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Hypergraphs

hypergraph H = (V , E , c,ω)

vertex set V = {1, ..., n}
edge set E ⊆ P (V ) \ ∅
node weights c : V → R≥1

edge weights ω : E → R≥1

graphs⇒ dyadic (2-ary) relationships

hypergraphs⇒ (d-ary) relationships

generalization of graphs
⇒ hyperedges connect ≥ 2 nodes
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node weights c : V → R≥1

edge weights ω : E → R≥1

graphs⇒ dyadic (2-ary) relationships
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generalization of graphs
⇒ hyperedges connect ≥ 2 nodes
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ε-Balanced Hypergraph Partitioning Problem

Partition hypergraph H = (V , E , c,ω) into k disjoint blocks
Π = {V1, . . . , Vk} such that:

blocks Vi are roughly equal-sized:

c(Vi) ≤ (1 + ε)
⌈

c(V )
k

⌉
connectivity objective is minimized:

2
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ε-Balanced Hypergraph Partitioning Problem

Partition hypergraph H = (V , E , c,ω) into k disjoint blocks
Π = {V1, . . . , Vk} such that:

imbalance
parameterblocks Vi are roughly equal-sized:

c(Vi) ≤ (1 + ε)
⌈

c(V )
k

⌉
connectivity objective is minimized:∑

e∈cut(λ− 1) ω(e) = 12

connectivity:
# blocks connected by net e
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Applications

Rn×n 3 Ax = b ∈ Rn

VLSI Design

Route Planning Simulation Scientific Computing

Warehouse Optimization Complex Networks

3
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The Multilevel Framework

contract uncontract

match / cluster local search

input hypergraph

· · · · · ·

output partition

· · ·

initial
partitioning

· · ·
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This Talk: Refinement Phase

contract uncontract

match / cluster local search

input hypergraph

· · · · · ·

output partition

· · ·

initial
partitioning

· · ·
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State-of-the-Art Multilevel HGP Refinement

Algorithm 1: FM Local Search

1 while improvement found do
2 while ¬ done do
3 find best move
4 perform best move
5 rollback to best solution

pass

co
nn

ec
tiv

ity

vertex moves

rollback

6
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State-of-the-Art Multilevel HGP Refinement

Algorithm 1: FM Local Search

1 while improvement found do
2 while ¬ done do
3 find best move
4 perform best move
5 rollback to best solution

pass

vertex moves

rollback
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State-of-the-Art Multilevel HGP Refinement

Algorithm 1: FM Local Search

1 while improvement found do
2 while ¬ done do
3 find best move
4 perform best move
5 rollback to best solution

pass

vertex moves

rollback

Known Limitations:

7 large nets zero gain moves7 prone to get stuck in local optima

?

?
OPT

co
nn

ec
tiv

ity pass 1 pass 2

6
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State-of-the-Art Multilevel HGP Refinement

Algorithm 1: FM Local Search

1 while improvement found do
2 while ¬ done do
3 find best move
4 perform best move
5 rollback to best solution

pass

vertex moves

rollback

Known Limitations:

7 large nets zero gain moves7 prone to get stuck in local optima

?

?
OPT

co
nn

ec
tiv

ity

Are there viable alternatives?

pass 1 pass 2

6
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Flow-Based Refinement for Graph Partitioning

Goal: balanced partition with minimum cut

makes the problem hard!

7
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Flow-Based Refinement for Graph Partitioning

https://brilliant.org/wiki/max-flow-min-cut-algorithm/

Goal: balanced partition with minimum cut
network flows

+
max-flow min-cut theorem

min. (s, t)-cuts

 
a
⇒
a

7
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Flow-Based Refinement for Graph Partitioning

https://brilliant.org/wiki/max-flow-min-cut-algorithm/

⇒ employed for graph partitioning in KaFFPa [Sanders, Schulz 11]

k -way refinement via pairwise flow-based improvements

Goal: balanced partition with minimum cut

V1 V2

V3 V4

network flows
+

max-flow min-cut theorem

min. (s, t)-cuts

 
a
⇒
a

7
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The KaFFPa Framework [Sanders, Schulz 11]

V1 V2

V3 V4

select two adjacent blocks for refinement build flow network

solve flow problem find most-balanced minimum cut

V1 V2

B1 B2

s t

s t

3

2

2

2

1
2

1

5

4 V1

V2

s t

3

2

2

2

1
2

1

5

4
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Our Refinement Framework/ Contributions

select two adjacent blocks for refinement build flow network

solve flow problem find most-balanced minimum cut

V1 V2

V3 V4

V1 V2

B1 B2

s t

s t

3

2

2

2

1
2

1

5

4 V1

V2

5

s t

3

2

2

2

1
2

1
4 V1

V2

As in KaFFPa

As in KaFFPa, but
speedup heuristics

Hypergraph Flow Networks
size reduction

Flow Problem
improved model

further size reduction

9



5

Sebastian Schlag – Network Flow-Based Refinement for Multilevel Hypergraph Partitioning Institute of Theoretical Informatics

