Network Flow-Based Refinement for Multilevel Hypergraph Partitioning

SEA’18 · June 27, 2018
Tobias Heuer, Peter Sanders, Sebastian Schlag
Hypergraphs

- generalization of graphs
 ⇒ hyperedges connect ≥ 2 nodes

- graphs ⇒ dyadic (2-ary) relationships
- hypergraphs ⇒ (d-ary) relationships

- hypergraph $H = (V, E, c, \omega)$
 - vertex set $V = \{1, \ldots, n\}$
 - edge set $E \subseteq \mathcal{P}(V) \setminus \emptyset$
 - node weights $c : V \to \mathbb{R}_{\geq 1}$
 - edge weights $\omega : E \to \mathbb{R}_{\geq 1}$
Hypergraphs

- generalization of graphs ⇒ hyperedges connect \(\geq 2 \) nodes
- graphs ⇒ dyadic (2-ary) relationships
- hypergraphs ⇒ (d-ary) relationships

- hypergraph \(H = (V, E, c, \omega) \)
 - vertex set \(V = \{1, \ldots, n\} \)
 - edge set \(E \subseteq \mathcal{P}(V) \setminus \emptyset \)
 - node weights \(c : V \rightarrow \mathbb{R}_{\geq 1} \)
 - edge weights \(\omega : E \rightarrow \mathbb{R}_{\geq 1} \)
\(\varepsilon \)-Balanced Hypergraph Partitioning Problem

Partition hypergraph \(H = (V, E, c, \omega) \) into \(k \) disjoint blocks \(\Pi = \{ V_1, \ldots, V_k \} \) such that:

- blocks \(V_i \) are \textbf{roughly equal-sized}:

\[
\left| c(V_i) \right| \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil
\]
\(\varepsilon\)-Balanced Hypergraph Partitioning Problem

Partition hypergraph \(H = (V, E, c, \omega)\) into \(k\) disjoint blocks \(\Pi = \{V_1, \ldots, V_k\}\) such that:

- blocks \(V_i\) are roughly equal-sized:

\[
c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil
\]

imbalance parameter
\(\varepsilon \)-Balanced Hypergraph Partitioning Problem

Partition hypergraph \(H = (V, E, c, \omega) \) into \(k \) disjoint blocks \(\Pi = \{ V_1, \ldots, V_k \} \) such that:

- blocks \(V_i \) are **roughly equal-sized**:
 \[
 c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil
 \]

- connectivity objective is **minimized**:

\(c(V) \) is the number of edges incident to a vertex in set \(V \).
\(\varepsilon\)-Balanced Hypergraph Partitioning Problem

Partition hypergraph \(H = (V, E, c, \omega)\) into \(k\) disjoint blocks \(\Pi = \{V_1, \ldots, V_k\}\) such that:

- blocks \(V_i\) are **roughly equal-sized**:
 \[
c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil
 \]

- **connectivity** objective is **minimized**:
 \[
 \sum_{e \in \text{cut}} (\lambda - 1) \omega(e)
 \]

[Diagram showing connectivity and imbalance parameters]
\(\varepsilon \)-Balanced Hypergraph Partitioning Problem

Partition hypergraph \(H = (V, E, c, \omega) \) into \(k \) disjoint blocks \(\Pi = \{ V_1, \ldots, V_k \} \) such that:

- blocks \(V_i \) are \textbf{roughly equal-sized}:
 \[
 c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil
 \]

- \textbf{connectivity} objective is \textbf{minimized}:
 \[
 \sum_{e \in \text{cut}} (\lambda - 1) \omega(e) = 12
 \]
Applications

- VLSI Design
- Warehouse Optimization
- Complex Networks
- Route Planning
- Simulation

Simulation

\[\mathbb{R}^{n \times n} \ni Ax = b \in \mathbb{R}^n \]
The Multilevel Framework

input hypergraph

match / cluster

contract

output partition

local search

uncontract

initial partitioning

initial partitioning
This Talk: Refinement Phase

input hypergraph

match / cluster

contract

local search

uncontract

output partition

initial partitioning
State-of-the-Art Multilevel HGP Refinement

Algorithm 1: FM Local Search

while improvement found do
 while ¬ done do
 find best move
 perform best move
 rollback to best solution

pass

connectivity

vertex moves
State-of-the-Art Multilevel HGP Refinement

Algorithm 1: FM Local Search

while improvement found do
 while ¬ done do
 find best move
 perform best move
 rollback to best solution

pass

pass 1
pass 2

vertex moves

connectivity

rollback
State-of-the-Art Multilevel HGP Refinement

Algorithm 1: FM Local Search

while improvement found do
 while ¬ done do
 find best move
 perform best move
 rollback to best solution
 pass

Known Limitations:

- prone to get **stuck** in local optima
- large nets \(\sim\) **zero** gain moves
Algorithm 1: FM Local Search

while improvement found do
 while ¬ done do
 find best move
 perform best move
 rollback to best solution

Are there viable alternatives?

