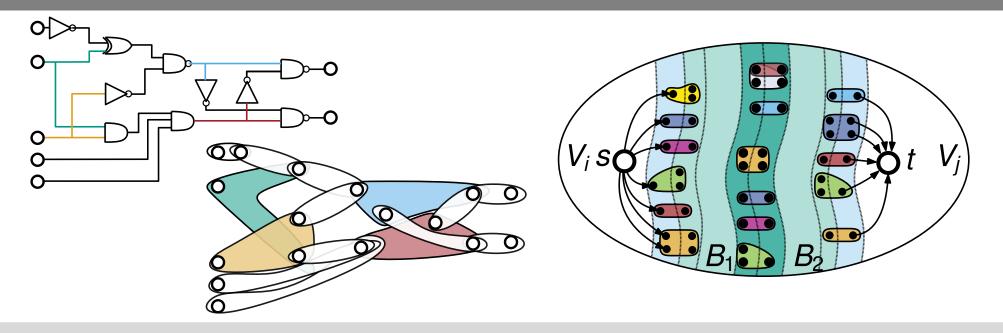


Network Flow-Based Refinement for Multilevel Hypergraph Partitioning

SEA'18 · June 27, 2018 Tobias Heuer, Peter Sanders, Sebastian Schlag

Institute of Theoretical Informatics \cdot



KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

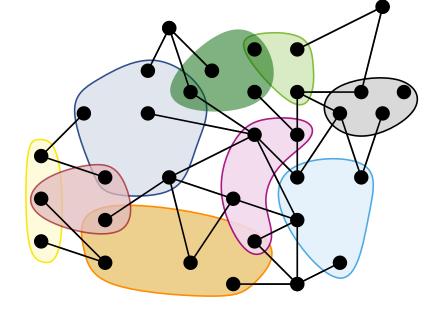
www.kit.edu

Hypergraphs

1

■ generalization of graphs ⇒ hyperedges connect ≥ 2 nodes

- graphs \Rightarrow dyadic (**2-ary**) relationships
- hypergraphs \Rightarrow (**d-ary**) relationships
- hypergraph $H = (V, E, c, \omega)$
 - vertex set V = {1, ..., n}
 - edge set $E \subseteq \mathcal{P}$ (V) $\setminus \emptyset$
 - node weights $c: V o \mathbb{R}_{\geq 1}$
 - edge weights $\omega : E \to \mathbb{R}_{\geq 1}$

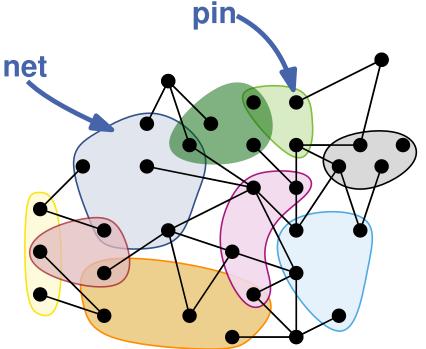


Hypergraphs

1

generalization of graphs hyperedges connect > 2 nodes

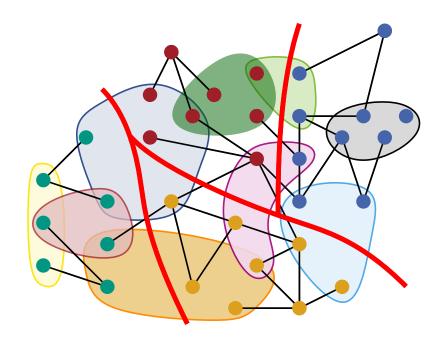
- graphs \Rightarrow dyadic (**2-ary**) relationships
- hypergraphs \Rightarrow (**d-ary**) relationships
- hypergraph $H = (V, E, c, \omega)$
 - vertex set V = {1, ..., n}
 - edge set $E \subseteq \mathcal{P}$ (V) $\setminus \emptyset$
 - node weights $c: V o \mathbb{R}_{\geq 1}$
 - edge weights $\omega : E \to \mathbb{R}_{\geq 1}$



Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left| \frac{c(V)}{k} \right|$$

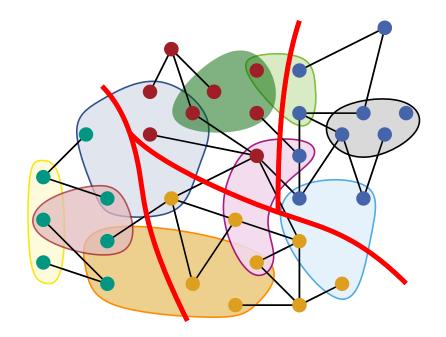


Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

imbalance parameter



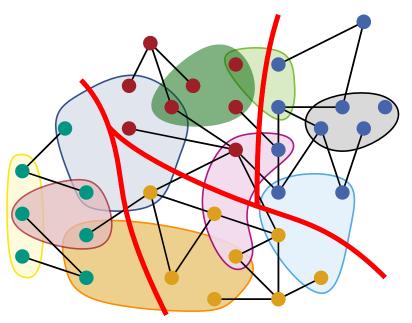
Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left| \frac{c(V)}{k} \right|$$

imbalance parameter

connectivity objective is **minimized**:



Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

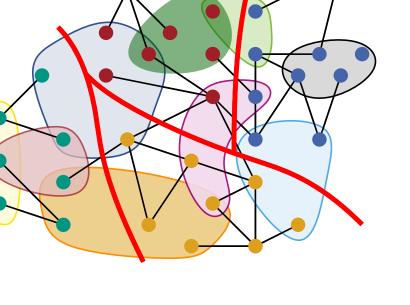
blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left| \frac{c(V)}{k} \right|$$

imbalance parameter

$$\sum_{e \in \text{cut}} (\lambda - 1) \ \omega(e)$$

connectivity:
blocks connected by net *e*

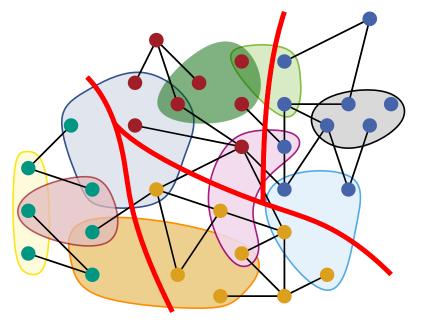


Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left| \frac{c(V)}{k} \right|$$

imbalance parameter

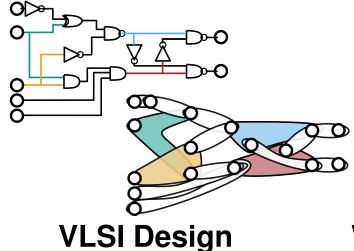


connectivity objective is **minimized**:

$$\sum_{e \in cut} (\lambda - 1) \omega(e) = 12$$
connectivity:

blocks connected by net e

Applications

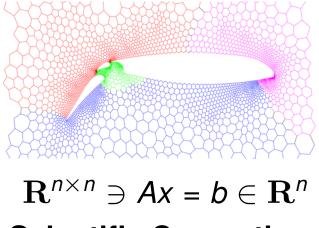


Warehouse Optimization

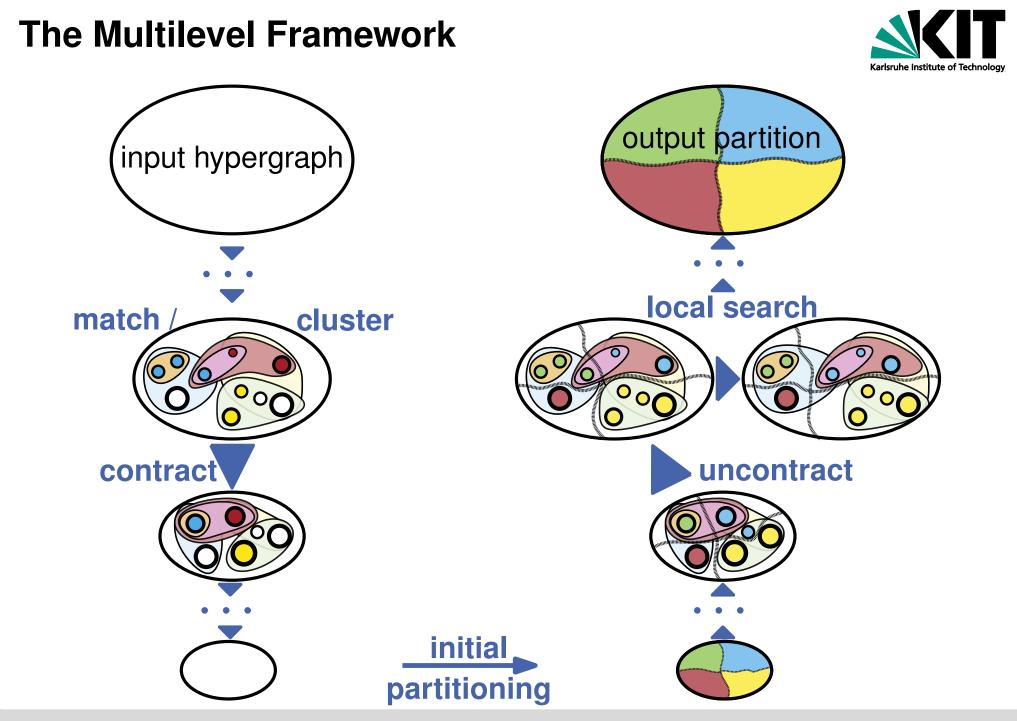
Complex Networks

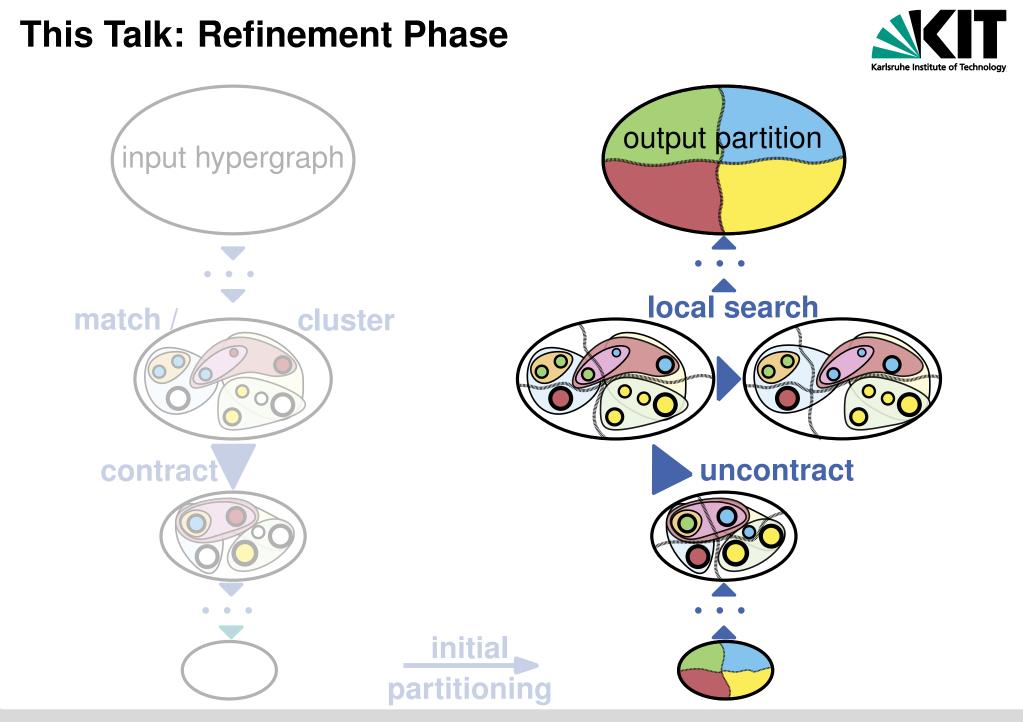
Route Planning

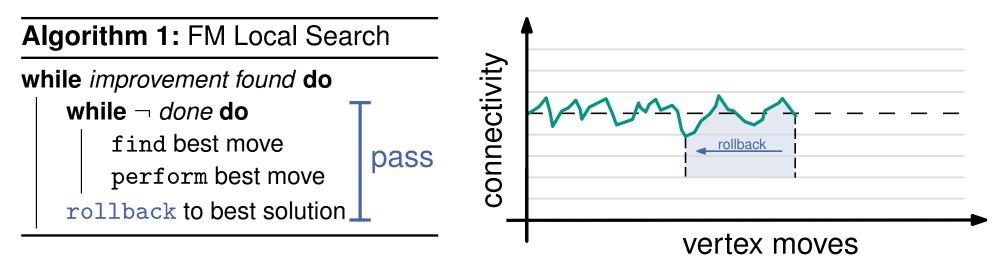
Simulation

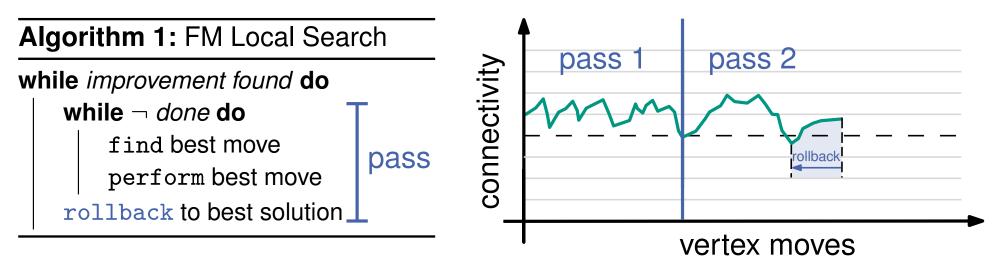


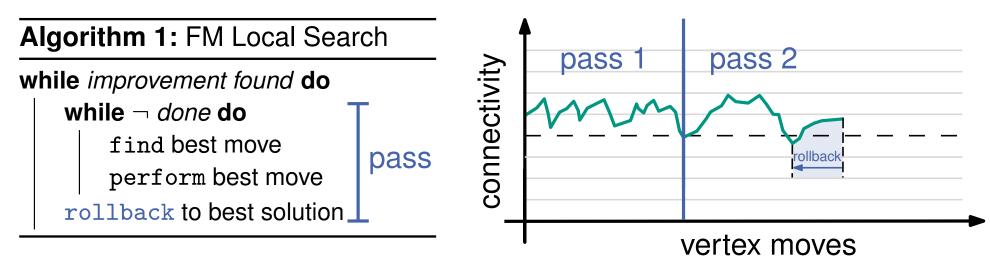
Scientific Computing





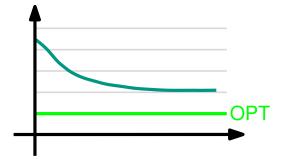


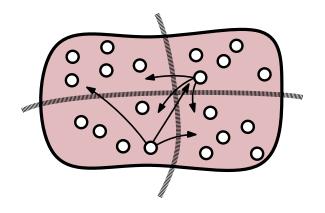




Known Limitations:

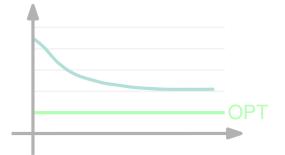
- prone to get stuck in local optima
- X large nets → **zero** gain moves

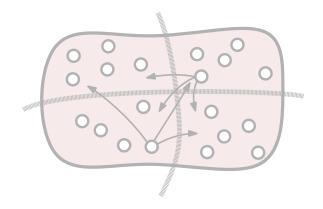




Are there viable alternatives?

× prone to get **stuck** in local optima × large nets ~ zero gain moves



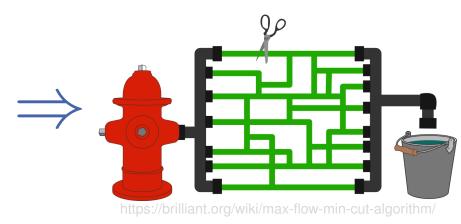


Flow-Based Refinement for Graph Partitioning

Goal: balanced partition with minimum cut makes the problem hard!

Flow-Based Refinement for Graph Partitioning

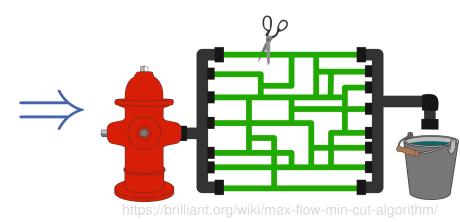
Goal: balanced partition with minimum cut

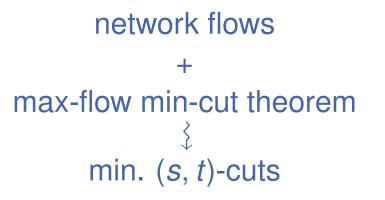


network flows + max-flow min-cut theorem ↓ min. (*s*, *t*)-cuts

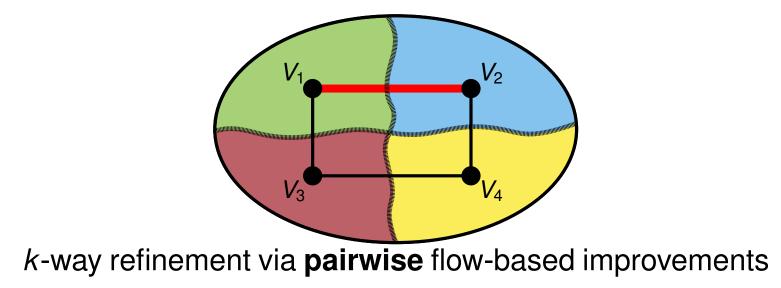
Flow-Based Refinement for Graph Partitioning

Goal: balanced partition with minimum cut

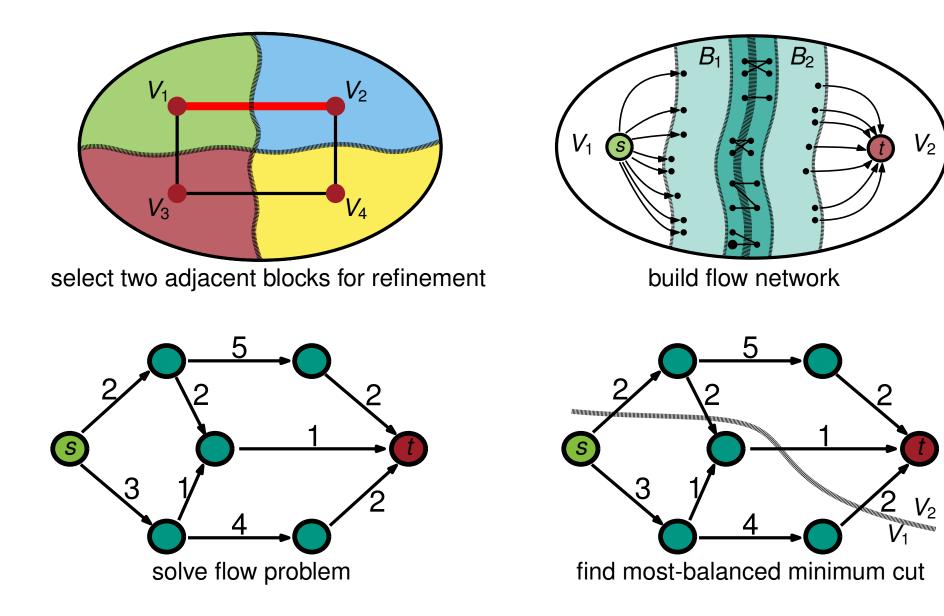




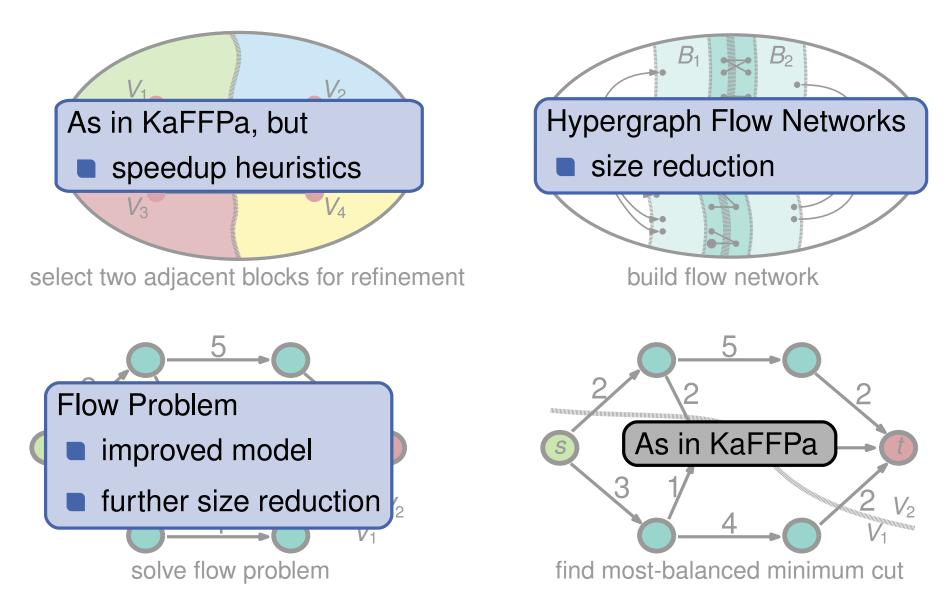
⇒ employed for graph partitioning in KaFFPa [Sanders, Schulz 11]



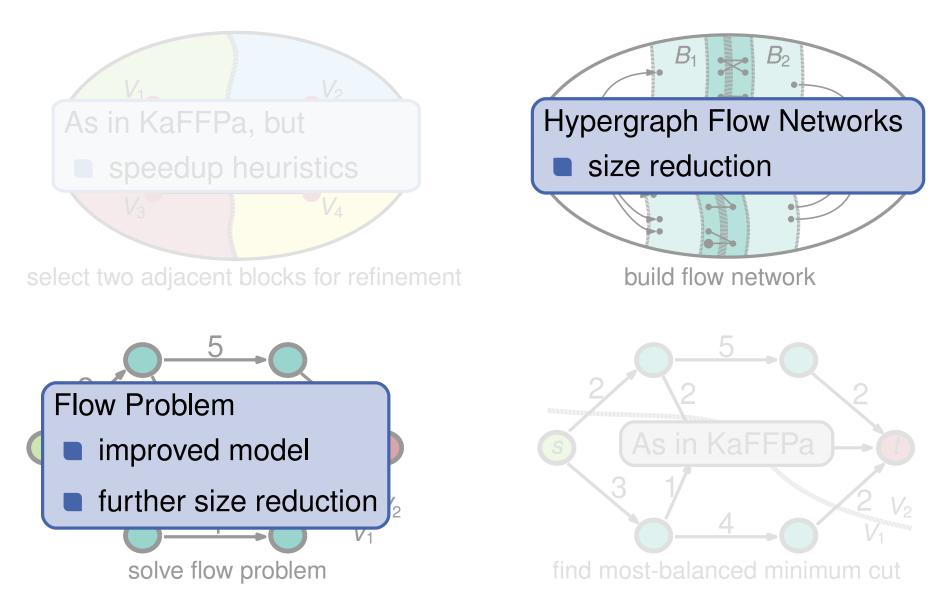
The KaFFPa Framework [Sanders, Schulz 11]



Our Refinement Framework/ Contributions

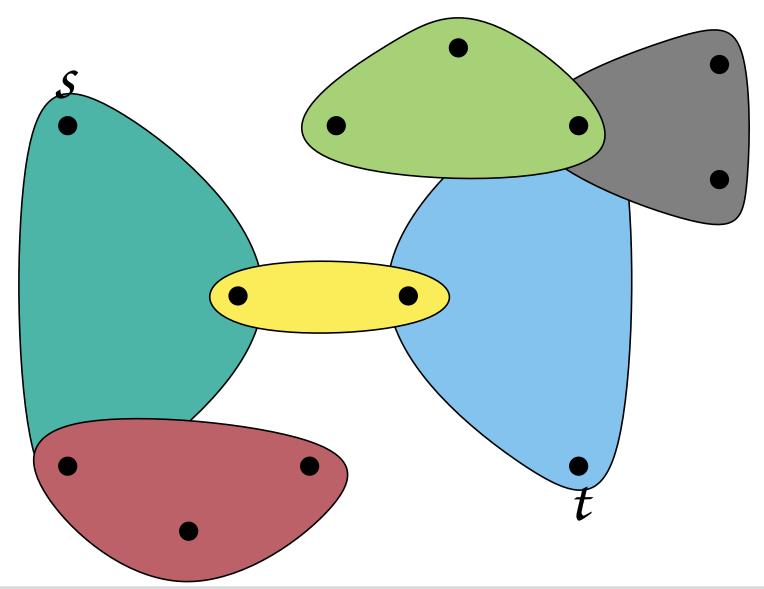


I am going to talk about...

