select corresponding occurrence in leaf
- backtrack position up the tree to the root
- requires up and down traversal of the wavelet tree
- see example on the board ㅇ.

Rank-, Select-, and Access-Queries in Wavelet Trees (1/2)

Rank-Queries

- use rank queries on bit vectors
- at depth ℓ as for ℓ-th MSB
- follow through tree according to bit
- as seen on a previous slide

Select-Queries

- identify leaf containing character
- select corresponding occurrence in leaf
- backtrack position up the tree to the root
- requires up and down traversal of the wavelet tree
- see example on the board 능

Access-Queries

- follow bits through the wavelet tree
- return read bits
- same as rank but returning bit pattern instead of final rank
- see example on the board -

Rank-, Select-, and Access-Queries in Wavelet Trees (1/2)

Rank-Queries

- use rank queries on bit vectors
- at depth ℓ as for ℓ-th MSB
- follow through tree according to bit
- as seen on a previous slide
- 唯緆

PINGO what is the query time of rank queries in wavelet trees?

Select-Queries

- identify leaf containing character
- select corresponding occurrence in leaf
- backtrack position up the tree to the root
- requires up and down traversal of the wavelet tree
- see example on the board ㅇ.

Access-Queries

- follow bits through the wavelet tree
- return read bits
- same as rank but returning bit pattern instead of final rank
- see example on the board -

Rank-, Select-, and Access-Queries in Wavelet Trees (2/2)

Lemma: Query Times Wavelet Tree

Given a text T over an alphabet of size σ, the wavelet tree of the text can answer rank, select, and access queries in $O(\lg \sigma)$ time

Proof (Sketch)

All queries require

- just a constant number of rank and select queries on the bit vectors and
- at most one traversals from the root of the tree to a leaf and
- one traversal from a leaf to the root of the tree

Bit Reversal Permutation

- given a bit representation of a character α
- reverse (α) reverses the bits
- the MSB becomes the least significant bit

Definition: Bit-Reversal Permutation

The bit-reversal permutation ρ_{k} is a permutation of the numbers $\left[0,2^{k}\right)$ with

$$
\rho_{k}(i)=\operatorname{reverse}(i)
$$

for $i \in\left[0,2^{k}\right)$

Bit Reversal Permutation

- given a bit representation of a character α
- reverse (α) reverses the bits
- the MSB becomes the least significant bit

Definition: Bit-Reversal Permutation

The bit-reversal permutation ρ_{k} is a permutation of the numbers $\left[0,2^{k}\right)$ with

$$
\rho_{k}(i)=\operatorname{reverse}(i)
$$

for $i \in\left[0,2^{k}\right)$

Bit Reversal Permutation

- given a bit representation of a character α
- reverse (α) reverses the bits
- the MSB becomes the least significant bit

Definition: Bit-Reversal Permutation

The bit-reversal permutation ρ_{k} is a permutation of the numbers $\left[0,2^{k}\right)$ with

$$
\rho_{k}(i)=\operatorname{reverse}(i)
$$

for $i \in\left[0,2^{k}\right)$

- $\rho_{2}=(0,2,1,3)=\left((00)_{2},(10)_{2},(01)_{2},(11)_{2}\right)$
- $\rho_{k+1}=\left(2 \rho_{k}(0), \ldots, 2 \rho_{k}\left(2^{k}-1\right)\right.$,

$$
\left.2 \rho_{k}(0)+1, \ldots, 2 \rho_{k}\left(2^{k}-1\right)+1\right)
$$

- same intervals as a wavelet tree
- used in the wavelet matrix

Alternative Representation

- alternative representation of wavelet trees
- removing tree structure
- only two areas per level (i) the intervals
discussed before still exist

Alternative Representation

- alternative representation of wavelet trees
- removing tree structure
- only two areas per level (i) the intervals
discussed before still exist

Definition: Wavelet Matrix [CNP15]

Given a text T of length n over an alphabet of size σ a wavelet matrix consists of

- bit vectors $B V_{\ell}$ for $\ell \in[1,\lceil\lg \sigma\rceil]$ of size n and
- an array $Z[1 . .\lceil\lg \sigma\rceil]$

