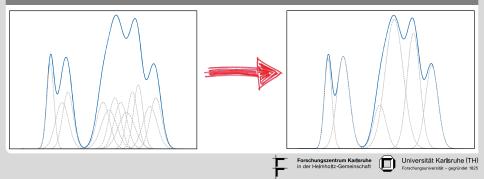


Gaussian Mixture Reduction via Clustering

<u>Dennis Schieferdecker</u> – *schiefer@ira.uka.de* Marco Huber – *marco.huber@ieee.org*

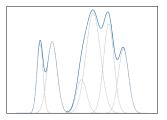
GRK 1194: Self-organizing Sensor-Actuator-Networks



Gaussian Mixtures

Gaussian Mixture Density

- weighted sum of Gaussians $f(x;\underline{\eta}) = \sum_{i=1}^{N} \omega_i \cdot \mathcal{N}(x;\mu_i,\sigma_i^2)$
- universal function approximator
- used to model probability density functions in estimation algorithms
 - target tracking,
 - machine learning
 - speaker recognition,
 - ...



2 Dennis Schieferdecker: Gaussian Mixture Reduction via Clustering Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

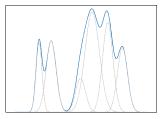
Gaussian Mixtures

Gaussian Mixture Density

- weighted sum of Gaussians $f(x; \underline{\eta}) = \sum_{i=1}^{N} \omega_i \cdot \mathcal{N}(x; \mu_i, \sigma_i^2)$
- universal function approximator
- used to model probability density functions in estimation algorithms

- machine learning
- speaker recognition,

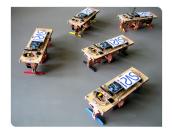
. . .



Gaussian Mixtures

Gaussian Mixture Density

- weighted sum of Gaussians $f(\mathbf{x};\underline{\eta}) = \sum_{i=1}^{N} \omega_i \cdot \mathcal{N}(\mathbf{x};\mu_i,\sigma_i^2)$
- universal function approximator
- used to model probability density functions in estimation algorithms
 - target tracking,



Dennis Schieferdecker: 2 Gaussian Mixture Reduction via Clustering Forschungszentrum Karlsruhe in der Helmholtz-Gemeinsch

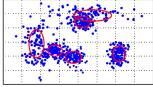
Karlsruhe Institute of Technok

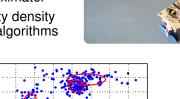
Gaussian Mixtures

Gaussian Mixture Density

- weighted sum of Gaussians $f(x;\underline{\eta}) = \sum_{i=1}^{N} \omega_i \cdot \mathcal{N}(x;\mu_i,\sigma_i^2)$
- universal function approximator
- used to model probability density functions in estimation algorithms
 - target tracking,
 - machine learning,
 - speaker recognition,

...





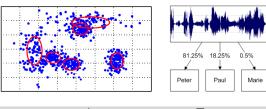
2 Dennis Schieferdecker: Gaussian Mixture Reduction via Clustering Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Gaussian Mixtures

Gaussian Mixture Density

- weighted sum of Gaussians $f(x;\underline{\eta}) = \sum_{i=1}^{N} \omega_i \cdot \mathcal{N}(x;\mu_i,\sigma_i^2)$
- universal function approximator
- used to model probability density functions in estimation algorithms
 - target tracking,
 - machine learning,
 - speaker recognition,

• • • •



Problem Description

Gaussian Mixture Reduction

Problem in Applications

- recursive processing
 - multiplication of Gaussian mixtures
 - convolution of Gaussian mixtures
- number of components grows exponentially

Solution

- given a mixture $\tilde{f}(x; \tilde{\eta})$ with N components (original mixture),
- find a mixture $f(x; \eta)$ with K < N components (reduced mixture).
- so that a deviation measure $d(\tilde{f}(x; \tilde{\eta}), f(x; \eta))$ is minimized.

3 Dennis Schieferdecker: Gaussian Mixture Reduction via Clustering Forschungszentrum Karlsruhe

Problem Description

Gaussian Mixture Reduction

Problem in Applications

- recursive processing
 - multiplication of Gaussian mixtures
 - convolution of Gaussian mixtures
- number of components grows exponentially

Solution

- given a mixture $\tilde{f}(x; \tilde{\eta})$ with N components (original mixture),
- find a mixture $f(x; \eta)$ with K < N components (reduced mixture),
- so that a deviation measure $d(\tilde{f}(x; \tilde{\eta}), f(x; \eta))$ is minimized.