- prone to get stuck in local optima
- large nets \leadsto zero gain moves

OPT
Flow-Based Refinement for Graph Partitioning

Goal: balanced partition with minimum cut

makes the problem **hard!**
Flow-Based Refinement for Graph Partitioning

Goal: balanced partition with minimum cut

network flows

+

max-flow min-cut theorem

\(\downarrow \)

min. \((s, t)\)-cuts

https://brilliant.org/wiki/max-flow-min-cut-algorithm/
Flow-Based Refinement for Graph Partitioning

Goal: balanced partition with minimum cut

network flows + max-flow min-cut theorem \downarrow min. (s, t)-cuts

⇒ employed for graph partitioning in KaFFPa [Sanders, Schulz 11]

k-way refinement via pairwise flow-based improvements
The KaFFPa Framework [Sanders, Schulz 11]

select two adjacent blocks for refinement

build flow network

solve flow problem

find most-balanced minimum cut
Our Refinement Framework/Contributions

As in KaFFPa, but:
- speedup heuristics

Select two adjacent blocks for refinement

Flow Problem:
- improved model
- further size reduction

Solve flow problem

Hypergraph Flow Networks:
- size reduction

Build flow network

Find most-balanced minimum cut

As in KaFFPa
I am going to talk about...

As in KaFFPa, but
- speedup heuristics
- select two adjacent blocks for refinement

Flow Problem
- improved model
- further size reduction

Hypergraph Flow Networks
- size reduction

build flow network

solve flow problem

find most-balanced minimum cut

Flow Problem

As in KaFFPa
Hypergraph Flow Networks

Hypergraph H
Hypergraph Flow Networks: Star-Expansion G^*
Hypergraph Flow Networks: Lawler Network [Lawler 73]

⇒ node capacities ⇝ edge capacities
Hypergraph Flow Networks: Lawler Network [Lawler 73]

⇒ node capacities \rightsquigarrow edge capacities
Hypergraph Flow Networks: Lawler Network [Lawler 73]

⇒ node capacities \sim edge capacities

$\omega(e) = \infty$
Hypergraph Flow Networks: Lawler Network [Lawler 73]

⇒ node capacities ↛ edge capacities

⇒ hypernode v induces $2d(v)$ edges
Hypergraph Flow Networks: Lawler Network [Lawler 73]

⇒ node capacities ⇝ edge capacities

⇒ hypernode v induces $2d(v)$ edges

⇒ net e induces 2 nodes & 1 edge
Hypergraph Flow Networks: Lawler Network [Lawler 73]

⇒ node capacities ⇝ edge capacities
Hypergraph Flow Networks: Liu-Wong Network [LW98]

special treatment of two-pin nets
⇒ save 2 nodes + 3 edges
Hypergraph Flow Networks: Our Network

Minimum-Weight Vertex Separator [Hu, Moerder 85]
Hypergraph Flow Networks: Our Network

Minimum-Weight Vertex Separator [Hu, Moerder 85]

Observation: min. \((s, t)\)-vertex separator has to be subset of star-nodes
Hypergraph Flow Networks: Our Network

Minimum-Weight Vertex Separator [Hu, Moerder 85]
⇒ replace ∞-nodes with cliques...
Hypergraph Flow Networks: Our Network

Minimum-Weight Vertex Separator [Hu, Moerder 85]
⇒ replace ∞-nodes with cliques...

... and apply Lawler transformation

... and apply Lawler transformation
Hypergraph Flow Networks: Our Network

Minimum-Weight Vertex Separator [Hu, Moerder 85] ⇒ replace \(\infty\)-nodes with cliques...

⇒ removed hypernode \(v\) induces \(d(v)(d(v) - 1)\) edges
Hypergraph Flow Networks: Our Network

Minimum-Weight Vertex Separator [Hu, Moerder 85]
⇒ replace ∞-nodes with cliques...

