Text Indexing

Lecture 12: Optimal r-Index

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License © Creative Commons: www.creativecommons.org/licenses/by-sa/4.0 | commit 0cd47f0 compiled at 2024-01-29-11:42
Today: OptBWTR

<table>
<thead>
<tr>
<th></th>
<th>Time (locate)</th>
<th>Time (count)</th>
<th>Space (words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-index</td>
<td>$O(</td>
<td>P</td>
<td>\log \log_w (\sigma + n/r) + \text{occ})$</td>
</tr>
<tr>
<td>[GNP20]</td>
<td>$O(</td>
<td>P</td>
<td>+ \text{occ})$</td>
</tr>
<tr>
<td>OptBWTR</td>
<td>$O(</td>
<td>P</td>
<td>\log \log_w \sigma + \text{occ})$</td>
</tr>
<tr>
<td>[NT21]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recap: Burrows-Wheeler Transform

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
Recap: Burrows-Wheeler Transform

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
Recap: Burrows-Wheeler Transform

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
Recap: Burrows-Wheeler Transform

- Characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
Recap: Burrows-Wheeler Transform

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
Recap: Backwards Search in the BWT

Function `BackwardsSearch(P[1..n], C, rank)`:

```plaintext
1  s = 1, e = n
2  for i = m, ..., 1 do
3      s = C[P[i]] + rank_{P[i]}(s - 1) + 1
4      e = C[P[i]] + rank_{P[i]}(e)
5      if s > e then
6          return ∅
7  return [s, e]
```

- no access to text or SA required
- no binary search
- existential queries are easy
- counting queries are easy
- reporting queries require additional information
- example on the board
Recap: The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its BWT, the r-index of this text consists of the following data structures 🎓
Given a text T of length n over an alphabet Σ and its BWT, the r-index of this text consists of the following data structures:

Array I
- $I[i]$ stores position of i-th run in BWT
Recap: The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its BWT, the r-index of this text consists of the following data structures:

Array I
- $I[i]$ stores position of i-th run in BWT

Array L'
- $L'[i]$ stores character of i-th run in BWT
- build wavelet tree for L'
Recap: The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its BWT, the r-index of this text consists of the following data structures:

Array I
- $I[i]$ stores position of i-th run in BWT

Array L'
- $L'[i]$ stores character of i-th run in BWT
- build wavelet tree for L'

Array R
- lengths of BWT runs stably sorted by runs’ characters
- accumulate for each character by performing exclusive prefix sum over run lengths’

Recap: The \(r \)-Index [GNP20] (1/3)

Given a text \(T \) of length \(n \) over an alphabet \(\Sigma \) and its BWT, the \(r \)-index of this text consists of the following data structures:

Array \(L' \)
- \(L'[i] \) stores character of \(i \)-th run in BWT
- build wavelet tree for \(L' \)

Array \(I \)
- \(I[i] \) stores position of \(i \)-th run in BWT

Array \(R \)
- lengths of BWT runs stably sorted by runs’ characters
- accumulate for each character by performing exclusive prefix sum over run lengths’

Array \(C' \)
- \(C'[\alpha] \) stores the start of the run lengths in \(R \) for each character \(\alpha \in \Sigma \) starting at 0

Bit Vector \(B \):
- compressed bit vector of length \(n \) containing ones at positions where BWT runs start and rank-support.
Recap: The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its BWT, the r-index of this text consists of the following data structures:

- **Array I**
 - $I[i]$ stores position of i-th run in BWT

- **Array L'**
 - $L'[i]$ stores character of i-th run in BWT
 - build wavelet tree for L'

- **Array R**
 - lengths of BWT runs stably sorted by runs’ characters
 - accumulate for each character by performing exclusive prefix sum over run lengths’

- **Array C'**
 - $C'[\alpha]$ stores the start of the run lengths in R for each character $\alpha \in \Sigma$ starting at 0

- **Bit Vector B**
 - compressed bit vector of length n containing ones at positions where BWT runs start and rank-support
Recap: The r-Index (2/3)