Such that

- $Z[\ell]$ contains the number of zero bits in $B V_{\ell}$
- $B V_{1}$ contains all MSBs in text order
- $B V_{\ell}$ contains the ℓ-th MSB the character at position i in $B V_{\ell-1}$ at position
- $\operatorname{rank}_{0}(i)$ if $B V_{\ell-1}=0$ and
- $Z[\ell-1]+\operatorname{rank}_{1}(i)$ if $B V_{\ell-1}=1$

Alternative Representation

- alternative representation of wavelet trees
- removing tree structure
- only two areas per level (i) the intervals discussed before still exist
- better suited for large alphabets
- seemingly less structure
- retaining all important properties

Definition: Wavelet Matrix [CNP15]

Given a text T of length n over an alphabet of size σ a wavelet matrix consists of

- bit vectors $B V_{\ell}$ for $\ell \in[1,\lceil\lg \sigma\rceil]$ of size n and
- an array $Z[1 . .\lceil\lg \sigma\rceil]$

Such that

- $Z[\ell]$ contains the number of zero bits in $B V_{\ell}$
- $B V_{1}$ contains all MSBs in text order
- $B V_{\ell}$ contains the ℓ-th MSB the character at position i in $B V_{\ell-1}$ at position
- $\operatorname{rank}_{0}(i)$ if $B V_{\ell-1}=0$ and
- $Z[\ell-1]+\operatorname{rank}_{1}(i)$ if $B V_{\ell-1}=1$

Intervals of a Wavelet Matrix

$(\epsilon)_{2}$			
$(0)_{2}$		$(1)_{2}$	
$(00)_{2}$	$(10)_{2}$	$\left(01_{2}\right)$	$(11)_{2}$

- a wavelet matrix has the same intervals a wavelet tree has
- intervals not bounded by parent (4) no tree structure

Intervals of a Wavelet Matrix

$(\epsilon)_{2}$			
$(0)_{2}$			$(1)_{2}$
$(00)_{2}$	$(10)_{2}$	$\left(01_{2}\right)$	$(11)_{2}$

- a wavelet matrix has the same intervals a wavelet tree has
- intervals not bounded by parent (i) no tree structure

$(\epsilon)_{2}$			
$(0)_{2}$		$(1)_{2}$	
$(00)_{2}$	$\left(01_{2}\right)$	$(10)_{2}$	$(11)_{2}$

- intervals of a wavelet tree (for comparison)

Intervals of a Wavelet Matrix

$(\epsilon)_{2}$			
$(0)_{2}$		$(1)_{2}$	
$(00)_{2}$	$(10)_{2}$	$\left(01_{2}\right)$	$(11)_{2}$

- a wavelet matrix has the same intervals a wavelet tree has
- intervals not bounded by parent (i) no tree structure

$(\epsilon)_{2}$			
$(0)_{2}$		$(1)_{2}$	
$(00)_{2}$	$\left(01_{2}\right)$	$(10)_{2}$	$(11)_{2}$

- intervals of a wavelet tree (for comparison)

PINGO is answering queries with a wavelet matrix as simple as with a wavelet tree?

Example Wavelet Tree and Wavelet Matrix

$B V_{0}$	0	1	3	7	1	5	4	2	6	3
	0	0	0	1	0	1	1	0	1	0
$B V_{1}$	0	1	3	1	2	3	7	5	4	6
	0	0	1	0	1	1	1	0	0	1
	0	1	1	3	2	3	5	4	7	6
$B V_{2}$	0	1	1	1	0	1	1	0	1	0

- queries on the wavelet matrix work similar

$B V_{0}$	0	1	3	7	1	5	4	2	6	3
	0	0	0	1	0	1	1	0	1	0
$B V_{1}$	0	1	3	1	2	3	7	5	4	6
	0	0	1	0	1	1	1	0	0	1
	0	1	1	5	4	3	2	3	7	6
$B V_{2}$	0	1	1	1	0	1	0	1	1	0
	$Z[0]=6$			$Z[1]=5$				$Z[2]=4$		

- example on the board

Naive Wavelet Tree and Wavelet Matrix Construction (1/2)

