

Network Flow-Based Refinement for Multilevel Hypergraph Partitioning

SEA'18 · June 27, 2018 Tobias Heuer, Peter Sanders, Sebastian Schlag

Institute of Theoretical Informatics \cdot

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

Hypergraphs

1

■ generalization of graphs ⇒ hyperedges connect ≥ 2 nodes

- graphs \Rightarrow dyadic (**2-ary**) relationships
- hypergraphs \Rightarrow (**d-ary**) relationships
- hypergraph $H = (V, E, c, \omega)$
 - vertex set V = {1, ..., n}
 - edge set $E \subseteq \mathcal{P}$ (V) $\setminus \emptyset$
 - node weights $c: V o \mathbb{R}_{\geq 1}$
 - edge weights $\omega : E \to \mathbb{R}_{\geq 1}$

Hypergraphs

1

generalization of graphs hyperedges connect > 2 nodes

- graphs \Rightarrow dyadic (**2-ary**) relationships
- hypergraphs \Rightarrow (**d-ary**) relationships
- hypergraph $H = (V, E, c, \omega)$
 - vertex set V = {1, ..., n}
 - edge set $E \subseteq \mathcal{P}$ (V) $\setminus \emptyset$
 - node weights $c: V o \mathbb{R}_{\geq 1}$
 - edge weights $\omega : E \to \mathbb{R}_{\geq 1}$

Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left| \frac{c(V)}{k} \right|$$

Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

imbalance parameter

Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left| \frac{c(V)}{k} \right|$$

imbalance parameter

connectivity objective is **minimized**:

Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left| \frac{c(V)}{k} \right|$$

imbalance parameter

$$\sum_{e \in \text{cut}} (\lambda - 1) \ \omega(e)$$

connectivity:
blocks connected by net *e*

Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left| \frac{c(V)}{k} \right|$$

imbalance parameter

connectivity objective is **minimized**:

$$\sum_{e \in cut} (\lambda - 1) \omega(e) = 12$$
connectivity:

blocks connected by net e

Applications

Warehouse Optimization

Complex Networks

Route Planning

Simulation

Scientific Computing

Known Limitations:

- prone to get stuck in local optima
- X large nets → **zero** gain moves

Are there viable alternatives?

× prone to get **stuck** in local optima × large nets ~ zero gain moves

Flow-Based Refinement for Graph Partitioning

Goal: balanced partition with minimum cut makes the problem hard!

Flow-Based Refinement for Graph Partitioning

Goal: balanced partition with minimum cut

network flows + max-flow min-cut theorem ↓ min. (*s*, *t*)-cuts

Flow-Based Refinement for Graph Partitioning

Goal: balanced partition with minimum cut

⇒ employed for graph partitioning in KaFFPa [Sanders, Schulz 11]

The KaFFPa Framework [Sanders, Schulz 11]

Our Refinement Framework/ Contributions

I am going to talk about...

Hypergraph Flow Networks

Hypergraph H

Hypergraph Flow Networks: Star-Expansion G*

Hypergraph Flow Networks: Liu-Wong Network [LW98]

special treatment of **two-pin** nets \Rightarrow save 2 nodes + 3 edges

Minimum-Weight Vertex Separator [Hu, Moerder 85]

Minimum-Weight Vertex Separator [Hu, Moerder 85] \Rightarrow replace ∞ -nodes with cliques...

Minimum-Weight Vertex Separator [Hu, Moerder 85] \Rightarrow replace ∞ -nodes with cliques...

Hypergraph Flow Networks: Our Network

Hypergraph Flow Networks: Our Network

 \Rightarrow combine low degree hypernode removal with Liu-Wong transformation

I am going to talk about ...

construct area $B = B_1 \cup B_2$ s.t. every (s,t)-cut is ε -balanced in H

$c(B_1) \leq (1 + \epsilon) \left\lceil \frac{c(V)}{k} \right\rceil - c(V_j) \Leftarrow$

construct area $B = B_1 \cup B_2$ s.t. every (s,t)-cut is ε -balanced in H

construct area $B = B_1 \cup B_2$ s.t. every (s,t)-cut is ε -balanced in H

construct area $B = B_1 \cup B_2$ s.t. every (s,t)-cut is ε -balanced in H

build and solve flow problem

build and solve flow problem

build and solve flow problem

\Rightarrow optimal cut in subhypergraph \rightsquigarrow improved ε -balanced cut in H

Shortcomings of the KaFFPa Approach

extend flow problem to include border nets

extend flow problem to include border nets

extend flow problem to include border nets

remove border pins with help of e', e'' nodes

remove border pins with help of e', e'' nodes

special case: single-pin border nets

special case: single-pin border nets

A more flexible Model – Summary

✓ movable border nodes → all cuts are feasible

- ✓ no increase in problem size
- \checkmark further size **reduction** through |e| = 1 border nets