Existing Algorithms

top-down approaches

- greedy methods
- start with full mixture
- iteratively replace a set of Gaussians with a smaller set
- sets can be chosen, using different deviation measures (local, global, hybrid)

bottom-up approaches

- constructive methods
- start with one component
- adaptively add/remove components as required
- progressive convergence towards full mixture

PGMR

Existing Algorithms

top-down approaches

- greedy methods
- start with full mixture
- iteratively replace a set of Gaussians with a smaller set
- sets can be chosen, using different deviation measures (local, global, hybrid)

bottom-up approaches

- constructive methods
- start with one component
- adaptively add/remove components as required
- progressive convergence towards full mixture

PGMR

Existing Algorithms

top-down approaches

- greedy methods
- start with full mixture
- iteratively replace a set of Gaussians with a smaller set
- sets can be chosen, using different deviation measures (local, global, hybrid)

bottom-up approaches

- constructive methods
- start with one component
- adaptively add/remove components as required
- progressive convergence towards full mixture

PGMR

Existing Algorithms

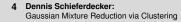
top-down approaches

- greedy methods
- start with full mixture
- iteratively replace a set of Gaussians with a smaller set
- sets can be chosen, using different deviation measures (local, global, hybrid)

bottom-up approaches

- constructive methods
- start with one component
- adaptively add/remove components as required
- progressive convergence towards full mixture

PGMR



Existing Algorithms

top-down approaches

- greedy methods
- start with full mixture
- iteratively replace a set of Gaussians with a smaller set
- sets can be chosen, using different deviation measures (local, global, hybrid)

bottom-up approaches

- constructive methods
- start with one component
- adaptively add/remove components as required
- progressive convergence towards full mixture

PGMR

4 Dennis Schieferdecker: Gaussian Mixture Reduction via Clustering Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH Forschungsuniversität - gegründet 182

Existing Algorithms

top-down approaches

- greedy methods
- start with full mixture
- iteratively replace a set of Gaussians with a smaller set
- sets can be chosen, using different deviation measures (local, global, hybrid)

bottom-up approaches

- constructive methods
- start with one component
- adaptively add/remove components as required
- progressive convergence towards full mixture

PGMR

Existing Algorithms

top-down approaches

- greedy methods
- start with full mixture
- iteratively replace a set of Gaussians with a smaller set
- sets can be chosen, using different deviation measures (West, Williams, Runnalls)

bottom-up approaches

- constructive methods
- start with one component
- adaptively add/remove components as required
- progressive convergence towards full mixture

PGMR

Existing Algorithms

top-down approaches

- greedy methods
- start with full mixture
- iteratively replace a set of Gaussians with a smaller set
- sets can be chosen, using different deviation measures (West, Williams, Runnalls)

bottom-up approaches

- constructive methods
- start with one component
- adaptively add/remove components as required
- progressive convergence towards full mixture
 - PGMR

Existing Algorithms

top-down approaches

- greedy methods
- start with full mixture
- iteratively replace a set of Gaussians with a smaller set
- sets can be chosen, using different deviation measures (West, Williams, Runnalls)

bottom-up approaches

- constructive methods
- start with one component
- adaptively add/remove components as required
- progressive convergence towards full mixture
- PGMR

Existing Algorithms

top-down approaches

- greedy methods
- start with full mixture
- iteratively replace a set of Gaussians with a smaller set
- sets can be chosen, using different deviation measures (West, Williams, Runnalls)

bottom-up approaches

- constructive methods
- start with one component
- adaptively add/remove components as required
- progressive convergence towards full mixture
- PGMR

Existing Algorithms

top-down approaches

- greedy methods
- start with full mixture
- iteratively replace a set of Gaussians with a smaller set
- sets can be chosen, using different deviation measures (West, Williams, Runnalls)

bottom-up approaches

- constructive methods
- start with one component
- adaptively add/remove components as required
- progressive convergence towards full mixture
- PGMR

Existing Algorithms

top-down approaches

- greedy methods
- start with full mixture
- iteratively replace a set of Gaussians with a smaller set
- sets can be chosen, using different deviation measures (West, Williams, Runnalls)

bottom-up approaches

- constructive methods
- start with one component
- adaptively add/remove components as required
- progressive convergence towards full mixture
 - PGMR

Existing Algorithms

top-down approaches

- greedy methods
- start with full mixture
- iteratively replace a set of Gaussians with a smaller set
- sets can be chosen, using different deviation measures (West, Williams, Runnalls)

bottom-up approaches

- constructive methods
- start with one component
- adaptively add/remove components as required
- progressive convergence towards full mixture
 - PGMR