$\text{rank}_\alpha (\text{BWT}, i)$ with r-Index

- compute number j of run ($j = \text{rank}_1 (B, i)$)
- compute position k in R ($k = C'[\alpha]$)
- compute number ℓ of α runs before the j-th run ($\ell = \text{rank}_\alpha (L', j - 1)$)
- compute number k of αs before the j-th run ($k = R[k + \ell]$)
- compute character β of run ($\beta = L'[j]$)
- if $\alpha \neq \beta$ return $k \uparrow$ i is not in the run
- else return $k + i - I[j] + 1 \uparrow$ i is in the run
Lemma: Space Requirements r-Index

Given a text T of length n over an alphabet of size σ that has r BWT runs, then its r-index requires

$$O(r \lg n)$$

bits and can answer rank-queries on the BWT in $O(\lg \sigma)$. Given a pattern of length m, the r-index can answer pattern matching queries in time

$$O(m \lg \sigma)$$
RLBWT

- partition \(BWT \) into \(r \) substrings
- \(BWT = L_1 L_2 \ldots L_r \)
- \(L_i \) is maximal repetition of same character
- \(\ell_1 = 1 \) and \(\ell_i = \ell_{i-1} + |L_{i-1}| \)
- \(RLBWT = (L_1[1], \ell_1)(L_2[1], \ell_2) \ldots (L_r[1], \ell_r) \)
partition BWT into r substrings

$BWT = L_1L_2 \ldots L_r$

L_i is maximal repetition of same character

\[\ell_1 = 1 \text{ and } \ell_i = \ell_{i-1} + |L_{i-1}| \]

$RLBWT = (L_1[1], \ell_1)(L_2[1], \ell_2) \ldots (L_r[1], \ell_r)$

let δ be permutation of $[1, r]$ such that

\[LF(\ell_{\delta[1]}) < LF(\ell_{\delta[2]}) < \cdots < LF(\ell_{\delta[r]}) \]
partition BWT into r substrings

BWT = L_1 L_2 \ldots L_r

L_i is maximal repetition of same character

\ell_1 = 1 and \ell_i = \ell_{i-1} + |L_{i-1}|

RLBWT = (L_1[1], \ell_1)(L_2[1], \ell_2) \ldots (L_r[1], \ell_r)

let \delta be permutation of [1, r] such that

LF(\ell_{\delta[1]}) < LF(\ell_{\delta[2]}) < \cdots < LF(\ell_{\delta[r]})

Lemma: LF and RLBWT

Let \ell_x < i < \ell_{x+1} for some i \in [1, n], then

\[LF(i) = LF(\ell_x) + (i - \ell_x) \]

LF(\ell_{\delta[1]}) = 1 and

\[LF(\ell_{\delta[i-1]}) = LF(\ell_{\delta[i-1]}) + |L_{\delta[i-1]}| \]
Input and Output Intervals

Example:

<table>
<thead>
<tr>
<th>$T = \text{ababcabcabba}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWT</td>
</tr>
<tr>
<td>a b $ c c b b a a a b b $</td>
</tr>
<tr>
<td>a b $ c^2 b^2 a^4 b^2 $</td>
</tr>
<tr>
<td>LF</td>
</tr>
<tr>
<td>2 7 1 12 13 8 9 3 4 5 6 10 11</td>
</tr>
</tbody>
</table>

Notes:
- There are r intervals
- Represent domain of LF by intervals
- Solve LF without predecessor queries (we did not use predecessor queries)
- Predecessor queries are bottleneck
Disjoint Interval Sequence & Move Query

Definition: Disjoint Interval Sequence

Let \(I = (p_1, q_1), (p_2, q_2), \ldots, (p_k, q_k) \) be a sequence of \(k \) pairs of integers. We introduce a permutation \(\pi \) of \([1, k]\) and sequence \(d_1, d_2, \ldots, d_k \) for \(I \). \(\pi \) satisfies \(q_{\pi[1]} \leq q_{\pi[2]} \leq \cdots \leq q_{\pi[k]} \), and \(d_i = p_{i+1} - p_i \) for \(i \in [1, k] \), where \(p_{k+1} = n + 1 \). We call the sequence \(I \) a disjoint interval sequence if it satisfies the following three conditions:

- \(p_1 = 1 < p_2 < \cdots < p_k \leq n \)
- \(q_{\pi[1]} = 1 \)
- \(q_{\pi[i]} = q_{\pi[i-1]} + d_{\pi[i-1]} \) for each \(i \in [2, k] \).
Disjoint Interval Sequence & Move Query

Definition: Disjoint Interval Sequence

Let \(l = (p_1, q_1), (p_2, q_2), \ldots, (p_k, q_k) \) be a sequence of \(k \) pairs of integers. We introduce a permutation \(\pi \) of \([1, k]\) and sequence \(d_1, d_2, \ldots, d_k \) for \(l \). \(\pi \) satisfies \(q_{\pi[1]} \leq q_{\pi[2]} \leq \cdots \leq q_{\pi[k]} \), and \(d_i = p_{i+1} - p_i \) for \(i \in [1, k] \), where \(p_{k+1} = n + 1 \). We call the sequence \(l \) a disjoint interval sequence if it satisfies the following three conditions:

- \(p_1 = 1 < p_2 < \cdots < p_k \leq n \)
- \(q_{\pi[1]} = 1 \)
- \(q_{\pi[i]} = q_{\pi[i-1]} + d_{\pi[i-1]} \) for each \(i \in [2, k] \).

\[T = ababcabcabba$ \]

Move Query

\[\text{move}(i, x) = (i', x') \]

- \(i \) position in input interval
- \(x \) input interval
- \(i' \) position in output interval
- \(x' \) input interval covering \(i' \)
Answering Move Query

- $D_{\text{pair}} = (p_i, q_i)$ for every interval
- $D_{\text{index}}[i]$ index of input interval containing q_i

example on the board
Answering Move Query

- \(D_{pair} = (p_i, q_i) \) for every interval
- \(D_{index}[i] \) index of input interval containing \(q_i \)

Example on the board

- \(Move(i, x) = (i', x') \)
 - \(i \) position in input sequence
 - \(x \) index of interval containing \(i \)
 - \(i' = q_x + (i - p_x) \)
 - \(x' \) initially \(D_{index}[x] \)
 - scan \(D_{pair} \) from \(x' \) until \(p_x' \geq l' \)
 - \(x' \) index satisfying condition
Answering Move Query

- $D_{pair} = (p_i, q_i)$ for every interval
- $D_{index}[i]$ index of input interval containing q_i

Example on the board

Lemma: LF and RLBWT

- Let $\ell_x < i < \ell_{x+1}$ for some $i \in [1, n]$, then
 \[
 LF(i) = LF(\ell_x) + (i - \ell_x)
 \]
- $LF(\ell_{\delta[1]}) = 1$ and
 \[
 LF(\ell_{\delta[i]}) = LF(\ell_{\delta[i-1]}) + |L_{\delta[i-1]}|
 \]

- $Move(i, x) = (i', x')$
 - i' position in input sequence
 - x' index of interval containing i
- $i' = q_x + (i - p_x)$
- x' initially $D_{index}[x]$
- scan D_{pair} from x' until $p'_{x} \geq l'$
- x' index satisfying condition
Moving for LF

LF Query
- input: interval containing an integer i
- output: interval containing $LF(i)$

Example

$T = \text{ababcabcabba}$

<table>
<thead>
<tr>
<th>BWT</th>
<th>a</th>
<th>b</th>
<th>$</th>
<th>c</th>
<th>c</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>$</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LF</th>
<th>2</th>
<th>7</th>
<th>1</th>
<th>12</th>
<th>13</th>
<th>8</th>
<th>9</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>in</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>out</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>
Moving for LF

LF Query
- input: interval containing an integer i
- output: interval containing $LF(i)$

$T = ababcabcabba$

<table>
<thead>
<tr>
<th>BWT</th>
<th>a b $ c c b b a a a b b</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>2 7 1 12 13 8 9 3 4 5 6 10 11</td>
</tr>
</tbody>
</table>

in: 1 2 3 4 5 6 7 8 9 10 11 12 13
out: 1 2 3 4 5 6 7 8 9 10 11 12 13

$1. \text{move to corresponding output interval}$
$2. \text{move to input interval containing position } j$
$3. \text{linear search on at most four intervals}$

worst-case intervals
balance intervals
Moving for LF

LF Query

- input: interval containing an integer i
- output: interval containing $LF(i)$

1. move to corresponding output interval
Moving for LF

LF Query
- input: interval containing an integer i
- output: interval containing $LF(i)$