Experiments – Benchmark Setup

- System: 1 core of 2 Intel Xeon E5-2670 @ 2.6 Ghz, 64 GB RAM
- # (Hyper)graphs: [publicly available]
 - SuiteSparse Matrix Collection 184
 - SAT Competition 2014 (3 representations) 92.3
 - ISPD98 & DAC2012 VLSI Circuits 28
 - DIMACS Graphs [flow model experiments] 15
- $k \in \{2, 4, 8, 16, 32, 64, 128\}$ with imbalance: $\varepsilon = 3\%$
- Comparing **KaHyPar-MF** with:
 - KaHyPar-CA
 - hMetis-R & hMetis-K
 - PaToH-Default & PaToH-Quality

Size Reduction Of Hypergraph Flow Networks

 \mathcal{N}_L : Lawler Network \mathcal{N}_W : Liu-Wong Network

\mathcal{N}_{Our} : Our Network \mathcal{N}_{Our}^{1} : Our Network with |e| = 1 opt.

18 Sebastian Schlag – Network Flow-Based Refinement for Multilevel Hypergraph Partitioning

Institute of Theoretical Informatics

Size Reduction Of Hypergraph Flow Networks

Average Improvement [%] over the KaFFPa Approach

	Hypergraphs			DIMACS Graphs		
α'	<i>ε</i> = 1%	$\varepsilon = 3\%$	$\varepsilon = 5\%$	<i>ε</i> = 1%	$\varepsilon = 3\%$	$\varepsilon = 5\%$
1	7.7	8.1	7.6	11.7	11.3	10.5
2	7.9	6.6	4.8	11.0	9.1	7.8
4	6.9	3.9	2.7	9.9	7.3	5.4
8	5.1	2.3	1.5	8.6	5.3	3.9
16	3.4	1.3	1.2	7.0	4.1	3.5

 \Rightarrow performs **better** on **all** problem sizes and imbalances \Rightarrow most pronounced for **small** flow problems & imbalances \Rightarrow effects also visible for **graphs**

Average Improvement [%] over the KaFFPa Approach

	Hypergraphs			DIMACS Graphs		
α'	<i>ε</i> = 1%	$\varepsilon = 3\%$	$\varepsilon = 5\%$	<i>ε</i> = 1%	$\varepsilon = 3\%$	$\varepsilon = 5\%$
1	7.7	8.1	7.6	11.7	11.3	10.5
2	7.9	6.6	4.8	11.0	9.1	7.8
4	6.9	3.9	2.7	9.9	7.3	5.4
8	5.1	2.3	1.5	8.6	5.3	3.9
16	3.4	1.3	1.2	7.0	4.1	3.5

 \Rightarrow performs **better** on **all** problem sizes and imbalances \Rightarrow most pronounced for **small** flow problems & imbalances \Rightarrow effects also visible for **graphs**

Average Improvement [%] over the KaFFPa Approach

	F	lypergraph	IS	DIMACS Graphs			
α'	<i>ε</i> = 1%	$\varepsilon = 3\%$	$\varepsilon = 5\%$	<i>ε</i> = 1%	$\varepsilon = 3\%$	$\varepsilon = 5\%$	
1	7.7	8.1	7.6	11.7	11.3	10.5	
2	7.9	6.6	4.8	11.0	9.1	7.8	
4	6.9	3.9	2.7	9.9	7.3	5.4	
8	5.1	2.3	1.5	8.6	5.3	3.9	
16	3.4	1.3	1.2	7.0	4.1	3.5	

 \Rightarrow performs **better** on **all** problem sizes and imbalances

- \Rightarrow most pronounced for **small** flow problems & imbalances
- \Rightarrow effects also visible for **graphs**

State-of-the-Art: HGP Quality

Instances

KaHyPar-MF: HGP Quality

KaHyPar-MF: HGP Quality & Running Time

21 Sebastian Schlag – Network Flow-Based Refinement for Multilevel Hypergraph Partitioning

Institute of Theoretical Informatics

Conclusion & Discussion

Karlsruhe Institute of Technology

KaHyPar-MF – direct k-way HGP with flow-based refinement

- generalizes KaFFPa's flow refinement to hypergraphs
- sparsified hypergraph flow networks
- improved flow model

In the paper / technical report:

- speedup heuristics ~> factor 2 faster
- min-cut reconstruction
- more experimental results:
 - size of flow networks
 - different algorithm configurations
 - quality & running times per instance class

KaHyPar-Framework Open-Source: http://kahypar.org

Implementation Details