⇒ removed hypernode \(v \) induces \(d(v)(d(v) - 1) \) edges

If \(d(v) \leq 3 \), then \(d(v)(d(v) - 1) \leq 2d(v) \)
Hypergraph Flow Networks: Our Network

Minimum-Weight Vertex Separator [Hu, Moerder 85]
⇒ replace ∞-nodes with cliques...

⇒ removed hypernode v induces \(d(v)(d(v) - 1)\) edges

If \(d(v) \leq 3\), then \(d(v)(d(v) - 1) \leq 2d(v)\)

⇒ remove hypernodes with \(d(v) \leq 3\)
Hypergraph Flow Networks: Our Network

⇒ **combine** low degree hypernode removal with Liu-Wong transformation
I am going to talk about ...

As in KaFFPa, but

- speedup heuristics

select two adjacent blocks for refinement

Hypergraph Flow Networks

- size reduction

build flow network

Flow Problem

- improved model
- further size reduction

solve flow problem

find most-balanced minimum cut
KaFFPa’s Flow-Based Refinement for hypergraphs
KaFFPa’s Flow-Based Refinement for hypergraphs

construct area $B = B_1 \cup B_2$ s.t. every (s,t)-cut is ε-balanced in H

\[
c(B_1) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil - c(V_j) \\
\]

BFS

V_i

V_j

B_1

B_2

Cut
KaFFPa’s Flow-Based Refinement for hypergraphs

construct area $B = B_1 \cup B_2$ s.t. every (s,t)-cut is ε-balanced in H

$$c(B_1) \leq (1 + \varepsilon)\left\lceil \frac{c(V)}{k} \right\rceil - c(V_j) \iff \Rightarrow c(B_2) \leq (1 + \varepsilon)\left\lceil \frac{c(V)}{k} \right\rceil - c(V_i)$$
KaFFPa’s Flow-Based Refinement (for hypergraphs)

construct area \(B = B_1 \cup B_2 \) s.t. every (s,t)-cut is \(\varepsilon \)-balanced in \(H \)

\[
c(B_1) \leq (1 + \varepsilon)\left\lceil \frac{c(V)}{k} \right\rceil - c(V_j) \iff \Rightarrow c(B_2) \leq (1 + \varepsilon)\left\lceil \frac{c(V)}{k} \right\rceil - c(V_i)
\]
KaFFPa’s Flow-Based Refinement for hypergraphs

construct area \(B = B_1 \cup B_2 \) s.t. every \((s,t)\)-cut is \(\epsilon\)-balanced in \(H \)

\[
c(B_1) \leq (1 + \epsilon) \left\lceil \frac{c(V)}{k} \right\rceil - c(V_j) \Leftarrow \Rightarrow c(B_2) \leq (1 + \epsilon) \left\lceil \frac{c(V)}{k} \right\rceil - c(V_i)
\]
KaFFPa’s Flow-Based Refinement for hypergraphs

build and solve flow problem
KaFFPa’s Flow-Based Refinement for hypergraphs

build and solve flow problem
KaFFPa’s Flow-Based Refinement for hypergraphs

build and solve flow problem

\[\Rightarrow \text{optimal cut in subhypergraph } \sim \Rightarrow \text{improved } \varepsilon\text{-balanced cut in } H \]
Shortcomings of the KaFFPa Approach
Shortcomings of the KaFFPa Approach

\[\iff \text{border nodes cannot move!} \]
\[\Rightarrow \text{no min-cuts involving border nets possible!} \]
Shortcomings of the KaFFPa Approach

(Sprite)

\[\text{border nodes cannot move!} \]

\[\Rightarrow \text{no min-cuts involving border nets possible!} \]
Shortcomings of the KaFFPa Approach

- border nodes cannot move!
- no min-cuts involving border nets possible!
Shortcomings of the KaFFPa Approach

- border nodes cannot move!

⇒ no min-cuts involving border nets possible!

particularly bad for

- large nets \(\leadsto\) likely to be border nets
- small imbalance \(\varepsilon\) \(\leadsto\) small area \(B\)
Shortcomings of the KaFFPa Approach

- border nodes cannot move!