I am going to talk about...

select two adjacent blocks for refinement build flow network

solve flow problem find most-balanced minimum cut

V1 V2

V3 V4

V1 V2

B1 B2

s t

s t

3

2

2

2

1
2

1

5

4 V1

V2

5

As in KaFFPas t

3

2

2

2

1
2

1
4 V1

V2

As in KaFFPa, but
speedup heuristics

Hypergraph Flow Networks
size reduction

Flow Problem
improved model

further size reduction
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Hypergraph Flow Networks:

s

t

Hypergraph H

11
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Hypergraph Flow Networks:

s

t

Star-Expansion G∗

1
1

1

1

1

1

11
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Hypergraph Flow Networks:

s

t

1 1 1

1

1
1

Lawler Network [Lawler 73]

⇒ node capacities edge capacities

11
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Hypergraph Flow Networks:

s

t

1 1 1

1

1
1

Lawler Network [Lawler 73]

⇒ node capacities edge capacities

bridging nodes

11
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Hypergraph Flow Networks:

s

t

1 1 1

1

1
1

Lawler Network [Lawler 73]

⇒ node capacities edge capacities

ω(e) =∞

11
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Hypergraph Flow Networks:

s

t

1 1 1

1

1
1

Lawler Network [Lawler 73]

⇒ node capacities edge capacities

⇒ hypernode v induces 2d(v ) edges

11
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Hypergraph Flow Networks:

s

t

1 1 1

1

1
1

Lawler Network [Lawler 73]

⇒ node capacities edge capacities

⇒ hypernode v induces 2d(v ) edges

⇒ net e induces 2 nodes & 1 edge

11



5

Sebastian Schlag – Network Flow-Based Refinement for Multilevel Hypergraph Partitioning Institute of Theoretical Informatics

Hypergraph Flow Networks: Lawler Network [Lawler 73]

⇒ node capacities edge capacities

s

t

1 1 1

1

1
1

11
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Hypergraph Flow Networks:

special treatment of two-pin nets

s

t

1 1

1

1
1

1

1

⇒ save 2 nodes + 3 edges

Liu-Wong Network [LW98]
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Hypergraph Flow Networks:

s

t

1
1

1

1 1

1

∞

∞ ∞

∞∞

∞

∞

∞

∞

∞

∞

∞

Our Network

Minimum-Weight Vertex Separator [Hu, Moerder 85]
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Hypergraph Flow Networks:

s

t

1
1

1

1 1

1

∞

∞ ∞

∞∞

∞

∞

∞

∞

∞

∞

∞

Our Network

Minimum-Weight Vertex Separator [Hu, Moerder 85]

Observation: min. (s, t)-vertex separator has to be subset of star-nodes

11
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Hypergraph Flow Networks: Our Network

s
t1

1

1

1

1

1

⇒ replace∞-nodes with cliques...
Minimum-Weight Vertex Separator [Hu, Moerder 85]

11
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Hypergraph Flow Networks: Our Network

Minimum-Weight Vertex Separator [Hu, Moerder 85]

s

t
1 1

1

1
1

1

⇒ replace∞-nodes with cliques...

... and apply Lawler transformation

11
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Hypergraph Flow Networks: Our Network

1 1

1

1
1

1

⇒ replace∞-nodes with cliques...
Minimum-Weight Vertex Separator [Hu, Moerder 85]

s

t

⇒ removed hypernode v induces d(v )(d(v )− 1) edges

11
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Hypergraph Flow Networks: Our Network

1 1

1

1
1

1

⇒ replace∞-nodes with cliques...
Minimum-Weight Vertex Separator [Hu, Moerder 85]

s

t

⇒ removed hypernode v induces d(v )(d(v )− 1) edges

If d(v ) ≤ 3,
then d(v )(d(v )− 1) ≤ 2d(v )

11
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Hypergraph Flow Networks: Our Network

1 1

1

1
1

1

⇒ replace∞-nodes with cliques...