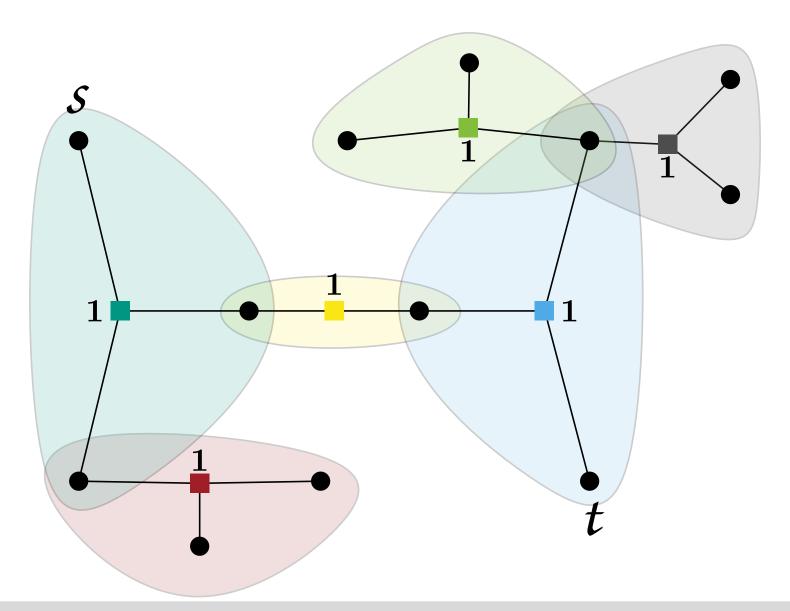


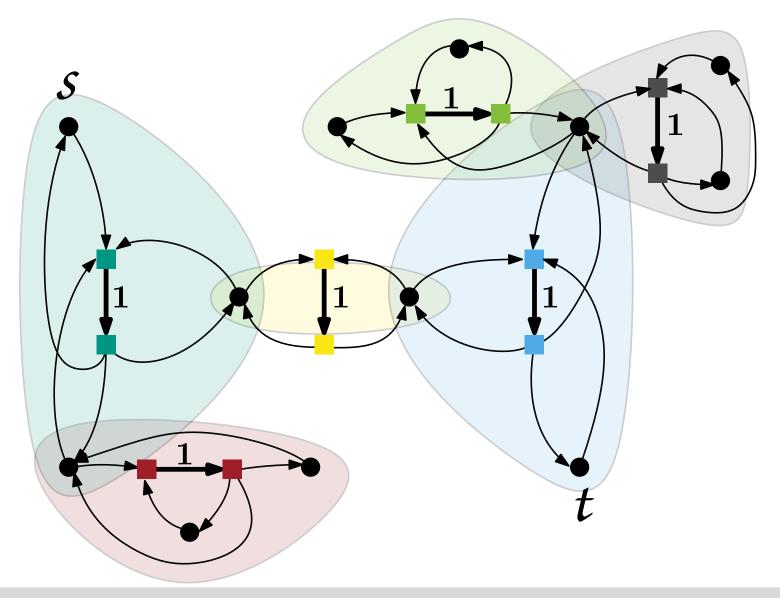
Hypergraph Flow Networks

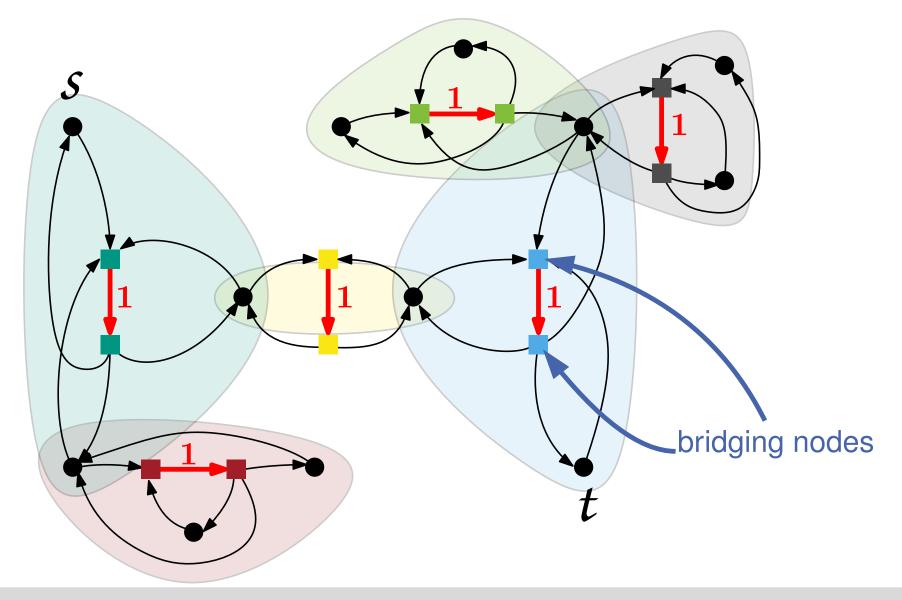
Hypergraph H

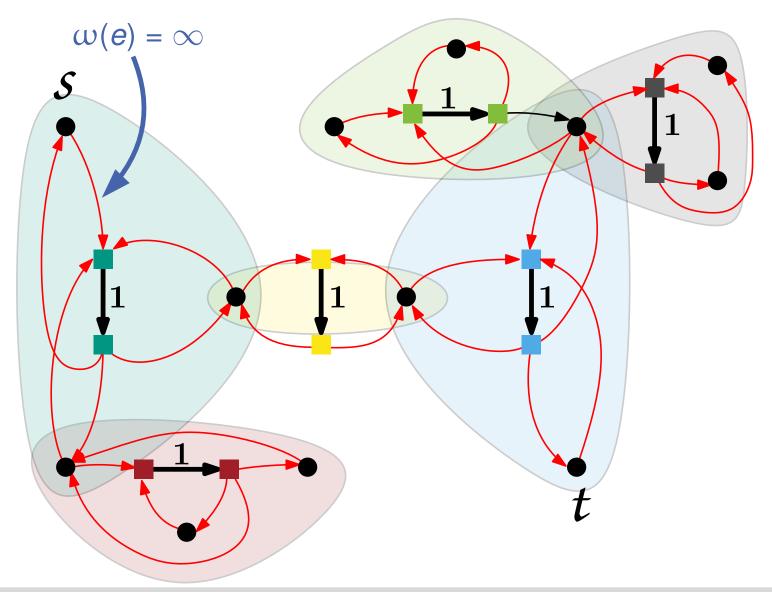


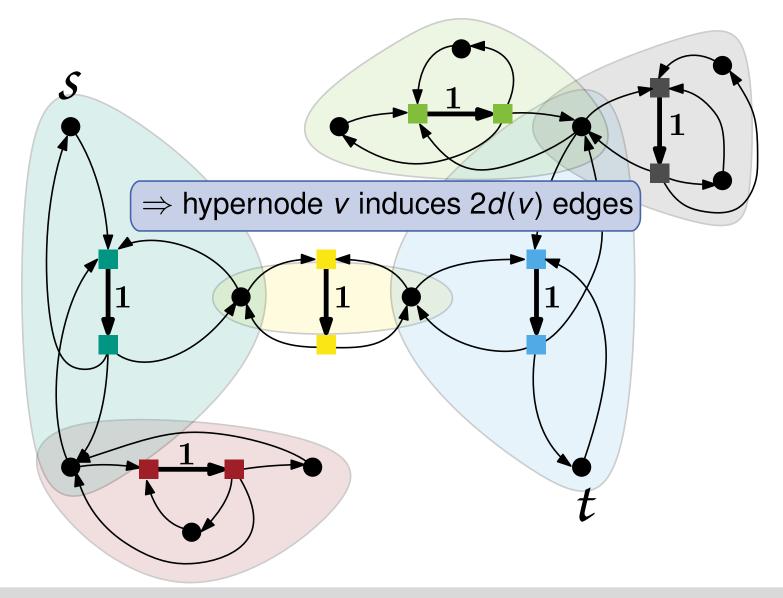
Hypergraph Flow Networks: Star-Expansion G*

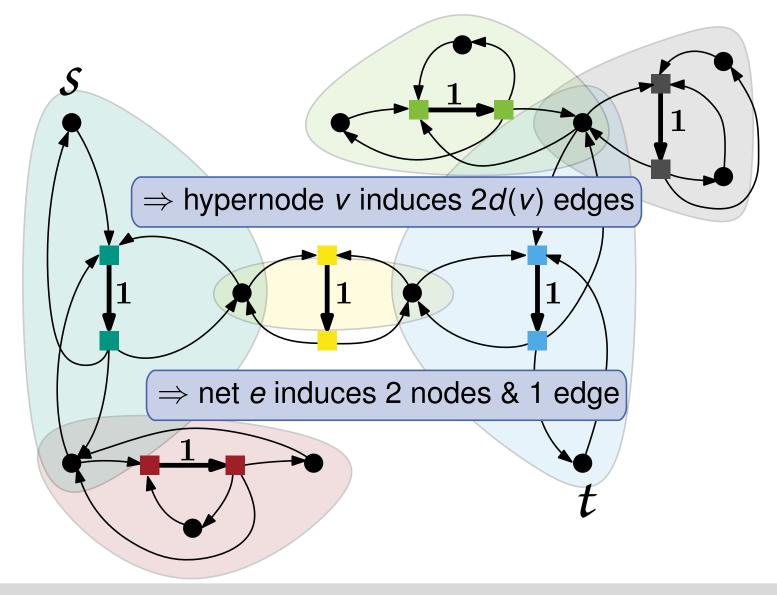


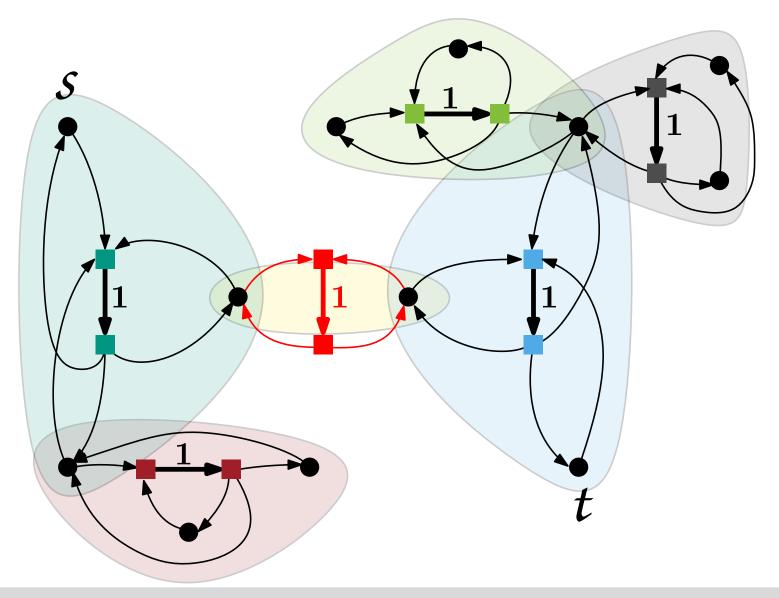






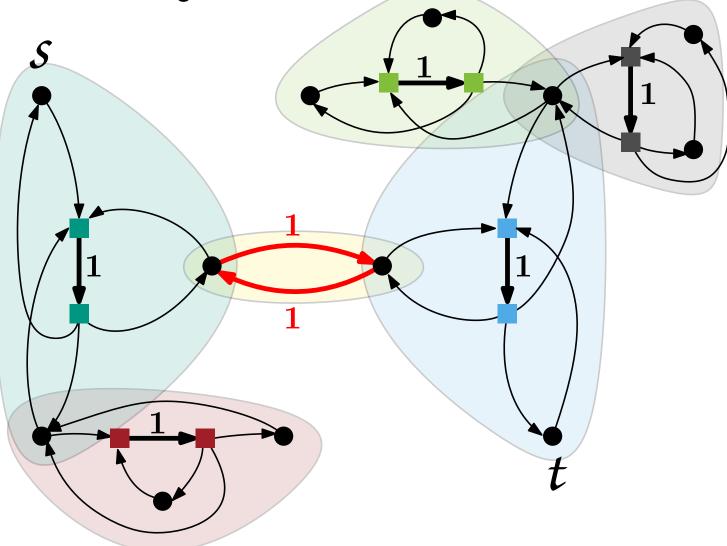




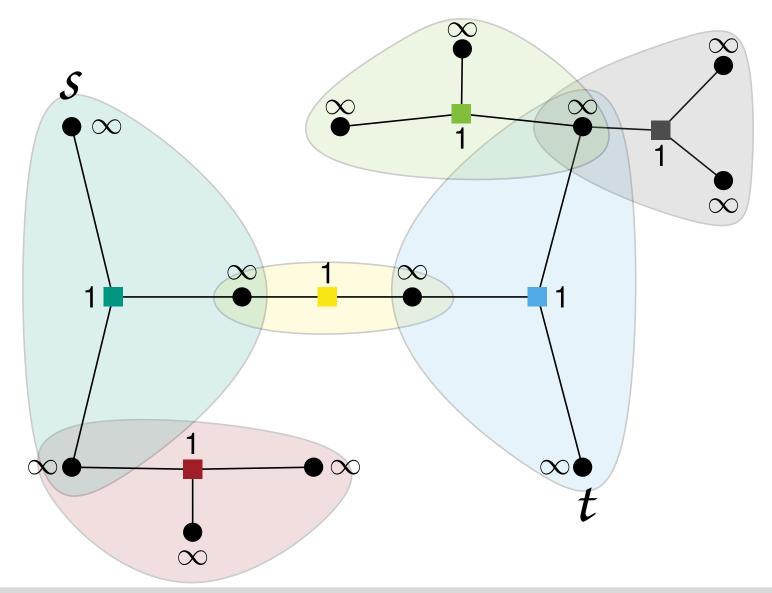


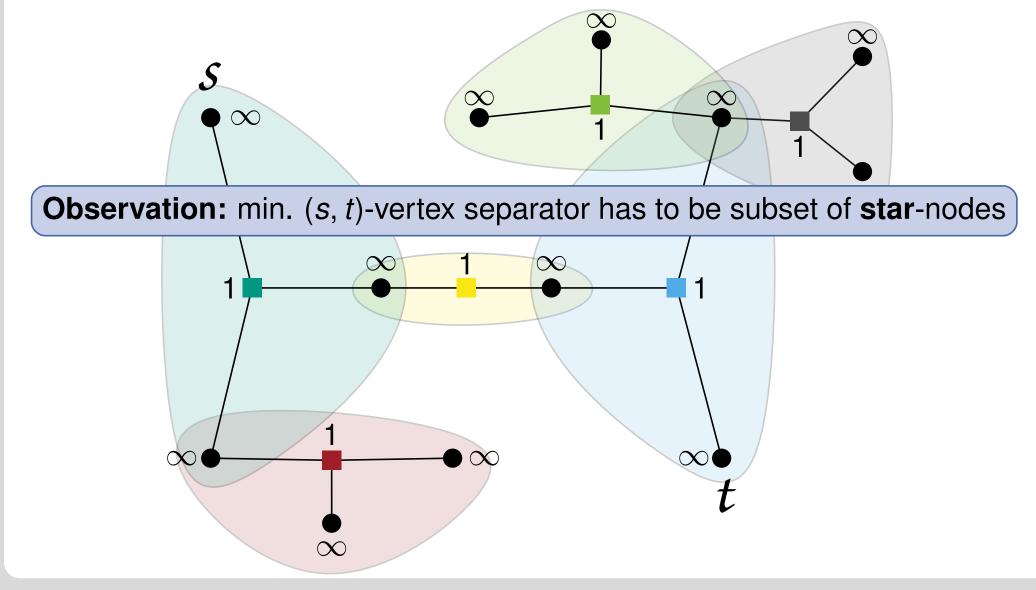
Hypergraph Flow Networks: Liu-Wong Network [LW98]