⇒ no min-cuts involving border nets possible!

particularly bad for
- large nets ⇝ likely to be border nets
- small imbalance ε ⇝ small area B

also applies to GP
Solution: A more flexible Model

\[V_i \quad \text{Cut} \quad B_1 \quad B_2 \quad V_j \]
Solution: A more flexible Model

extend flow problem to include border nets
Solution: A more flexible Model

extend flow problem to include border nets

⇒ border nodes become movable ✓
Solution: A more flexible Model

extend flow problem to include border nets

\[V_i \to s \to B_1 \to B_2 \to t \to V_j \]

⇒ border nodes become movable ✓
⇒ but flow problem becomes larger ❌
Solution: A more flexible Model

remove border pins with help of \(e', e'' \) nodes
Solution: A more flexible Model

remove border pins with help of e', e'' nodes
Solution: A more flexible Model

remove border pins with help of e', e'' nodes

Lawler Network
Solution: A more flexible Model

remove border pins with help of e', e'' nodes

Lawler Network
Solution: A more flexible Model

remove border pins with help of e', e'' nodes

special case: single-pin border nets
Solution: A more flexible Model

remove border pins with help of e', e'' nodes

special case: single-pin border nets
A more flexible Model – Summary

✓ **movable** border nodes \sim **all** cuts are feasible

✓ **no** increase in problem size

✓ further size **reduction** through $|e| = 1$ border nets
Experiments – Benchmark Setup

- System: 1 core of 2 Intel Xeon E5-2670 @ 2.6 Ghz, 64 GB RAM

- # (Hyper)graphs: [publicly available]
 - SuiteSparse Matrix Collection 184
 - SAT Competition 2014 (3 representations) 92
 - ISPD98 & DAC2012 VLSI Circuits 28
 - DIMACS Graphs [flow model experiments] 15

- $k \in \{2, 4, 8, 16, 32, 64, 128\}$ with imbalance: $\varepsilon = 3\%$

- Comparing KaHyPar-MF with:
 - KaHyPar-CA
 - hMetis-R & hMetis-K
 - PaToH-Default & PaToH-Quality
Size Reduction Of Hypergraph Flow Networks

Max-Flow Computation, area $|B| = 25,000$ hypernodes

\mathcal{N}_L: Lawler Network

\mathcal{N}_W: Liu-Wong Network

\mathcal{N}_{Our}: Our Network

$\mathcal{N}_{\text{Our}}^1$: Our Network with $|e| = 1$ opt.
Size Reduction Of Hypergraph Flow Networks

Max-Flow Computation, area $|B| = 25,000$ hypernodes

Networks:
- N_L: Lawler Network
- N_W: Liu-Wong Network
- N_{Our}: Our Network
- N_{Our}^1: Our Network with $|e| = 1$ opt.

Speedup over N_L: $d(v)$: ↗, $|e|$: ↗

P_{DAC}, ISPD, Dual, Primal, Literal, SPM

N_{Our}: Our Network

N_{Our}^1: Our Network with $|e| = 1$ opt.
Impact of KaHyPar’s Flow Model

Average Improvement [%] over the KaFFPa Approach

<table>
<thead>
<tr>
<th>(\alpha')</th>
<th>Hypergraphs</th>
<th>DIMACS Graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\varepsilon = 1%)</td>
<td>(\varepsilon = 3%)</td>
</tr>
<tr>
<td>1</td>
<td>7.7</td>
<td>8.1</td>
</tr>
<tr>
<td>2</td>
<td>7.9</td>
<td>6.6</td>
</tr>
<tr>
<td>4</td>
<td>6.9</td>
<td>3.9</td>
</tr>
<tr>
<td>8</td>
<td>5.1</td>
<td>2.3</td>
</tr>
<tr>
<td>16</td>
<td>3.4</td>
<td>1.3</td>
</tr>
</tbody>
</table>

⇒ performs **better** on all problem sizes and imbalances
⇒ most pronounced for **small** flow problems & imbalances
⇒ effects also visible for **graphs**
Impact of KaHyPar’s Flow Model

Average Improvement [%] over the KaFFPa Approach

<table>
<thead>
<tr>
<th>α'</th>
<th>Hypergraphs</th>
<th></th>
<th>DIMACS Graphs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ε = 1%</td>
<td>ε = 3%</td>
<td>ε = 5%</td>
<td>ε = 1%</td>
</tr>
<tr>
<td>1</td>
<td>7.7</td>
<td>8.1</td>
<td>7.6</td>
<td>11.7</td>
</tr>
<tr>
<td>2</td>
<td>7.9</td>
<td>6.6</td>
<td>4.8</td>
<td>11.0</td>
</tr>
<tr>
<td>4</td>
<td>6.9</td>
<td>3.9</td>
<td>2.7</td>
<td>9.9</td>
</tr>
<tr>
<td>8</td>
<td>5.1</td>
<td>2.3</td>
<td>1.5</td>
<td>8.6</td>
</tr>
<tr>
<td>16</td>
<td>3.4</td>
<td>1.3</td>
<td>1.2</td>
<td>7.0</td>
</tr>
</tbody>
</table>