$B V_{0}$	0	1	3	7	1	5	4	2	6	3
	0	0	0	1	0	1	1	0	1	0
$B V_{1}$	0	1	3	1	2	3	7	5	4	6
	0	0	1	0	1	1	1	0	0	1
	0	1	1	3	2	3	5	4	7	6
$B V_{2}$	0	1	1	1	0	1	1	0	1	0

Wavelet Tree

- first level are MSBs of characters of text
- for each level $\ell>1$
- stably sort text using Radix sort by bit prefixes of length $\ell-1$
- take ℓ-th MSB of sorted sequence
- sorted sequence is new text

Naive Wavelet Tree and Wavelet Matrix Construction (1/2)

$B V_{0}$	0	1	3	7	1	5	4	2	6	3
	0	0	0	1	0	1	1	0	1	0
$B V_{1}$	0	1	3	1	2	3	7	5	4	6
	0	0	1	0	1	1	1	0	0	1
	0	1	1	3	2	3	5	4	7	6
$B V_{2}$	0	1	1	1	0	1	1	0	1	0

Wavelet Tree

- first level are MSBs of characters of text
- for each level $\ell>1$
- stably sort text using Radix sort by bit prefixes of length $\ell-1$
- take ℓ-th MSB of sorted sequence
- sorted sequence is new text

$B V_{0}$	0	1	3	7	1	5	4	2	6	3
	0	0	0	1	0	1	1	0	1	0
$B V_{1}$	0	1	3	1	2	3	7	5	4	6
	0	0	1	0	1	1	1	0	0	1
	0	1	1	5	4	3	2	3	7	6
$B V_{2}$	0	1	1	1	0	1	0	1	1	0

Wavelet Matrix

- first level are MSBs of characters of text
- for each level $\ell>1$
- stably sort text by $\ell-1$ MSB
- take ℓ-th MSB of sorted sequence
- sorted sequence is new text

Wavelet Tree and Wavelet Matrix Construction (2/2)

- to make both fully functional bit vectors are augmented with binary rank and select support

Lemma: Running Time and Memory Requirements Wavelet Tree and Wavelet Matrix

Given a text T over an alphabet of size σ, the wavelet tree and wavelet matrix require
$(1+o(1)) n\lceil\lg \sigma\rceil$ bits of space and can be constructed in $O(n \lg \sigma)$ time

Wavelet Tree and Wavelet Matrix Construction (2/2)

- to make both fully functional bit vectors are augmented with binary rank and select support

Lemma: Running Time and Memory Requirements Wavelet Tree and Wavelet Matrix

Given a text T over an alphabet of size σ, the wavelet tree and wavelet matrix require
$(1+o(1)) n\lceil\lg \sigma\rceil$ bits of space and can be constructed in $O(n \lg \sigma)$ time
 construction method?

Better Wavelet Tree Construction [Bab+15; MNV16]

- using requires broadword programming
- every τ-th level is a big level
- big levels contain enough information to compute small levels below
- small levels computed by splitting big levels
- $O(b / \lg n)$ characters at a time with $b=o(\lg n)$
- sketch on board ${ }^{-3}$

Better Wavelet Tree Construction [Bab+15; MNV16]

- using requires broadword programming
- every τ-th level is a big level
- big levels contain enough information to compute small levels below
- small levels computed by splitting big levels
- $O(b / \lg n)$ characters at a time with $b=o(\lg n)$
- sketch on board 0

Lemma: Better Wavelet Tree Construction

Given a text T over an alphabet of size σ, the wavelet tree and wavelet matrix require $(1+o(1)) n\lceil\lg \sigma\rceil$ bits of space and can be constructed in $O(n \lg \sigma / \sqrt{\lg n})$ time

Better Wavelet Tree Construction [Bab+15; MNV16]

- using requires broadword programming
- every τ-th level is a big level
- big levels contain enough information to compute small levels below
- small levels computed by splitting big levels
- $O(b / \lg n)$ characters at a time with $b=o(\lg n)$
- sketch on board

Lemma: Better Wavelet Tree Construction

Given a text T over an alphabet of size σ, the wavelet tree and wavelet matrix require $(1+o(1)) n\lceil\lg \sigma\rceil$ bits of space and can be constructed in $O(n \lg \sigma / \sqrt{\lg n})$ time

- can be implemented using AVX/SSE instructions [Din+23; Kan18]