special treatment of **two-pin** nets \Rightarrow save 2 nodes + 3 edges

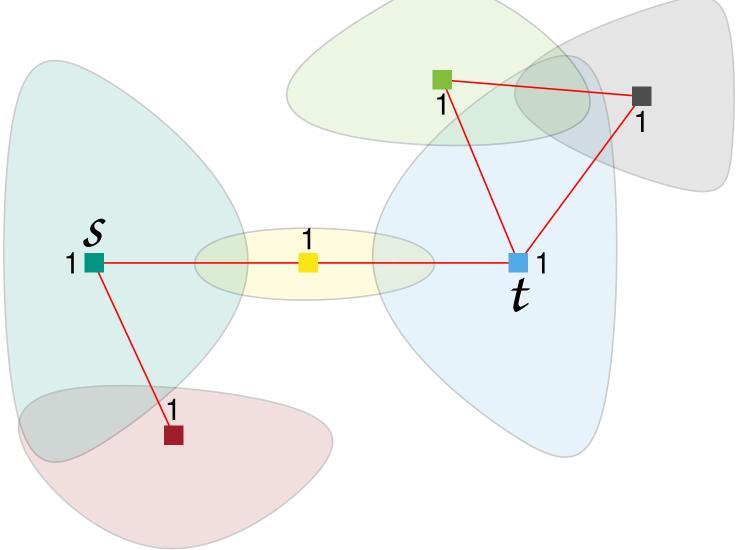


Minimum-Weight Vertex Separator [Hu, Moerder 85]

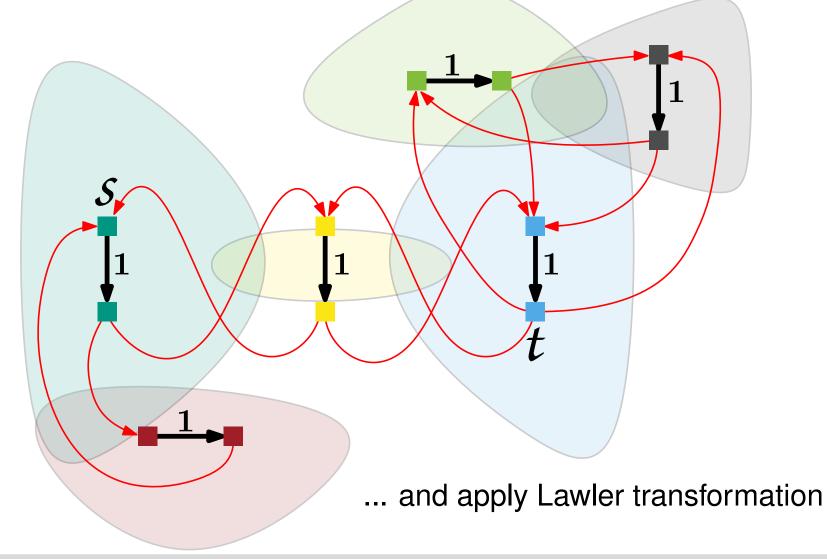


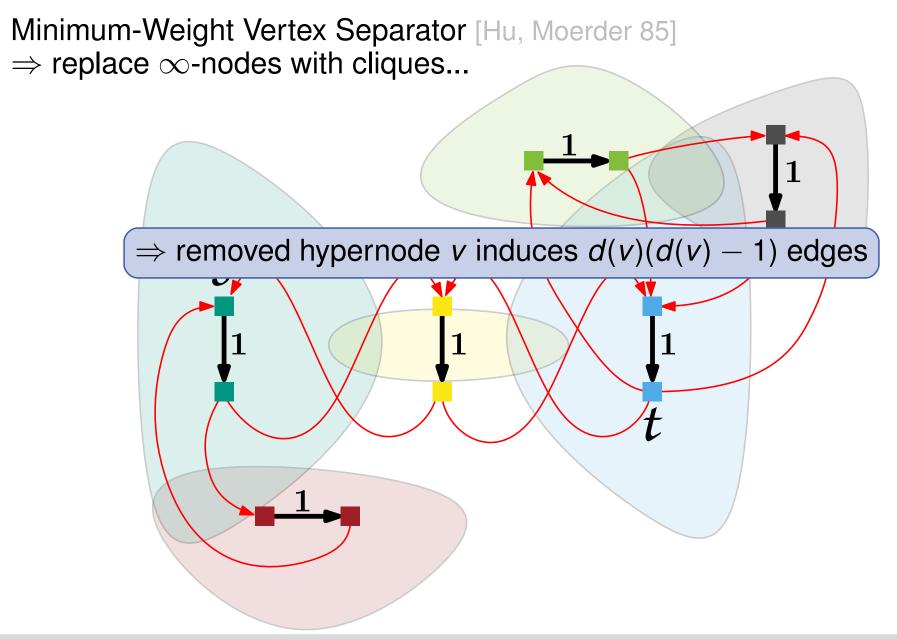


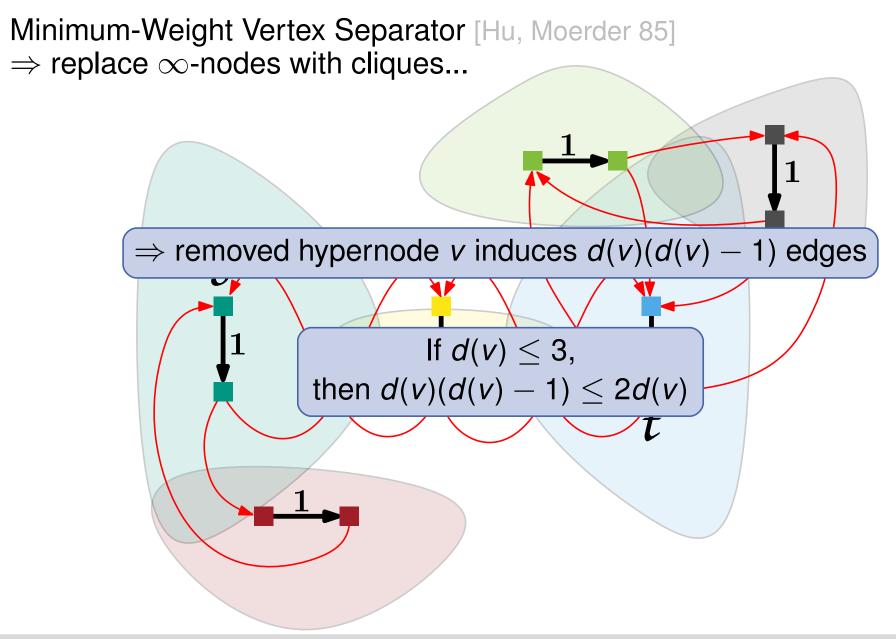
Minimum-Weight Vertex Separator [Hu, Moerder 85] \Rightarrow replace ∞ -nodes with cliques...



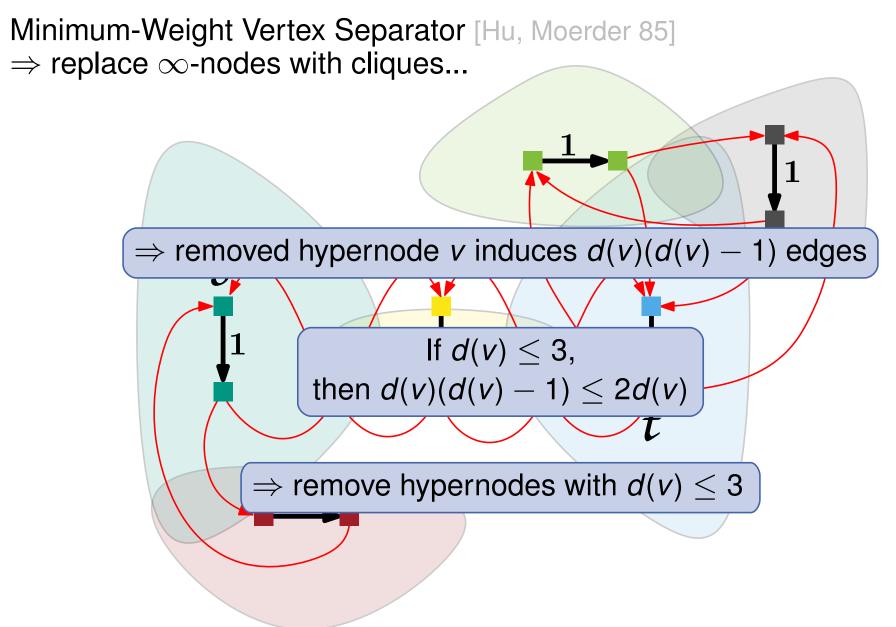
Minimum-Weight Vertex Separator [Hu, Moerder 85] \Rightarrow replace ∞ -nodes with cliques...