⇒ performs **better** on **all** problem sizes and imbalances
⇒ most pronounced for **small** flow problems & imbalances
⇒ effects also visible for **graphs**
Impact of KaHyPar’s Flow Model

Average Improvement [%] over the KaFFPa Approach

<table>
<thead>
<tr>
<th>α'</th>
<th>Hypergraphs</th>
<th></th>
<th></th>
<th>DIMACS Graphs</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\varepsilon = 1%$</td>
<td>$\varepsilon = 3%$</td>
<td>$\varepsilon = 5%$</td>
<td>$\varepsilon = 1%$</td>
<td>$\varepsilon = 3%$</td>
<td>$\varepsilon = 5%$</td>
</tr>
<tr>
<td>1</td>
<td>7.7</td>
<td>8.1</td>
<td>7.6</td>
<td>11.7</td>
<td>11.3</td>
<td>10.5</td>
</tr>
<tr>
<td>2</td>
<td>7.9</td>
<td>6.6</td>
<td>4.8</td>
<td>11.0</td>
<td>9.1</td>
<td>7.8</td>
</tr>
<tr>
<td>4</td>
<td>6.9</td>
<td>3.9</td>
<td>2.7</td>
<td>9.9</td>
<td>7.3</td>
<td>5.4</td>
</tr>
<tr>
<td>8</td>
<td>5.1</td>
<td>2.3</td>
<td>1.5</td>
<td>8.6</td>
<td>5.3</td>
<td>3.9</td>
</tr>
<tr>
<td>16</td>
<td>3.4</td>
<td>1.3</td>
<td>1.2</td>
<td>7.0</td>
<td>4.1</td>
<td>3.5</td>
</tr>
</tbody>
</table>

- Performs **better** on **all** problem sizes and imbalances
- Most pronounced for **small** flow problems & imbalances
- Effects also visible for **graphs**
State-of-the-Art: HGP Quality

All (3222 Instances)

Algorithm
- KaHyPar-CA
- hMetis-R
- hMetis-K
- PaToH-Q
- PaToH-D

1 - (Best/Algorithm)

Instances
KaHyPar-MF: HGP Quality

![Graph showing HGP quality and running time for KaHyPar-MF and other algorithms](image)

- **Algorithm**
 - KaHyPar-MF
 - KaHyPar-CA
 - hMetis-R
 - hMetis-K
 - PaToH-Q
 - PaToH-D

ALL (3222 Instances)

- Infeasible solutions

Y-Axis: 1 - (Best/Algorithm)

X-Axis: # Instances

1 10 25 50 100 250 500 750 1000 1500 2000 2500 3000 3500
KaHyPar-MF: HGP Quality & Running Time

![Graph showing HGP Quality and Running Time](image)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>t [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>KaHyPar-MF</td>
<td>55.67</td>
</tr>
<tr>
<td>KaHyPar-CA</td>
<td>31.05</td>
</tr>
<tr>
<td>hMetis-R</td>
<td>79.23</td>
</tr>
<tr>
<td>hMetis-K</td>
<td>57.86</td>
</tr>
<tr>
<td>PaToH-Q</td>
<td>5.89</td>
</tr>
<tr>
<td>PaToH-D</td>
<td>1.22</td>
</tr>
</tbody>
</table>

Infeasible solutions
Conclusion & Discussion

KaHyPar-MF – direct k-way HGP with flow-based refinement

- generalizes KaFFPa’s flow refinement to hypergraphs
- sparsified hypergraph flow networks
- improved flow model

In the paper / technical report:

- speedup heuristics \leadsto factor 2 faster
- min-cut reconstruction
- more experimental results:
 - size of flow networks
 - different algorithm configurations
 - quality & running times per instance class

KaHyPar-Framework
Open-Source:
http://kahypar.org
Implementation Details

output partition

local search

uncontract

...
Implementation Details

KaFFPa
multi-level

output partition

local search

uncontract

\[\log(n) \text{ flow + FM refinements} \]
Implementation Details

KaFFPa
multi-level

KaHyPar
n-level

flow refinement after 2^i uncontractions

uncontract

local search

output partition
Implementation Details

KaFFPa
multi-level

KaHyPar
n-level

Flow
FM

Flow
FM

Flow
FM

Flow
FM

FM refinements inbetween