Existing Algorithms

top-down approaches

- greedy methods
- start with full mixture
- iteratively replace a set of Gaussians with a smaller set
- sets can be chosen, using different deviation measures (West, Williams, Runnalls)

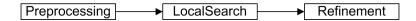
bottom-up approaches

- constructive methods
- start with one component
- adaptively add/remove components as required
- progressive convergence towards full mixture
- PGMR state-of-the-art

Overview

Gaussian Mixture Reduction via Clustering (GMRC)

- top-down approach using a global deviation measure
- three-step algorithm:



Basic Operation

- quickly determine a rough initial solution
- push solution towards a good local optimum by local search
- refine solution using numerical methods

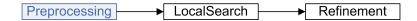
5 Dennis Schieferdecker: Gaussian Mixture Reduction via Clustering Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH Forschungsuniversität - gegründet 182

Overview

Gaussian Mixture Reduction via Clustering (GMRC)

- top-down approach using a global deviation measure
- three-step algorithm:



Basic Operation

- quickly determine a rough initial solution
- push solution towards a good local optimum by local search
- refine solution using numerical methods

Overview

Gaussian Mixture Reduction via Clustering (GMRC)

- top-down approach using a global deviation measure
- three-step algorithm:

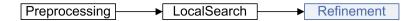
Basic Operation

- guickly determine a rough initial solution
- push solution towards a good local optimum by local search
- refine solution using numerical methods

Overview

Gaussian Mixture Reduction via Clustering (GMRC)

- top-down approach using a global deviation measure
- three-step algorithm:

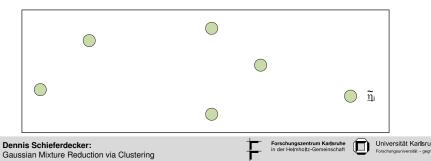


Basic Operation

- guickly determine a rough initial solution
- push solution towards a good local optimum by local search
- refine solution using numerical methods

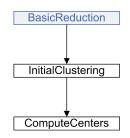
Conception

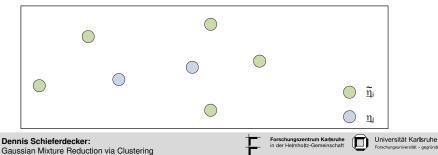
- each component <u>η̃</u> of a mixture can be mapped to a point (site) in a two-dimensional space
- distances between points correspond to the selected deviation measure



BasicReduction

- compute an initial solution η for our problem (i.e. using West's or Runnalls' algorithm)
- the components <u>n</u> of the reduced mixture correspond to preliminary cluster centers



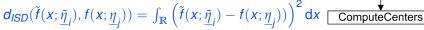


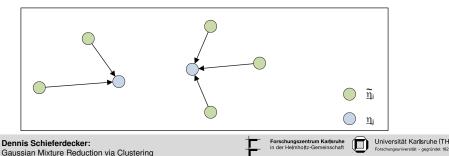
BasicReduction

InitialClustering

InitialClustering

- associate each original component (site) $\underline{\tilde{\eta}}_{j}$ with the nearest one $\underline{\eta}_{j}$ of the reduced mixture (preliminary cluster center),
- using the Integrated Squared Distance (ISD):

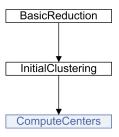


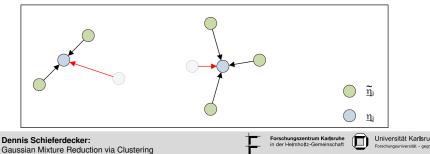


ComputeCenters

a

- replace each reduced component <u>η</u>_j with a new one retaining mean and variance of the sum of the associated original components <u>η</u>_i
- equivalent to computing the center-of-mass of the sites associated to each center

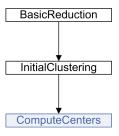


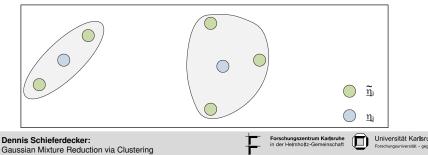


ComputeCenters

a

- replace each reduced component <u>η</u>_j with a new one retaining mean and variance of the sum of the associated original components <u>η</u>_i
- equivalent to computing the center-of-mass of the sites associated to each center



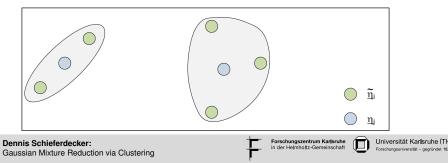


Local Search

- greedy approach
- based on Lloyd's algorithm (k-means)

Basic Operation

- iteratively find the best association for each site $\tilde{\eta}_i$ to a center η_i ,
- minimizing the selected deviation measure