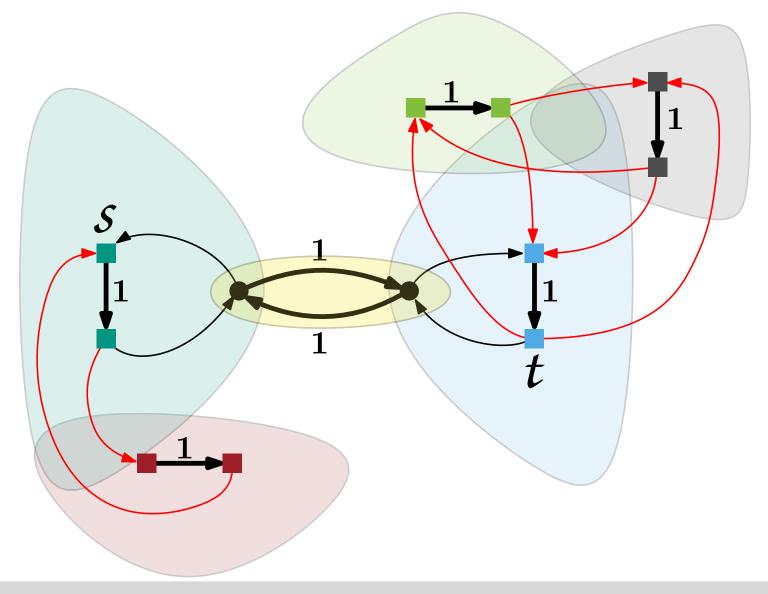


Hypergraph Flow Networks: Our Network

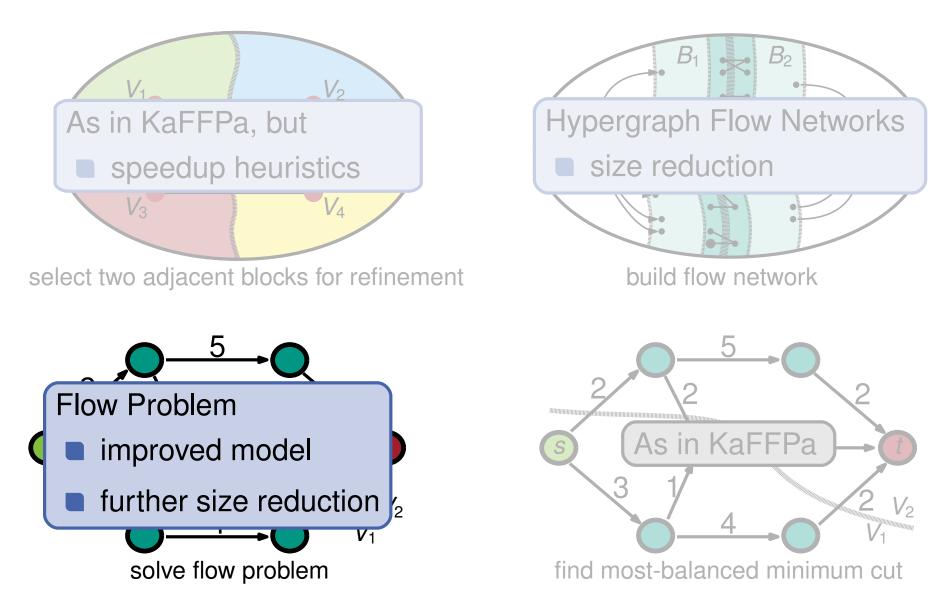


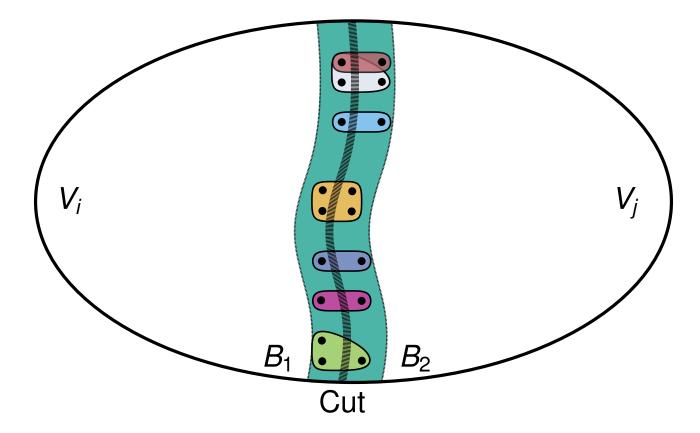
Hypergraph Flow Networks: Our Network

 \Rightarrow combine low degree hypernode removal with Liu-Wong transformation

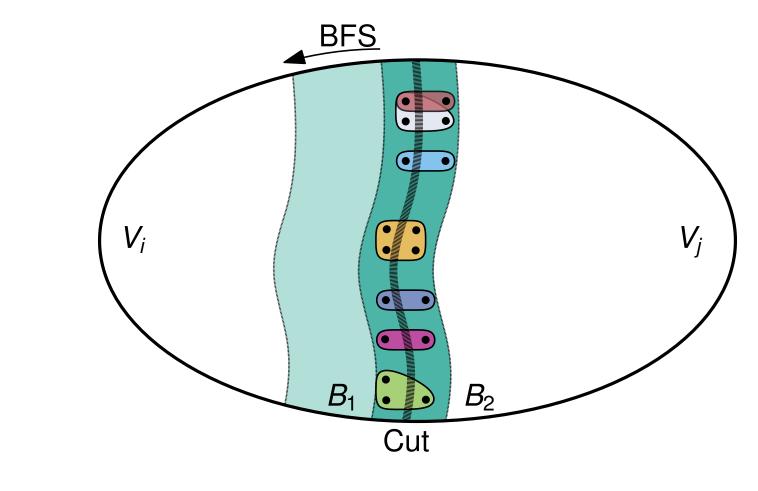


I am going to talk about ...



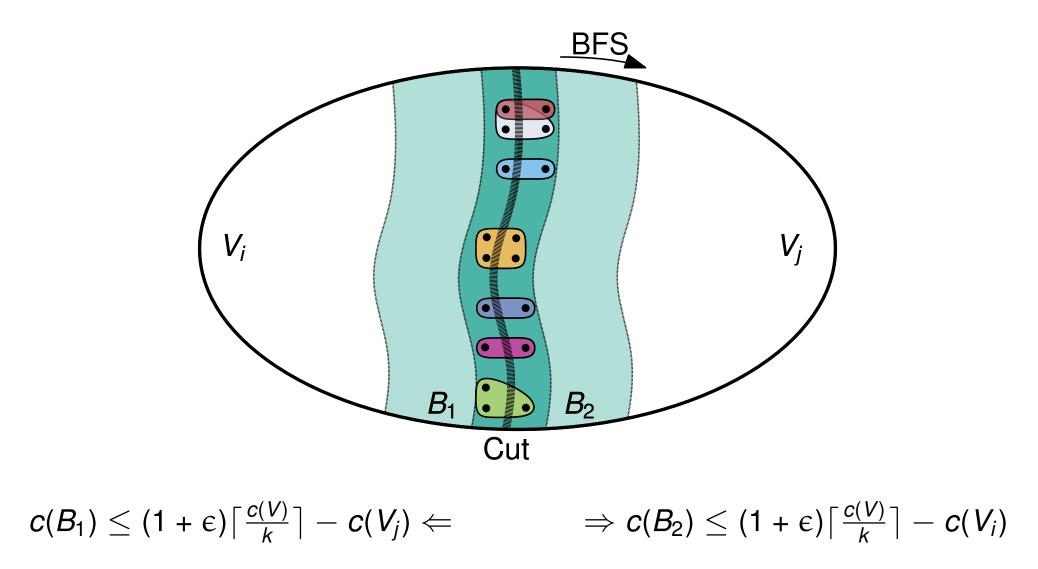


construct area $B = B_1 \cup B_2$ s.t. every (s,t)-cut is ε -balanced in H

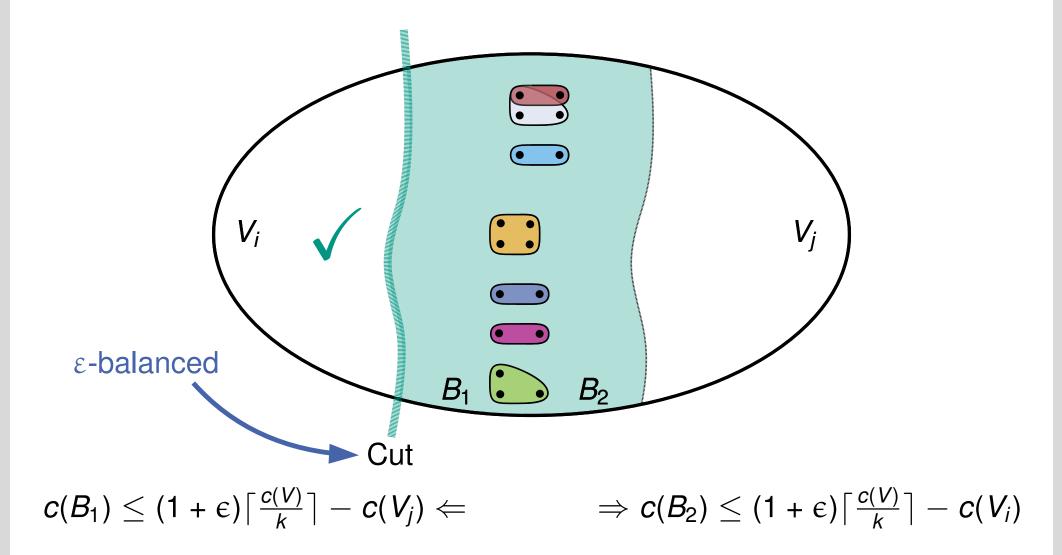


$c(B_1) \leq (1 + \epsilon) \left\lceil \frac{c(V)}{k} \right\rceil - c(V_j) \Leftarrow$

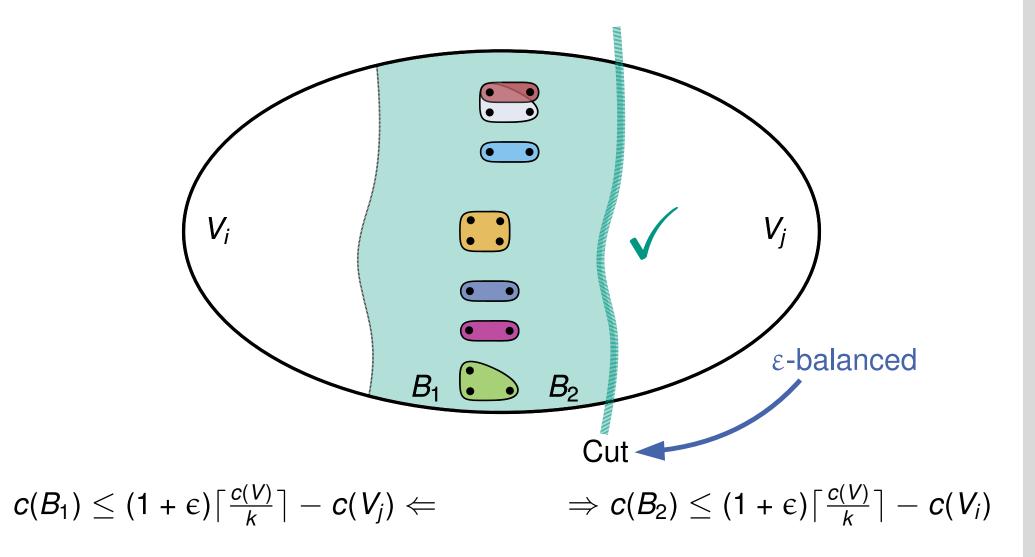
construct area $B = B_1 \cup B_2$ s.t. every (s,t)-cut is ε -balanced in H



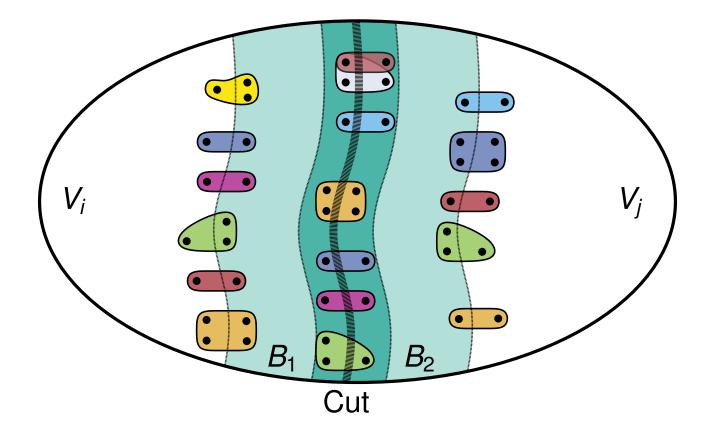
construct area $B = B_1 \cup B_2$ s.t. every (s,t)-cut is ε -balanced in H



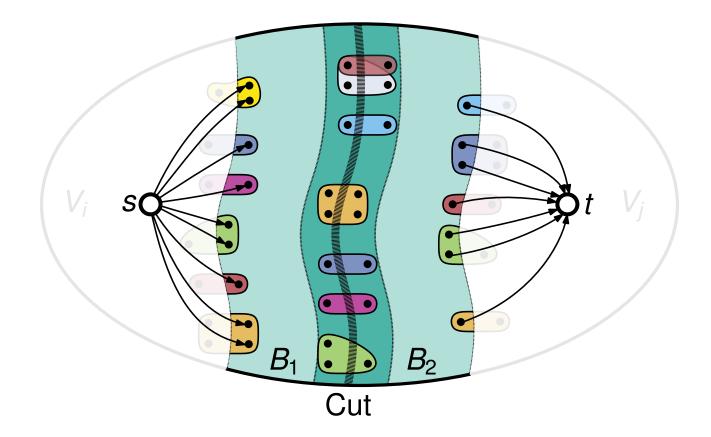
construct area $B = B_1 \cup B_2$ s.t. every (s,t)-cut is ε -balanced in H