1. move to corresponding output interval

$T = ababcabcabba$

<table>
<thead>
<tr>
<th>BWT</th>
<th>a</th>
<th>b</th>
<th>$</th>
<th>c</th>
<th>c</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

1. move to corresponding output interval

in

1 2 3 4 5 6 7 8 9 10 11 12 13

out

1 2 3 4 5 6 7 8 9 10 11 12 13
Moving for LF

LF Query

- input: interval containing an integer \(i \)
- output: interval containing \(LF(i) \)

1. move to corresponding output interval
2. move to input interval containing position \(j \)

T = ababcabcabba$

<table>
<thead>
<tr>
<th>BWT</th>
<th>a b $ c c b a a a a b b</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>2 7 1 12 13 8 9 3 4 5 6 10 11</td>
</tr>
</tbody>
</table>

Diagram:

- Input: \(1 2 3 4 5 6 7 8 9 10 11 12 13 \)
- Output: \(1 2 3 4 5 6 7 8 9 10 11 12 13 \)

1. Move to corresponding output interval.
Moving for LF

LF Query
- input: interval containing an integer i
- output: interval containing $LF(i)$
- 1. move to corresponding output interval
- 2. move to input interval containing position j

Example

$T = ababcabcabba$

<table>
<thead>
<tr>
<th>BWT</th>
<th>a</th>
<th>b</th>
<th>$</th>
<th>c</th>
<th>c</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

1. move to corresponding output interval
2. move to input interval containing position j
LF Query

- input: interval containing an integer i
- output: interval containing $LF(i)$

- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals

$T = \text{ababcabcabba}$

<table>
<thead>
<tr>
<th>BWT</th>
<th>a</th>
<th>b</th>
<th>$$</th>
<th>c</th>
<th>c</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

1. move to corresponding output interval
2. move to input interval containing position j
3. linear search on at most four intervals
Moving for LF

LF Query
- input: interval containing an integer i
- output: interval containing $LF(i)$
- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals

$T = \text{ababcabcabba}\$

<table>
<thead>
<tr>
<th>BWT</th>
<th>a</th>
<th>b</th>
<th>$$</th>
<th>c</th>
<th>c</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

In: 1 2 3 4 5 6 7 8 9 10 11 12 13
Out: 1 2 3 4 5 6 7 8 9 10 11 12 13

1. move to corresponding output interval
2. move to input interval containing position j
3. linear search on at most four intervals
Moving for LF

LF Query
- input: interval containing an integer i
- output: interval containing $LF(i)$

1. move to corresponding output interval
2. move to input interval containing position j
3. linear search on at most four intervals

Table:

<table>
<thead>
<tr>
<th>BWT</th>
<th>a</th>
<th>b</th>
<th>$</th>
<th>c</th>
<th>c</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

Diagram:

$T = ababcabcabba$

1. move to corresponding output interval
2. move to input interval containing position j
3. linear search on at most four intervals
Moving for LF

LF Query

- input: interval containing an integer \(i \)
- output: interval containing \(LF(i) \)

- 1. move to corresponding output interval
- 2. move to input interval containing position \(j \)
- 3. linear search on at most four intervals

worst-case intervals

Table and Diagram

<table>
<thead>
<tr>
<th>(T = \text{ababcabcbab}$</th>
<th>(\text{BWT})</th>
<th>(\text{LF})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a \ b \ $ \ c \ c \ b \ a \ a \ a \ a \ b \ b)</td>
<td>(a \ b \ $ \ c^2 \ b^2 \ a^4 \ b^2)</td>
<td>(2 \ 7 \ 1 \ 12 \ 13 \ 8 \ 9 \ 3 \ 4 \ 5 \ 6 \ 10 \ 11)</td>
</tr>
</tbody>
</table>

Diagram

1. move to corresponding output interval
2. move to input interval containing position \(j \)
3. linear search on at most four intervals
LF Query
- Input: interval containing an integer i
- Output: interval containing $LF(i)$

1. Move to corresponding output interval
2. Move to input interval containing position j
3. Linear search on at most four intervals

- Worst-case intervals
- Balance intervals

Example
Let's consider the string $T = \text{ababcabcabba}\$.