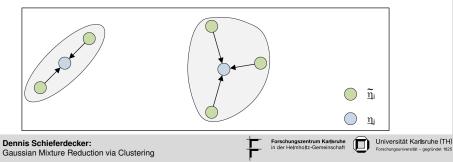


Local Search

- greedy approach
- based on Lloyd's algorithm (k-means)

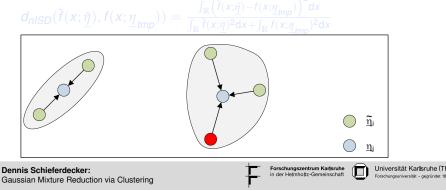
Basic Operation

- iteratively find the best association for each site $\tilde{\eta}_i$ to a center η_i ,
- minimizing the selected deviation measure



Finding the Best Association

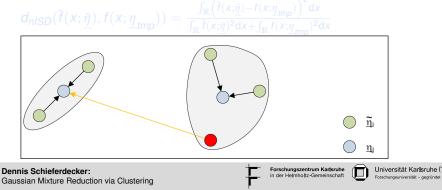
- associate a site $\tilde{\eta}_i$ with one of the current centers η_i
- recompute and temporarily replace the affected centers η_{tmp}
- determine normalized ISD (nISD) between the original and the current temporary reduced mixture:



Finding the Best Association

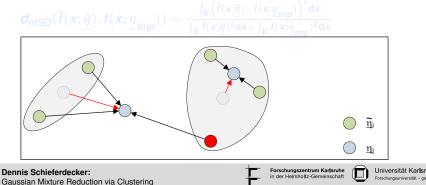
a associate a site $\tilde{\eta}_i$ with one of the current centers η_i

- recompute and temporarily replace the affected centers η_{tmr}
- determine normalized ISD (nISD) between the original and the current temporary reduced mixture:



Finding the Best Association

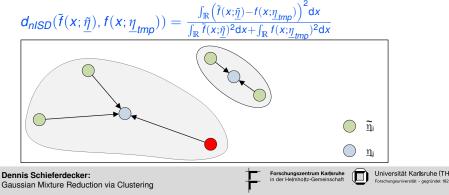
- **a** associate a site $\tilde{\eta}_i$ with one of the current centers η_i
- recompute and temporarily replace the affected centers η_{tmp}
- determine normalized ISD (nISD) between the original and the current temporary reduced mixture:



Finding the Best Association

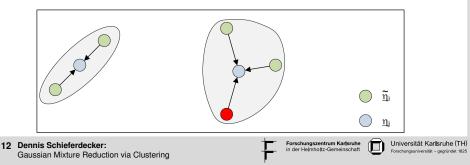
11

- associate a site $\tilde{\eta}_i$ with one of the current centers η_i
- recompute and temporarily replace the affected centers η_{tmp}
- determine normalized ISD (nISD) between the original and the current temporary reduced mixture:



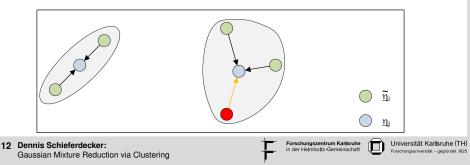
Finding the Best Association – continued

- revert temporary association
- repeat for all possible associations of site $\tilde{\eta}_i$ to a center
- retain the association with the smallest deviation (i.e. the reduced mixture which is closest to the original one)



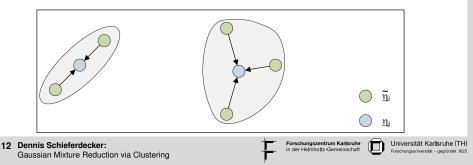
Finding the Best Association – continued

- revert temporary association
- repeat for all possible associations of site $\tilde{\eta}_i$ to a center
- retain the association with the smallest deviation (i.e. the reduced mixture which is closest to the original one)



Finding the Best Association – continued

- revert temporary association
- repeat for all possible associations of site η
 _i to a center
- retain the association with the smallest deviation (i.e. the reduced mixture which is closest to the original one)

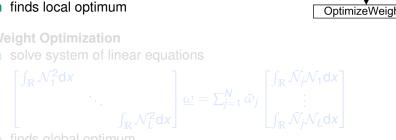


Parameter Optimization

• optimize parameter vector η w.r.t. ISD

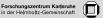
$$\min_{\underline{\eta}} \int_{\mathbb{R}} \left(\tilde{f}(x;\underline{\tilde{\eta}}) - f(x;\underline{\eta}) \right)^2 dx$$