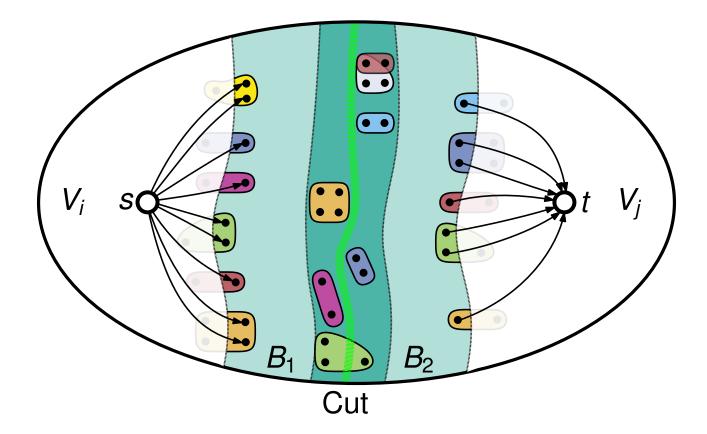
build and solve flow problem



build and solve flow problem

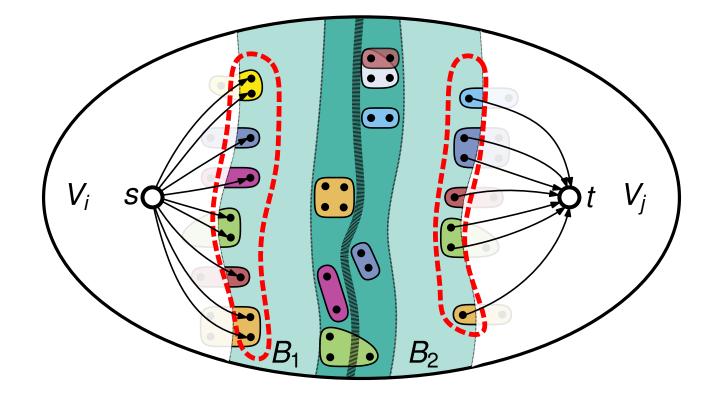


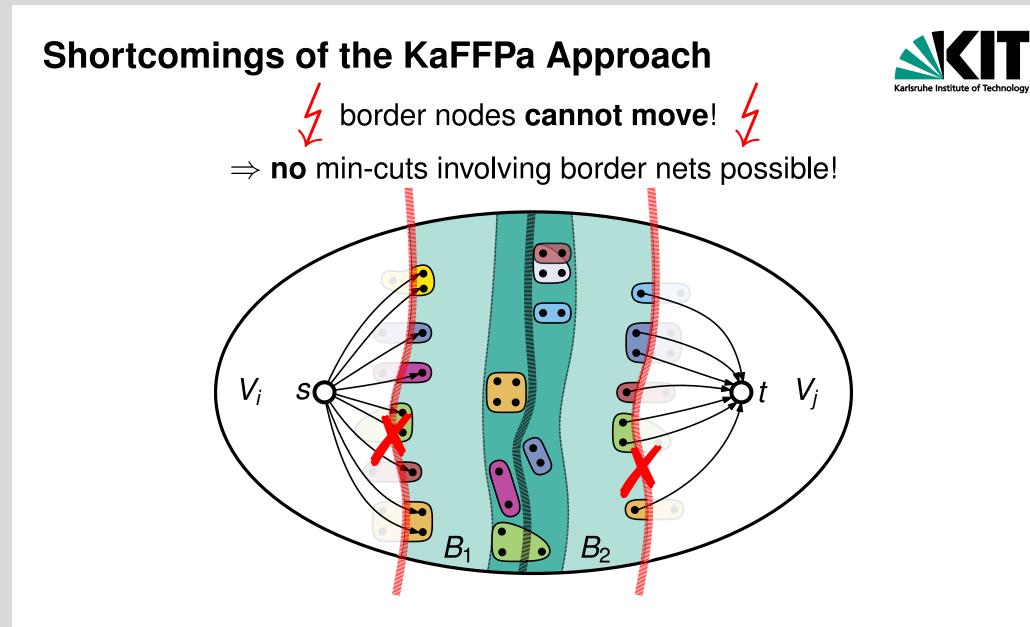
build and solve flow problem

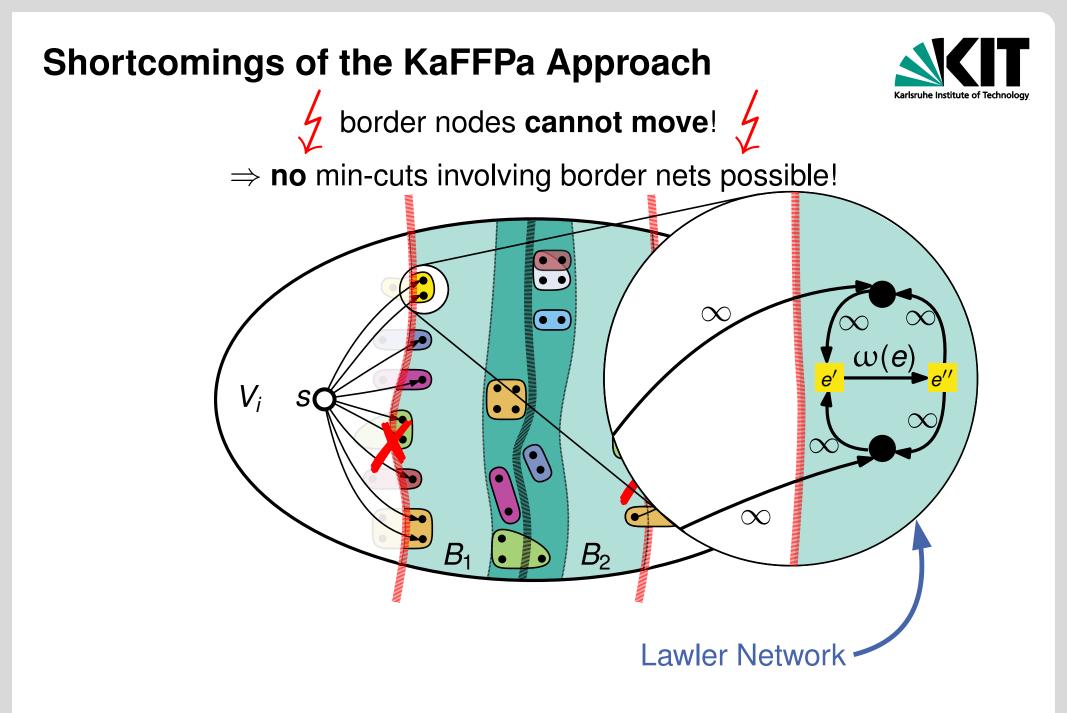


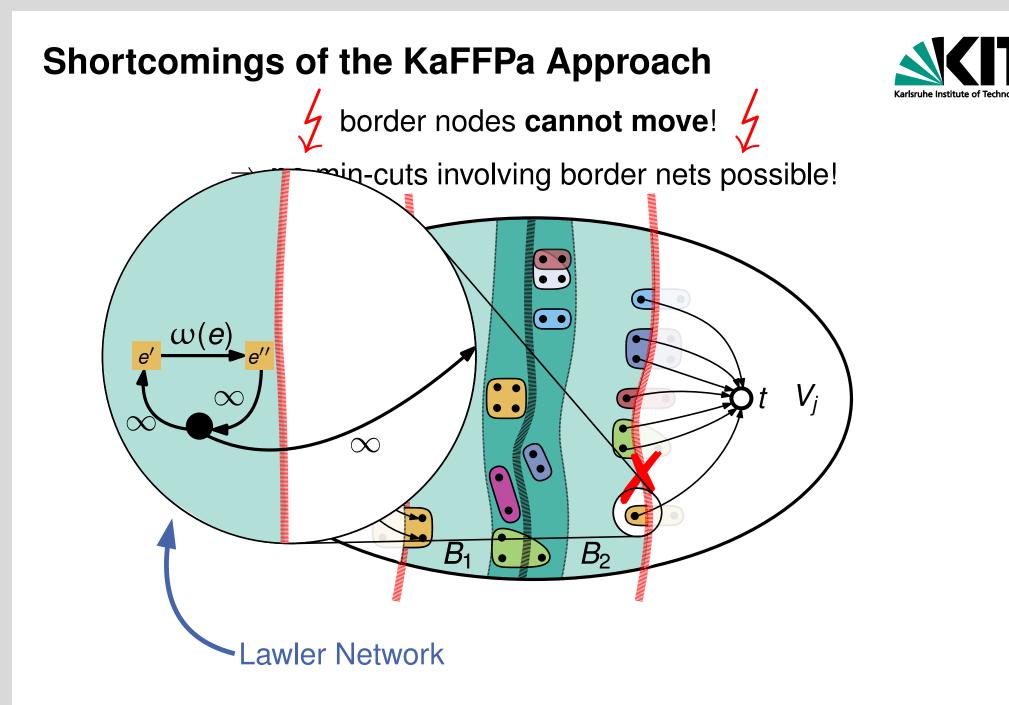
\Rightarrow optimal cut in subhypergraph \rightsquigarrow improved ε -balanced cut in H