The BWT of T is:

<table>
<thead>
<tr>
<th>BWT</th>
<th></th>
<th>a</th>
<th>b</th>
<th>$</th>
<th>c</th>
<th>c</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>$</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>

The LF array is:

| LF | 2 | 7 | 1 | 12 | 13 | 8 | 9 | 3 | 4 | 5 | 6 | 10 | 11 |

Diagram:

- **1.** Move to corresponding output interval.
- **2.** Move to input interval containing position j.
- **3.** Linear search on at most four intervals.
Definition: Permutation Graph

- each interval in the input and output sequence is a node
- each input interval \([p_i, p_i + d_i - 1]\) has a single outgoing edge pointing to output interval that contains \(p_i\)
- resulting graph \(G(I)\) has \(k\) edges

\(G(I)\) is out-balanced if each output interval has at most three incoming edges

\[
T = \text{ababcabcabba}$
\]

<table>
<thead>
<tr>
<th>BWT</th>
<th>a</th>
<th>b</th>
<th>$</th>
<th>c</th>
<th>c</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>a</td>
<td>b</td>
<td>$</td>
<td>c^2</td>
<td>b^2</td>
<td>a^4</td>
<td>b^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>out</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>
Balance the Move Data Structure (1/2)

Definition: Permutation Graph

- each interval in the input and output sequence is a node
- each input interval \([p_i, p_i + d_i - 1]\) has a single outgoing edge pointing to output interval that contains \(p_i\)
- resulting graph \(G(I)\) has \(k\) edges

\(G(I)\) is out-balanced if each output interval has at most three incoming edges
Balance Move Data Structure (2/2)

- identify intervals with \(\geq 5 \) incoming edges
- split it “equally”
- each new interval covers at least two input intervals

Lemma: Size of Out-Balanced Sequence

\(k \leq r \) and \(r' \leq 2r \)

Proof: output contains at least \(k \) big intervals, therefore \(r' \geq 2k \)

\(r' = r + k \), therefore \(2k \leq r + k \)

this gives us \(k \leq r \)
Balance Move Data Structure (2/2)

- identify intervals with ≥ 5 incoming edges
- split it “equally”
- each new interval covers at least two input intervals

- number r' of balanced input intervals is $k + r$
- k is number of split operations
- r is number of runs in BWT
Balance Move Data Structure (2/2)

- identify intervals with ≥ 5 incoming edges
- split it “equally”
- each new interval covers at least two input intervals

- number r' of balanced input intervals is $k + r$
- k is number of split operations
- r is number of runs in BWT

Lemma: Size of Out-Balanced Sequence

$k \leq r$ and $r' \leq 2r$
Balance Move Data Structure (2/2)

- identify intervals with ≥ 5 incoming edges
- split it “equally”
- each new interval covers at least two input intervals

- number r' of balanced input intervals is $k + r$
- k is number of split operations
- r is number of runs in BWT

Lemma: Size of Out-Balanced Sequence

$k \leq r$ and $r' \leq 2r$

Proof

- output contains at least k big intervals, therefore $r' \geq 2k$
- $r' = r + k$, therefore $2k \leq r + k$
- this gives us $k \leq r$
Data Structures for Backwards Search

- r' balanced input & output intervals for LF queries
- rank & select data structure build on the BWT
 - rank in $O(\log \log_w \sigma)$ time
 - select in $O(1)$ time
Data Structures for Backwards Search

- r' balanced input & output intervals for LF queries
- rank & select data structure build on the BWT
 - rank in $O(\log \log_w \sigma)$ time
 - select in $O(1)$ time

- $O(r') = O(r)$ space
- $O(|P| \log \log_w \sigma)$ running time
Data Structures for Backwards Search

- r' balanced input & output intervals for LF queries
- Rank & select data structure build on the BWT
 - Rank in $O(\log \log w \sigma)$ time
 - Select in $O(1)$ time

- $O(r') = O(r)$ space
- $O(|P| \log \log w \sigma)$ running time

- $F(I_{LF})$: move data structure for LF
- L_{first}: character of each run
- $R(L_{first})$: rank and select support on L_{first}
Data Structures for Backwards Search