⇒ remove hypernodes with d(v ) ≤ 3

Minimum-Weight Vertex Separator [Hu, Moerder 85]

s

t

⇒ removed hypernode v induces d(v )(d(v )− 1) edges

If d(v ) ≤ 3,
then d(v )(d(v )− 1) ≤ 2d(v )

11
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Hypergraph Flow Networks:

1 1

1

1
1

1

1

Our Network

⇒ combine low degree hypernode removal with Liu-Wong transformation

s

t

11
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I am going to talk about ...

select two adjacent blocks for refinement build flow network

solve flow problem find most-balanced minimum cut

V1

As in KaFFPa, but
speedup heuristics

V2

V3 V4

V1 V2

B1 B2

s t

s t

3

2

2

2

1
2

1

5

4 V1

V2

5

As in KaFFPas t

3

2

2

2

1
2

1
4 V1

V2

Flow Problem
improved model

further size reduction

Hypergraph Flow Networks
size reduction
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KaFFPa’s Flow-Based Refinement

Vi Vj

Cut
B1 B2

for hypergraphs

13
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KaFFPa’s Flow-Based Refinement

BFS

c(B1) ≤ (1 + ε)d c(V )
k e − c(Vj )⇐

Vi Vj

Cut
B1 B2

construct area B = B1 ∪ B2 s.t. every (s,t)-cut is ε-balanced in H

for hypergraphs

13
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KaFFPa’s Flow-Based Refinement

c(B1) ≤ (1 + ε)d c(V )
k e − c(Vj )⇐

BFS

⇒ c(B2) ≤ (1 + ε)d c(V )
k e − c(Vi )

Vi Vj

Cut
B1 B2

Vi Vj

Cut
B1 B2

construct area B = B1 ∪ B2 s.t. every (s,t)-cut is ε-balanced in H

for hypergraphs

13
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construct area B = B1 ∪ B2 s.t. every (s,t)-cut is ε-balanced in H

for hypergraphs

Vi Vj

B1 B2

Vi Vj

Cut

B1 B2

X

ε-balanced
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KaFFPa’s Flow-Based Refinement

Vi Vj

Cut
B1 B2

build and solve flow problem

for hypergraphs

13
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KaFFPa’s Flow-Based Refinement

Vi Vj

Cut
B1 B2

build and solve flow problem

for hypergraphs

ts

13
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KaFFPa’s Flow-Based Refinement

Vi Vj

Cut
B1 B2

s t

⇒ optimal cut in subhypergraph improved ε-balanced cut in H

for hypergraphs

build and solve flow problem

13
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Shortcomings of the KaFFPa Approach

Vj

B1 B2

s tVi

14
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Shortcomings of the KaFFPa Approach

Vj

B1 B2

s t

⇒ no min-cuts involving border nets possible!

77

border nodes cannot move!  

Vi

14
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Vi Vj

B1 B2

s t

⇒ no min-cuts involving border nets possible!
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border nodes cannot move!  

B1

sVi

Lawler Network
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∞
∞

e′ e′′

∞
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Shortcomings of the KaFFPa Approach

Vj

B1 B2

s t

⇒ no min-cuts involving border nets possible!

particularly bad for
large nets likely to be border nets

small imbalance ε small area B

77

border nodes cannot move!  

Vi

14



5

Sebastian Schlag – Network Flow-Based Refinement for Multilevel Hypergraph Partitioning Institute of Theoretical Informatics

Shortcomings of the KaFFPa Approach

Vj

B1 B2

s t

⇒ no min-cuts involving border nets possible!

particularly bad for
large nets likely to be border nets

small imbalance ε small area B

also applies to GP

77

border nodes cannot move!  

Vi

14
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Solution: A more flexible Model

VjVi

Cut
B1 B2

15
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Solution: A more flexible Model

VjVi s

Cut
B1 B2

t

extend flow problem to include border nets

15
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Solution: A more flexible Model

VjVi s

Cut
B1 B2

t

extend flow problem to include border nets

⇒ border nodes become movableX
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Solution: A more flexible Model

VjVi s

Cut
B1 B2

t

extend flow problem to include border nets

X⇒ border nodes become movable
⇒ but flow problem becomes larger 

15
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Solution: A more flexible Model

VjVi s

Cut
B1 B2

t

∞
ω(e)

e′

∞

∞
∞

∞ ∞

∞

remove border pins with help of e′, e′′ nodes

Lawler Network

e′′

15
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Solution: A more flexible Model

VjVjVi s

Cut
B1 B2

tVi

Cut
B1 B2

ts

remove border pins with help of e′, e′′ nodes

Lawler Network

∞
ω(e)

e′

∞

∞
∞

∞ e′′
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Solution: A more flexible Model

VjViVi s

Cut
B1 B2

t

B1

∞

ω(e)

∞
∞

e′

∞

e′′
∞

∞

remove border pins with help of e′, e′′ nodes

Lawler Network

15
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Solution: A more flexible Model