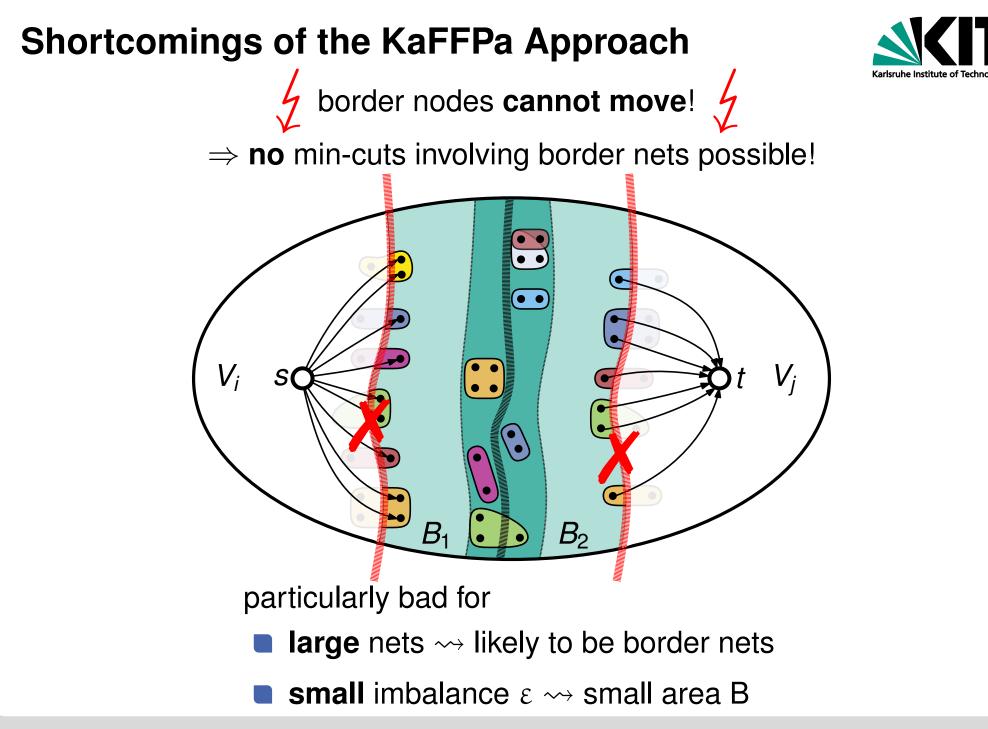
Shortcomings of the KaFFPa Approach

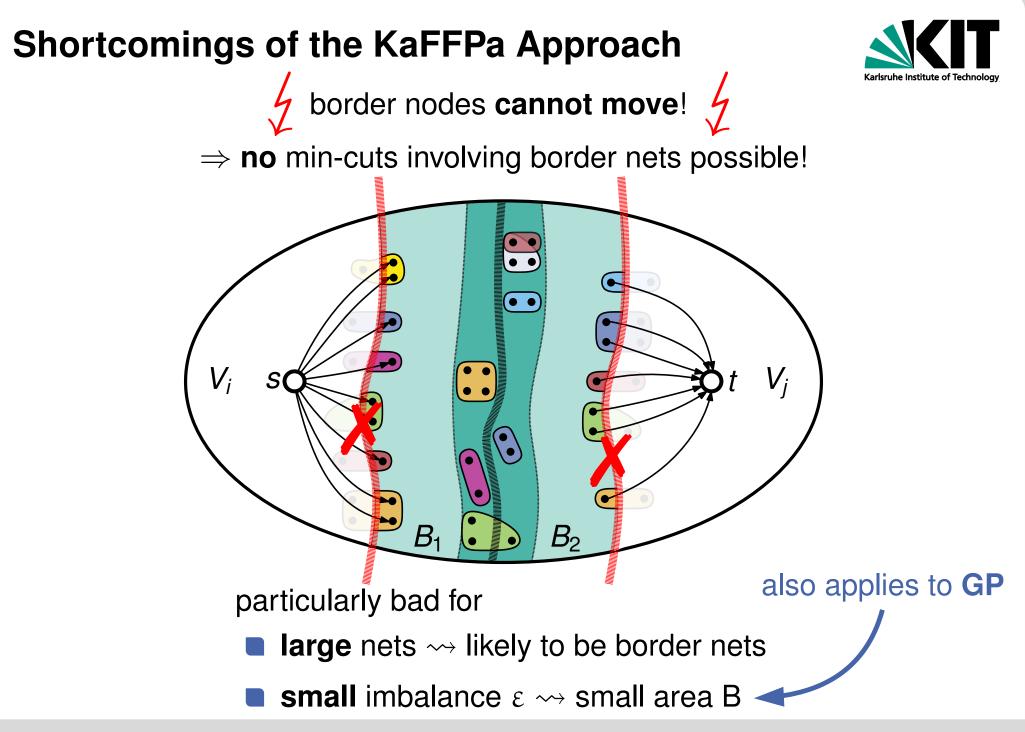


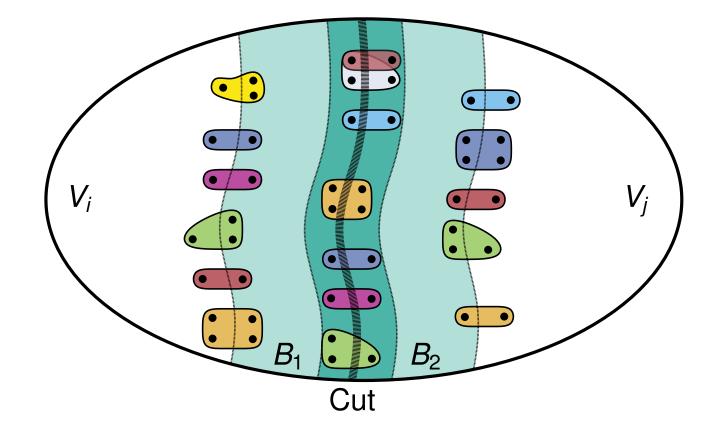




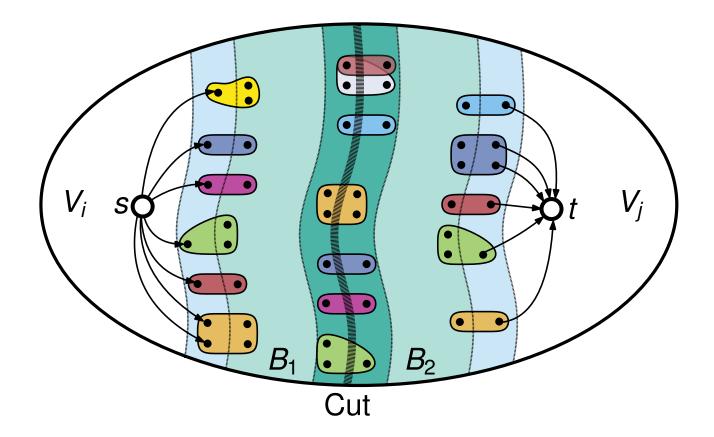




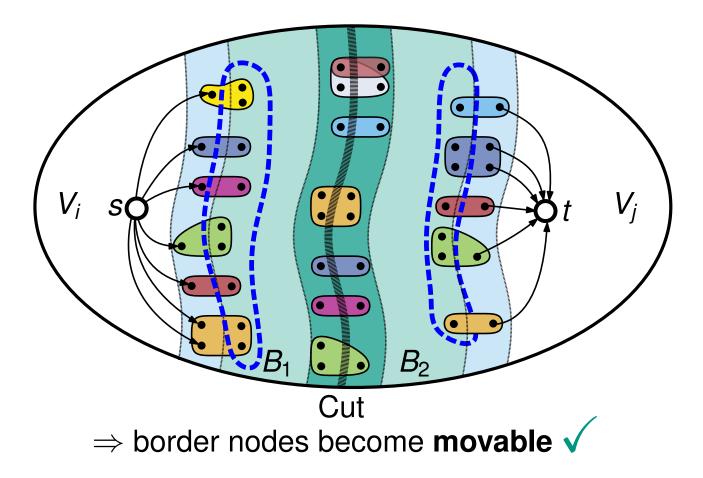




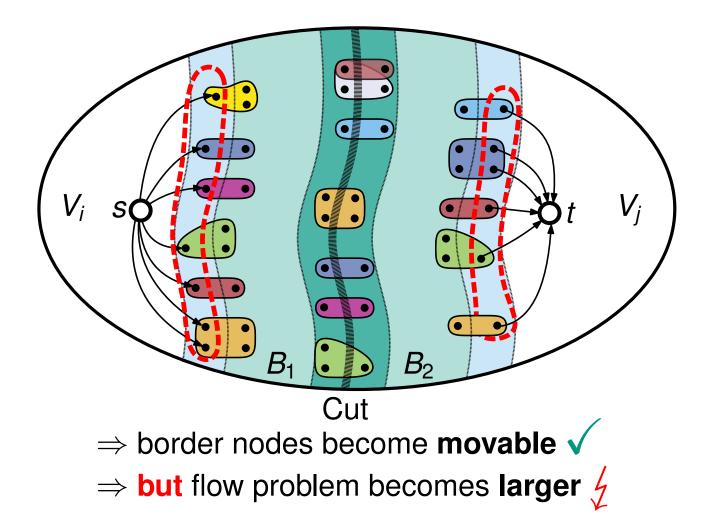
extend flow problem to include border nets



extend flow problem to include border nets



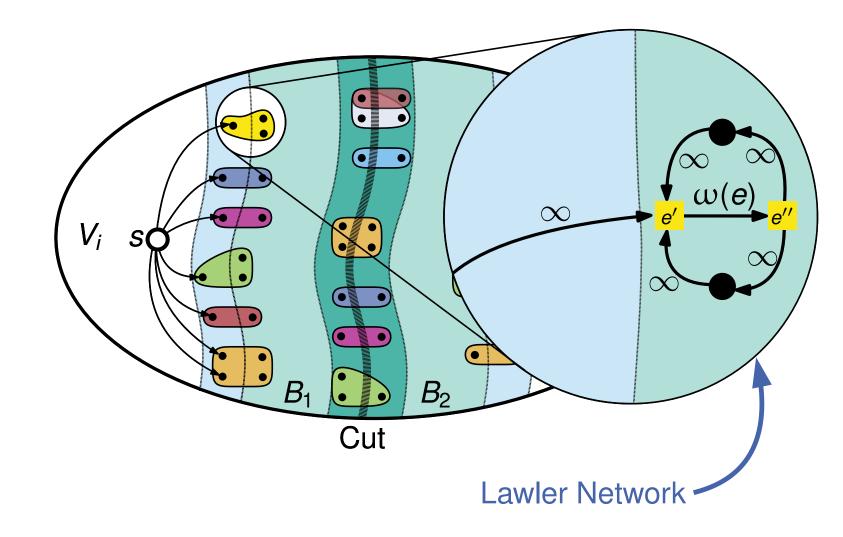
extend flow problem to include border nets

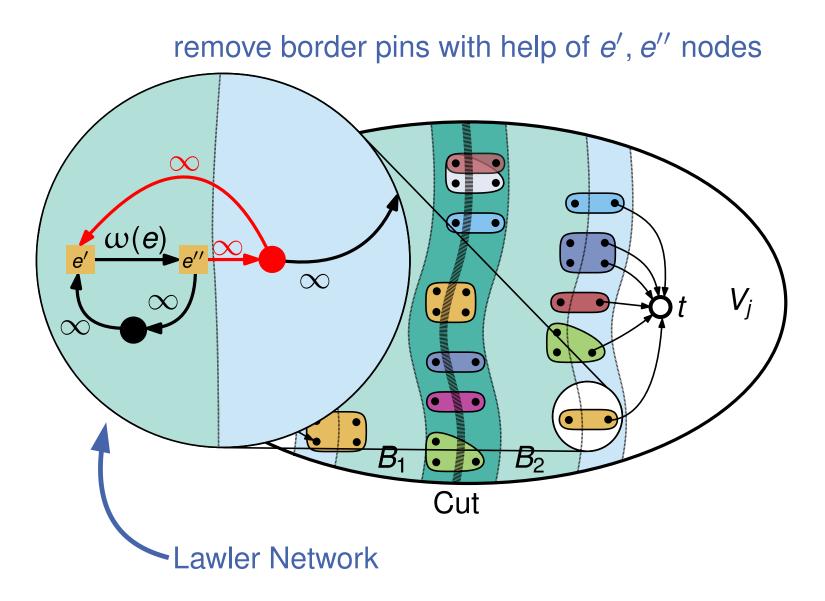


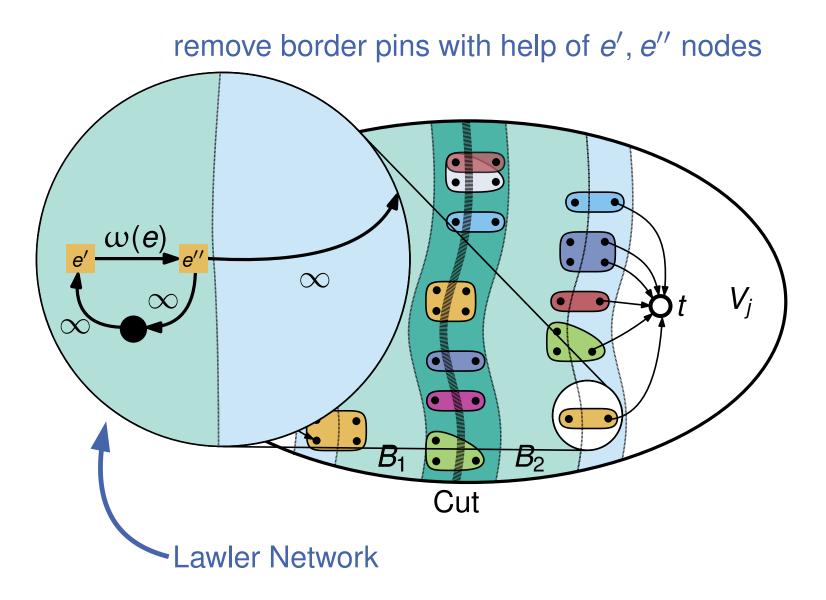
remove border pins with help of e', e'' nodes

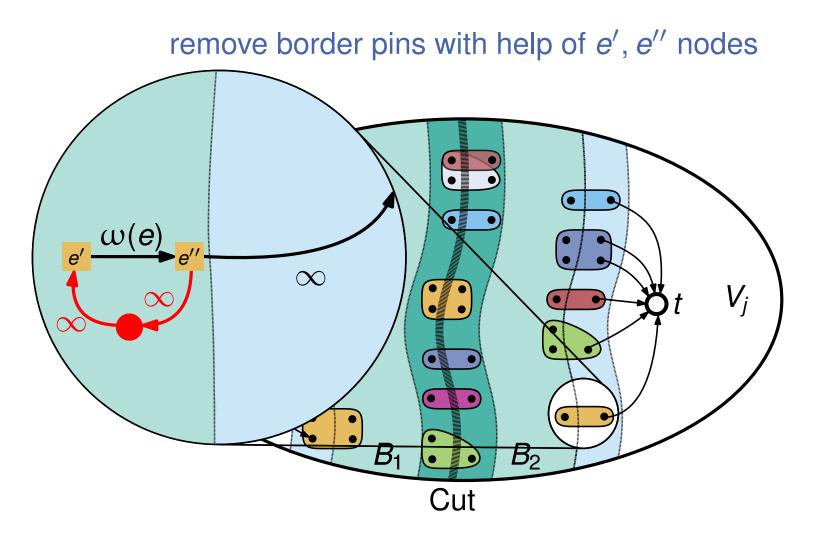


remove border pins with help of e', e'' nodes

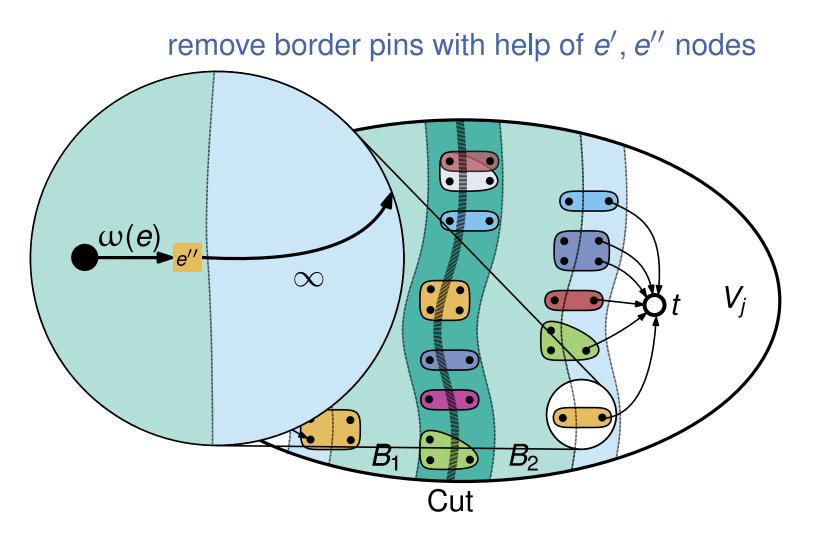








special case: single-pin border nets

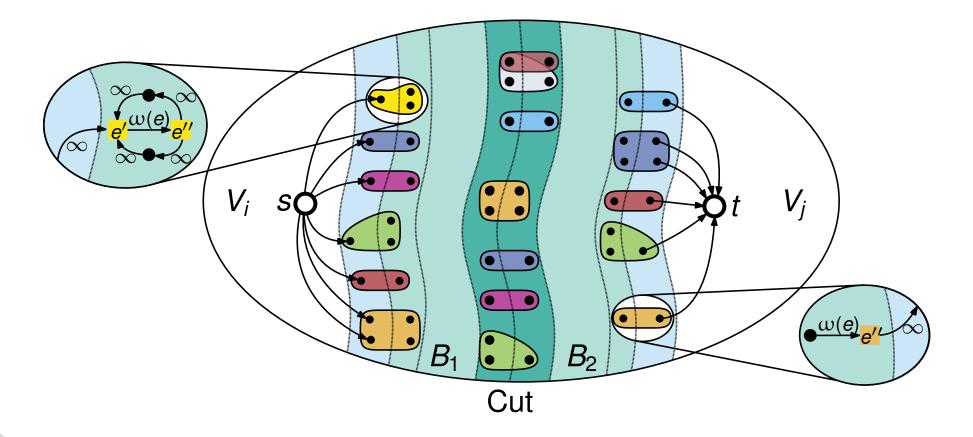


special case: single-pin border nets

A more flexible Model – Summary

✓ movable border nodes → all cuts are feasible

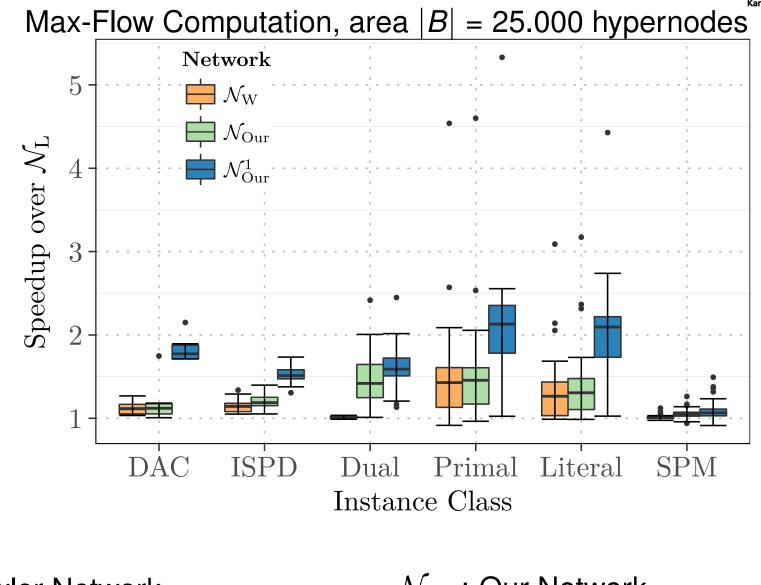
- ✓ no increase in problem size
- \checkmark further size **reduction** through |e| = 1 border nets