Huffman-shaped Wavelet Trees

- wavelet trees can be compressed
- more precise: the text can be compressed
- use Huffman codes
- wavelet trees cannot handle holes
- use canonical Huffman codes

Huffman-shaped Wavelet Trees

- wavelet trees can be compressed
- more precise: the text can be compressed
- use Huffman codes
- wavelet trees cannot handle holes
- use canonical Huffman codes

Huffman Codes (Recap)

- idea is to create a binary tree
- each character α is a leaf and has weight Hist $[\alpha]$
- create node for two nodes without parent with smallest weight
- give new node total weight of children
- repeat until only one node without parent remains
- label edges:
- left edge: 0
- right edge: 1
- path to children gives code for character

Huffman-shaped Wavelet Trees

- wavelet trees can be compressed
- more precise: the text can be compressed
- use Huffman codes
- wavelet trees cannot handle holes
- use canonical Huffman codes

Canonical Huffman Codes (Recap)

- start with Huffman codes, code word 0, and length 1
- to get canonical code for current length, then add 1 to code word
- to update length add 1 and append required amount of zeros to code word

Huffiman Codes (Recap)

- idea is to create a binary tree
- each character α is a leaf and has weight Hist [α]
- create node for two nodes without parent with smallest weight
- give new node total weight of children
- repeat until only one node without parent remains
- label edges:
- left edge: 0
- right edge: 1
- path to children gives code for character

Huffman-shaped Wavelet Trees

α	$h c(\alpha)$	$c h c(\alpha)$
1	$(11)_{2}$	$(11)_{2}$
3	$(01)_{2}$	$(10)_{2}$
6	$(100)_{2}$	$(011)_{2}$
7	$(101)_{2}$	$(010)_{2}$
0	$(0000)_{2}$	$(0011)_{2}$
2	$(0001)_{2}$	$(0010)_{2}$
4	$(0010)_{2}$	$(0001)_{2}$
5	$(0011)_{2}$	$(0000)_{2}$

- Huffman codes (hc)
- canonical Huffman codes (chc) that are bit-wise negated

Huffman-shaped Wavelet Trees

α	$h c(\alpha)$	$c h c(\alpha)$
1	$(11)_{2}$	$(11)_{2}$
3	$(01)_{2}$	$(10)_{2}$
6	$(100)_{2}$	$(011)_{2}$
7	$(101)_{2}$	$(010)_{2}$
0	$(0000)_{2}$	$(0011)_{2}$
2	$(0001)_{2}$	$(0010)_{2}$
4	$(0010)_{2}$	$(0001)_{2}$
5	$(0011)_{2}$	$(0000)_{2}$

- Huffman codes (hc)
- canonical Huffman codes (chc) that are bit-wise negated

Practical Sequential Wavelet Tree Construction

Bottom-Up Construction [FKL18]

- scan the text and create histogram
- while scanning compute first level
- use histogram to compute borders of intervals
- scan text again and fill bit vectors
- example on the next slide

Experimental Setup

- 64 GB RAM
- two Intel Xeon E5-2640v4 CPUs (10 cores at 2.4 GHz base frequency, 3.4 GHz maximum turbo frequency, and cache sizes: 32 KB L1D and L1I, 256 KB L2, 25.6 MB L3)
- same texts as in chapter 04
- results are average of 5 runs

Experiments: Sequential Wavelet Tree Construction

Experiments: Vectorized Wavelet Tree Construction [Din+23]

File	lut	ext	shuf64	shuf128	shuf256	shuf512	pc	pc-ss
dblp.xml	433.44	722.21	614.24	834.92	1197.80	$\mathbf{1 4 7 7 . 7 7}$	608.43	752.48
dna	529.32	883.00	563.11	668.93	862.49	$\mathbf{1 0 1 1 . 4 5}$	594.02	745.68
english	456.91	770.55	677.96	906.42	1304.80	$\mathbf{1 6 4 2 . 6 9}$	623.08	704.90
pitches	448.02	749.24	686.88	886.62	1276.36	$\mathbf{1 5 8 4 . 1 9}$	578.70	328.47
proteins	375.73	575.99	565.63	707.23	985.35	$\mathbf{1 1 7 8 . 0 2}$	633.58	761.41
sources	451.24	757.75	650.22	882.45	1296.80	$\mathbf{1 6 3 2 . 8 5}$	594.22	754.72
cc.16gib	453.97	729.58	653.25	875.61	1265.27	$\mathbf{1 6 0 4 . 8 4}$	628.46	752.97
dna.16gib	436.89	644.08	483.45	451.33	537.36	593.96	$\mathbf{6 6 9 . 7 0}$	650.33
wiki.16gib	447.95	714.42	634.91	871.14	1267.69	$\mathbf{1 6 0 4 . 3 9}$	591.01	753.05
ru.8gib	317.20	642.51	506.04	660.23	938.68	$\mathbf{1 1 2 1 . 0 3}$	346.96	170.44