ViVi s Vj

Cut
B1 B2

t

B1

∞

ω(e)

∞
∞

e′ ∞e′′

remove border pins with help of e′, e′′ nodes

Lawler Network

15
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Solution: A more flexible Model

remove border pins with help of e′, e′′ nodes

ViVi s Vj

Cut
B1 B2

t

B1

∞

ω(e)

∞
∞

e′ ∞

special case: single-pin border nets

e′′

15
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Solution: A more flexible Model

remove border pins with help of e′, e′′ nodes

special case: single-pin border nets

Vi s Vj

Cut
B1 B2

t

B1

∞

ω(e)
∞e′′

15
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A more flexible Model – Summary

X movable border nodes all cuts are feasible

X no increase in problem size

X further size reduction through |e| = 1 border nets

Cut

Vi Vj

B1 B2

ts

∞ ∞

∞∞
ω(e)

∞ e′ e′′

ω(e) ∞e′′

16
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Experiments – Benchmark Setup

Comparing KaHyPar-MF with:
KaHyPar-CA
hMetis-R & hMetis-K
PaToH-Default & PaToH-Quality

System: 1 core of 2 Intel Xeon E5-2670 @ 2.6 Ghz, 64 GB RAM

k ∈ {2, 4, 8, 16, 32, 64, 128} with imbalance: ε = 3%

# (Hyper)graphs: [publicly available]
-
-
-
-

SuiteSparse Matrix Collection 184
SAT Competition 2014 (3 representations) 92·3
ISPD98 & DAC2012 VLSI Circuits 28
DIMACS Graphs [flow model experiments] 15

17
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Size Reduction Of Hypergraph Flow Networks

NL: Lawler Network
NW : Liu-Wong Network

NOur: Our Network
N 1

Our: Our Network with |e| = 1 opt.

Max-Flow Computation, area |B| = 25.000 hypernodes

18
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Size Reduction Of Hypergraph Flow Networks

NL: Lawler Network
NW : Liu-Wong Network

NOur: Our Network
N 1

Our: Our Network with |e| = 1 opt.

Max-Flow Computation, area |B| = 25.000 hypernodes

d(v ): ↗
|e|: ↗

d(v ): ↓
|e|: ↑

d(v ): ↑
|e|: ↓

d(v ): ↑
|e|: ↑

18
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Impact of KaHyPar’s Flow Model

Hypergraphs DIMACS Graphs
α′ ε = 1% ε = 3% ε = 5% ε = 1% ε = 3% ε = 5%

1 7.7 8.1 7.6 11.7 11.3 10.5
2 7.9 6.6 4.8 11.0 9.1 7.8
4 6.9 3.9 2.7 9.9 7.3 5.4
8 5.1 2.3 1.5 8.6 5.3 3.9

16 3.4 1.3 1.2 7.0 4.1 3.5

Average Improvement [%] over the KaFFPa Approach

⇒ performs better on all problem sizes and imbalances
⇒ most pronounced for small flow problems & imbalances
⇒ effects also visible for graphs
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State-of-the-Art: HGP Quality
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KaHyPar-MF: HGP Quality & Running Time
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KaHyPar-MF: HGP Quality & Running Time

Algorithm t [s]

KaHyPar-MF 55.67
KaHyPar-CA 31.05

hMetis-R 79.23
hMetis-K 57.86
PaToH-Q 5.89
PaToH-D 1.22
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Conclusion & Discussion

KaHyPar-MF – direct k -way HGP with flow-based refinement

generalizes KaFFPa’s flow refinement to hypergraphs

sparsified hypergraph flow networks

improved flow model

In the paper / technical report:
speedup heuristics factor 2 faster

min-cut reconstruction

more experimental results:

size of flow networks
different algorithm configurations
quality & running times per instance class

Open-Source:
http://kahypar.org

KaHyPar-Framework
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Implementation Details

uncontract

local search

· · ·

output partition

· · ·
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Implementation Details

uncontract

local search

· · ·

output partition

· · ·

log(n) flow + FM refinements

Flow

KaFFPa
multi-level

FM

FM

FM

FM

Flow

Flow

Flow
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Implementation Details

uncontract

local search

· · ·

output partition

· · ·

flow refinement
after 2i uncontractions

KaHyPar
n-level

Flow

KaFFPa
multi-level

FM

FM

FM

FM

Flow

Flow

Flow
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Implementation Details

uncontract

local search

· · ·

output partition

· · ·

FM refinements
inbetween

KaHyPar
n-level

Flow

KaFFPa
multi-level

FM

FM

FM

FM

Flow

Flow

Flow
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