Experiments – Benchmark Setup

- System: 1 core of 2 Intel Xeon E5-2670 @ 2.6 Ghz, 64 GB RAM
- # (Hyper)graphs: [publicly available]
 - SuiteSparse Matrix Collection 184
 - SAT Competition 2014 (3 representations) 92.3
 - ISPD98 & DAC2012 VLSI Circuits 28
 - DIMACS Graphs [flow model experiments] 15
- $k \in \{2, 4, 8, 16, 32, 64, 128\}$ with imbalance: $\varepsilon = 3\%$
- Comparing **KaHyPar-MF** with:
 - KaHyPar-CA
 - hMetis-R & hMetis-K
 - PaToH-Default & PaToH-Quality

Size Reduction Of Hypergraph Flow Networks



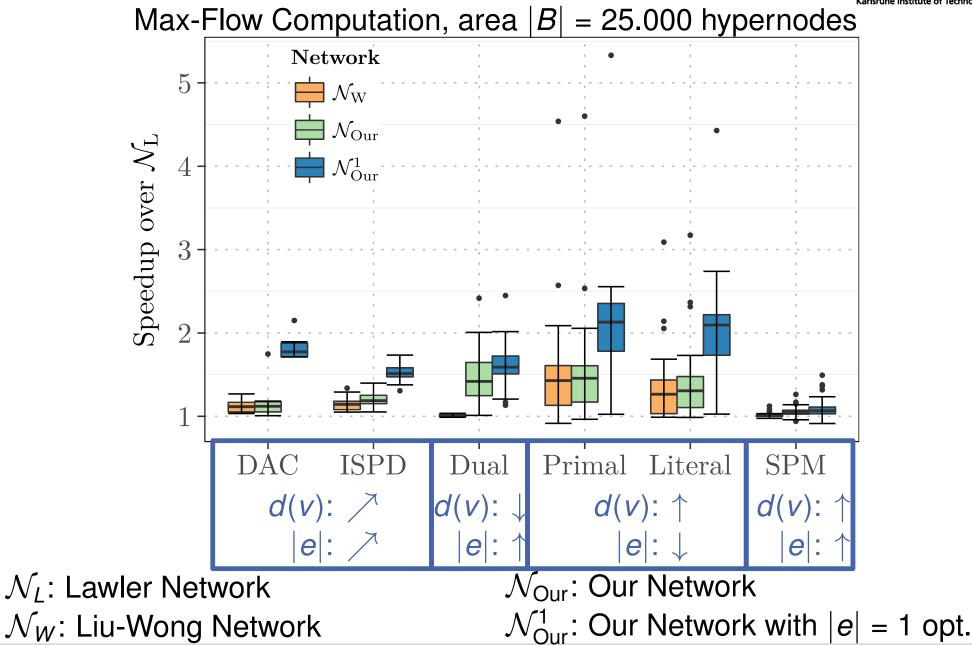
 \mathcal{N}_L : Lawler Network \mathcal{N}_W : Liu-Wong Network

\mathcal{N}_{Our} : Our Network \mathcal{N}_{Our}^{1} : Our Network with |e| = 1 opt.

18 Sebastian Schlag – Network Flow-Based Refinement for Multilevel Hypergraph Partitioning

Institute of Theoretical Informatics

Size Reduction Of Hypergraph Flow Networks



Average Improvement [%] over the KaFFPa Approach

	Hypergraphs			DIMACS Graphs		
α'	<i>ε</i> = 1%	$\varepsilon = 3\%$	$\varepsilon = 5\%$	<i>ε</i> = 1%	$\varepsilon = 3\%$	$\varepsilon = 5\%$
1	7.7	8.1	7.6	11.7	11.3	10.5
2	7.9	6.6	4.8	11.0	9.1	7.8
4	6.9	3.9	2.7	9.9	7.3	5.4
8	5.1	2.3	1.5	8.6	5.3	3.9
16	3.4	1.3	1.2	7.0	4.1	3.5

 \Rightarrow performs **better** on **all** problem sizes and imbalances \Rightarrow most pronounced for **small** flow problems & imbalances \Rightarrow effects also visible for **graphs**

Average Improvement [%] over the KaFFPa Approach

	Hypergraphs			DIMACS Graphs		
α'	<i>ε</i> = 1%	$\varepsilon = 3\%$	$\varepsilon = 5\%$	<i>ε</i> = 1%	$\varepsilon = 3\%$	$\varepsilon = 5\%$
1	7.7	8.1	7.6	11.7	11.3	10.5
2	7.9	6.6	4.8	11.0	9.1	7.8
4	6.9	3.9	2.7	9.9	7.3	5.4
8	5.1	2.3	1.5	8.6	5.3	3.9
16	3.4	1.3	1.2	7.0	4.1	3.5

 \Rightarrow performs **better** on **all** problem sizes and imbalances \Rightarrow most pronounced for **small** flow problems & imbalances \Rightarrow effects also visible for **graphs**

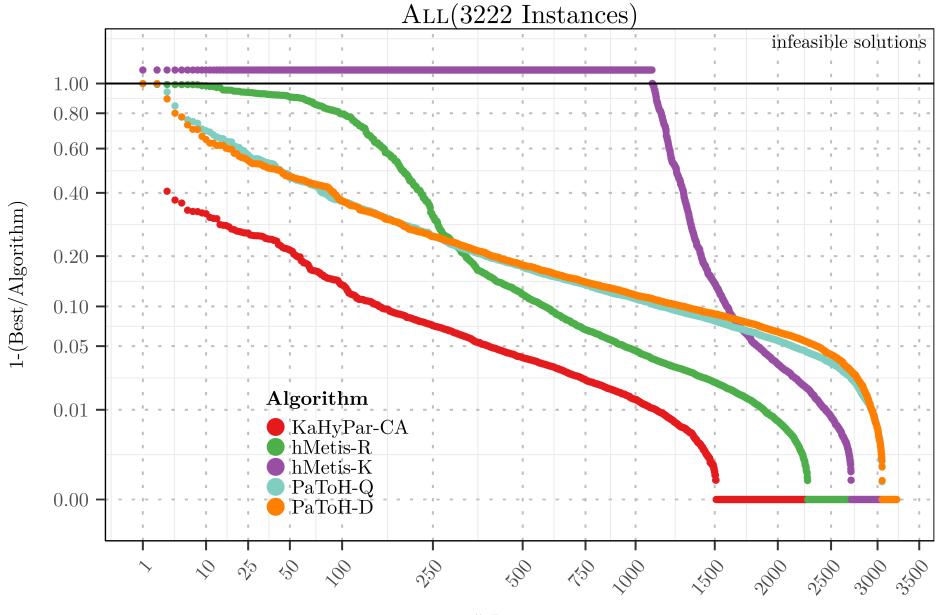
Average Improvement [%] over the KaFFPa Approach

	F	lypergraph	IS	DIMACS Graphs			
α'	<i>ε</i> = 1%	$\varepsilon = 3\%$	$\varepsilon = 5\%$	<i>ε</i> = 1%	$\varepsilon = 3\%$	$\varepsilon = 5\%$	
1	7.7	8.1	7.6	11.7	11.3	10.5	
2	7.9	6.6	4.8	11.0	9.1	7.8	
4	6.9	3.9	2.7	9.9	7.3	5.4	
8	5.1	2.3	1.5	8.6	5.3	3.9	
16	3.4	1.3	1.2	7.0	4.1	3.5	

 \Rightarrow performs **better** on **all** problem sizes and imbalances

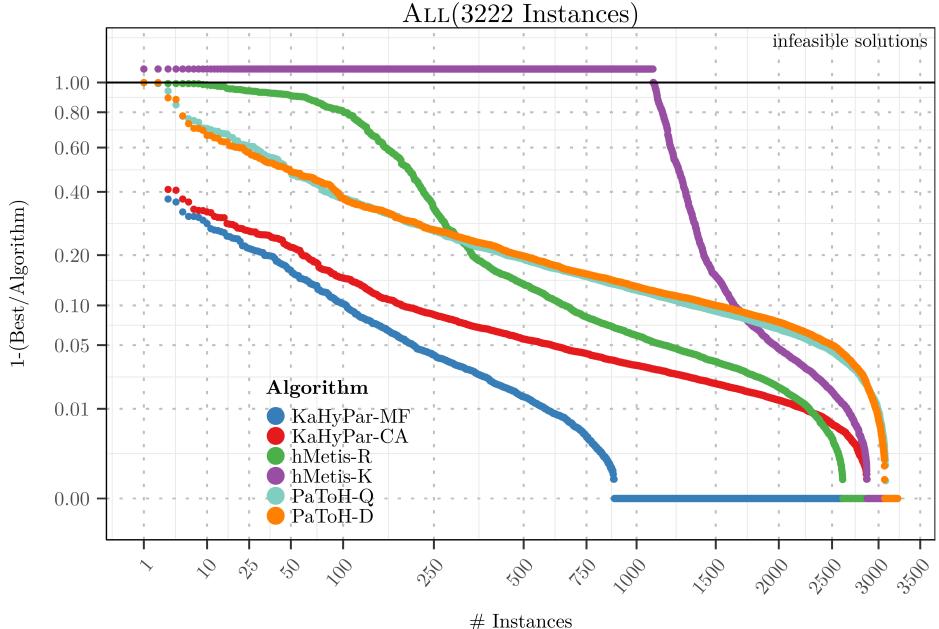
- \Rightarrow most pronounced for **small** flow problems & imbalances
- \Rightarrow effects also visible for **graphs**

State-of-the-Art: HGP Quality

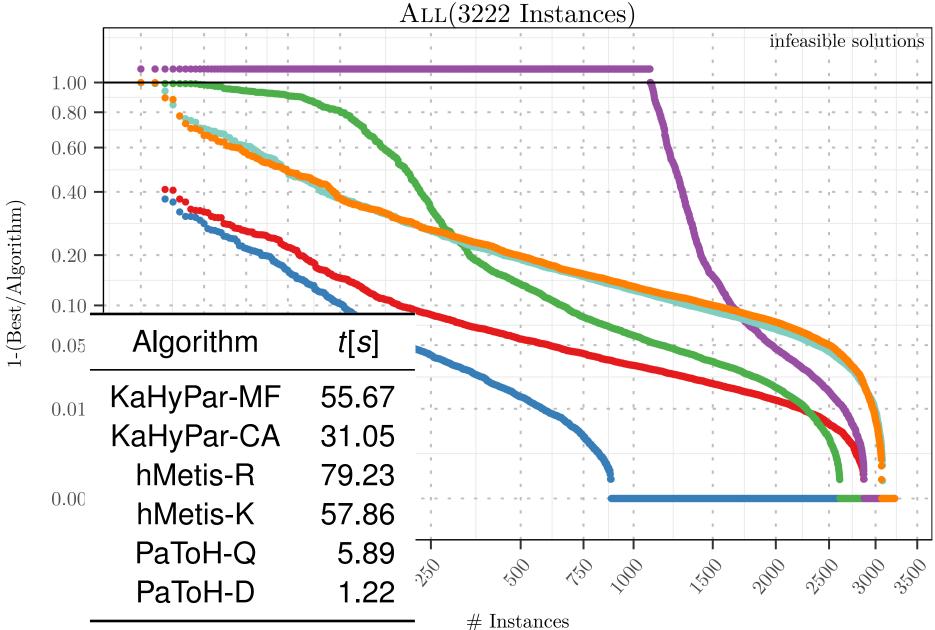


Instances

KaHyPar-MF: HGP Quality



KaHyPar-MF: HGP Quality & Running Time



21 Sebastian Schlag – Network Flow-Based Refinement for Multilevel Hypergraph Partitioning

Institute of Theoretical Informatics

Conclusion & Discussion

Karlsruhe Institute of Technology

KaHyPar-MF – direct k-way HGP with flow-based refinement

- generalizes KaFFPa's flow refinement to hypergraphs
- sparsified hypergraph flow networks
- improved flow model

In the paper / technical report:

- speedup heuristics ~> factor 2 faster
- min-cut reconstruction
- more experimental results:
 - size of flow networks
 - different algorithm configurations
 - quality & running times per instance class

KaHyPar-Framework Open-Source: http://kahypar.org

Implementation Details