Parallel Wavelet Tree Construction in Practice

Domain Decomposition [Fue+17]

- create wavelet tree in parallel using p PEs
- each PE gets a consecutive slice of text
- each PE builds partial wavelet tree for its text
- merge partial wavelet trees in parallel
- can utilize any sequential algorithm
- very fast in practice
- $O(n \lg \sigma / \sqrt{\lg n})$ work and $O(\sigma+\lg n)$ time [Shu20]

Experiments: Parallel Wavelet Tree Construction

Conclusion and Outlook

This Lecture

- wavelet tree and wavelet matrix
- Huffman-shaped wavelet trees

Linear Time Construction

Conclusion and Outlook

This Lecture

- wavelet tree and wavelet matrix
- Huffman-shaped wavelet trees
- select on bit vectors
- practical algorithms for wavelet tree construction

Linear Time Construction

Conclusion and Outlook

This Lecture

- wavelet tree and wavelet matrix
- Huffman-shaped wavelet trees
- select on bit vectors
- practical algorithms for wavelet tree construction

Next Lecture

- FM-index
- r-Index

Linear Time Construction

Bibliography I

[Bab+15] Maxim A. Babenko, Pawel Gawrychowski, Tomasz Kociumaka, and Tatiana Starikovskaya. "Wavelet Trees Meet Suffix Trees". In: SODA. SIAM, 2015, pages 572-591. DOI: 10.1137/1.9781611973730. 39.
[CNP15] Francisco Claude, Gonzalo Navarro, and Alberto Ordóñez Pereira. "The Wavelet Matrix: An Efficient Wavelet Tree for Large Alphabets". In: Inf. Syst. 47 (2015), pages 15-32. DOI: 10.1016/j.is.2014.06.002.
[Din+23] Patrick Dinklage, Johannes Fischer, Florian Kurpicz, and Jan-Philipp Tarnowski. "Bit-Parallel (Compressed) Wavelet Tree Construction". In: DCC. IEEE, 2023, pages 81-90. DOI: 10.1109/DCC55655.2023.00016.
[FKL18] Johannes Fischer, Florian Kurpicz, and Marvin Löbel. "Simple, Fast and Lightweight Parallel Wavelet Tree Construction". In: ALENEX. SIAM, 2018, pages 9-20. DOI: 10.1137/1.9781611975055.2.

Bibliography II

[Fue+17] José Fuentes-Sepúlveda, Erick Elejalde, Leo Ferres, and Diego Seco. "Parallel Construction of Wavelet Trees on Multicore Architectures". In: Knowl. Inf. Syst. 51.3 (2017), pages 1043-1066. DOI: 10.1007/s10115-016-1000-6.
[GGV03] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. "High-Order Entropy-Compressed Text Indexes". In: SODA. ACM/SIAM, 2003, pages 841-850.
[Kan18] Yusaku Kaneta. "Fast Wavelet Tree Construction in Practice". In: SPIRE. Volume 11147. Lecture Notes in Computer Science. Springer, 2018, pages 218-232. DOI: 10.1007/978-3-030-00479-8_18.
[MNV16] J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. "Fast construction of wavelet trees". In: Theor. Comput. Sci. 638 (2016), pages 91-97. DOI: 10.1016/j .tcs.2015.11.011.
[Shu20] Julian Shun. "Improved parallel construction of wavelet trees and rank/select structures". In: Inf. Comput. 273 (2020), page 104516. DOI: 10.1016/j.ic.2020.104516.