- \(r' \) balanced input & output intervals for LF queries
- rank & select data structure build on the BWT
 - rank in \(O(\log \log_w \sigma) \) time
 - select in \(O(1) \) time
- \(O(r') = O(r) \) space
- \(O(|P| \log \log_w \sigma) \) running time

- \(F(l_{LF}) \): move data structure for LF
- \(L_{first} \): character of each run
- \(R(L_{first}) \): rank and select support on \(L_{first} \)

- current interval is \([b, e]\) for \(P[i+1..m]\)
- look if \(P[i] \) occurs in \([b, e]\)
 - \(\text{rank}(L_{first}, c, j) - \text{rank}(L_{first}) \geq 1 \)
- find \(\hat{b}, \hat{e} \) marking first/last occurrence of \(P[i] \) in \([b, e]\)
 - \(\hat{b} = \text{select}(L_{first}, c, \text{rank}(L_{first}, c, i - 1) + 1) \)
 - \(\hat{e} = \text{select}(L_{first}, c, \text{rank}(L_{first}, c, j)) \)
- use move data structure to find new \(b, e \) for \(P[i..m] \)
Φ and Its Inverse

- Use Φ^{-1} to compute occs of $SA[b..b + \text{occ} - 1]$
- $\Phi^{-1}(SA[i]) = SA[i + 1]$
- $SA[b..b + \text{occ} - 1] = SA[b], \Phi^{-1}(SA[b]), \Phi^{-1}(\Phi^{-1}(SA[b])), \Phi^{-1}(\Phi^{-1}(\Phi^{-1}(SA[b]))), \ldots$

Table: $T = \text{ababcabcabba}$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>$$</th>
<th>c</th>
<th>c</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>$$</td>
<td>c</td>
<td>c</td>
<td>b^2</td>
<td>a^4</td>
<td>b^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LF</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Φ^{-1}</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>13</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table: Input and Output

<table>
<thead>
<tr>
<th></th>
<th>in</th>
<th>out</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
</tbody>
</table>
Φ and Its Inverse

- use Φ^{-1} to compute occs of $SA[b..b + occ - 1]$
- $\Phi^{-1}(SA[i]) = SA[i + 1]$
- $SA[b..b + occ - 1] = SA[b], \Phi^{-1}(SA[b]), \Phi^{-1}(\Phi^{-1}(SA[b])), \Phi^{-1}(\Phi^{-1}(\Phi^{-1}(SA[b]))), ...$

- Φ^{-1} can be represented by r input & output intervals [GPN20]
- use move data structure on balanced intervals
- keep track of $SA[b]$

T = ababcabcabba$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>$$$</th>
<th>c</th>
<th>c</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWT</td>
<td>a</td>
<td>b</td>
<td>$$$</td>
<td>c</td>
<td>c^2</td>
<td>b^2</td>
<td>a</td>
<td>a^4</td>
<td>b^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LF</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Φ^{-1}</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>13</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

| in | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| out | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Conclusion and Outlook

This Lecture
- move data structure
- optimal $O(r)$ space full-text index

Linear Time Construction

- ST
- SA
- WT
- LZ
- LCP
- BWT
- FM-Index
- r-Index

SA/LCP can be discarded, tests would be appreciated.

"RESULT" is a string literal in the output.

Next Lecture
- longest common extension queries

BIG Recap

This Lecture

This Lecture

Linear Time Construction
Conclusion and Outlook

This Lecture
- move data structure
- optimal $O(r)$ space full-text index

Next Lecture
- longest common extension queries
- BIG Recap

Linear Time Construction

- ST
- SA
- WT
- LZ
- LCP
- BWT
- FM-Index
- r-Index
Conclusion and Outlook

This Lecture
- move data structure
- optimal $O(r)$ space full-text index

Next Lecture
- longest common extension queries
- BIG Recap

Project
- “RESULT” is a string literal in the output
- SA/LCP can be discarded, tests would be appreciated

Linear Time Construction

Graph: ST → SA → LCP → WT → LZ → BWT → FM-Index → r-Index
Bibliography I