- non-linear optimization problem \rightarrow Newton approach
- finds local optimum



Dennis Schieferdecker: 12 Gaussian Mixture Reduction via Clustering

OptimizeParams



in der Helmholtz-Gemeinsc

Parameter Optimization

• optimize parameter vector η w.r.t. ISD

$$\min_{\underline{\eta}} \int_{\mathbb{R}} \left(\tilde{f}(x;\underline{\tilde{\eta}}) - f(x;\underline{\eta}) \right)^2 dx$$

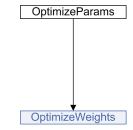
- non-linear optimization problem
 → Newton approach
- finds local optimum

Weight Optimization

solve system of linear equations

$$\begin{bmatrix} \int_{\mathbb{R}} \mathcal{N}_{1}^{2} dx & \\ & \ddots & \\ & & \int_{\mathbb{R}} \mathcal{N}_{L}^{2} dx \end{bmatrix} \underline{\omega} = \sum_{j=1}^{N} \tilde{\omega}_{j} \begin{bmatrix} \int_{\mathbb{R}} \tilde{\mathcal{N}}_{j} \mathcal{N}_{1} dx \\ \vdots \\ & \int_{\mathbb{R}} \tilde{\mathcal{N}}_{j} \mathcal{N}_{L} dx \end{bmatrix}$$

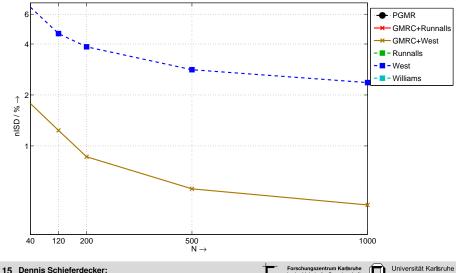
finds global optimum



Simulation Setup

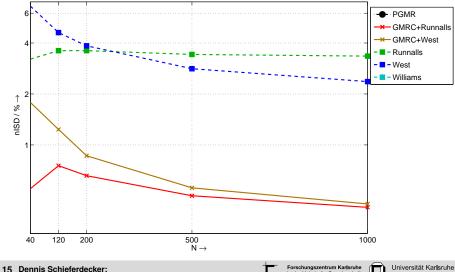
- Office PC (Intel Core2 Duo E8400)
- OpenSUSE 11.0
- Matlab 7.7.0 (R2008b)

- reduction of mixtures with $N \in \{40, 120, 200, 500, 1000\}$ components down to K = 10
- each evaluated with 1000 simulation runs



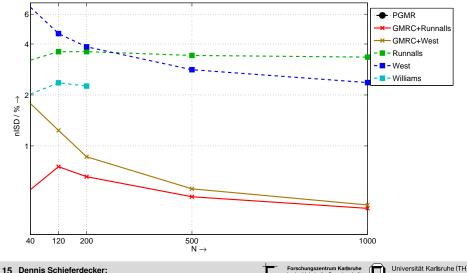
Gaussian Mixture Reduction via Clustering

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft



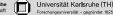
Gaussian Mixture Reduction via Clustering

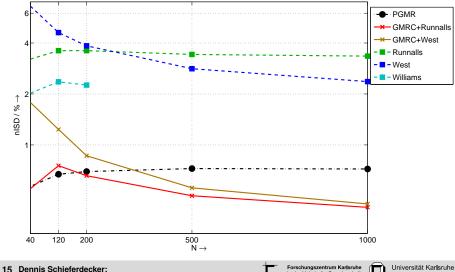
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft



Gaussian Mixture Reduction via Clustering

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

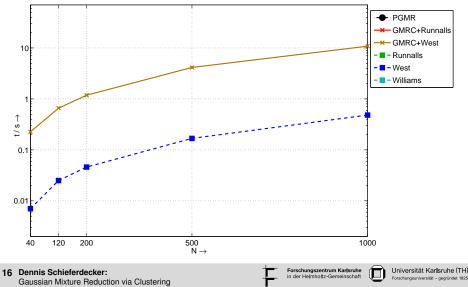


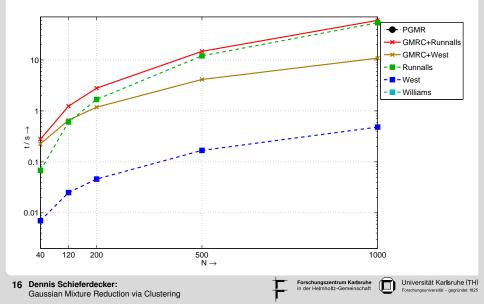


Gaussian Mixture Reduction via Clustering

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

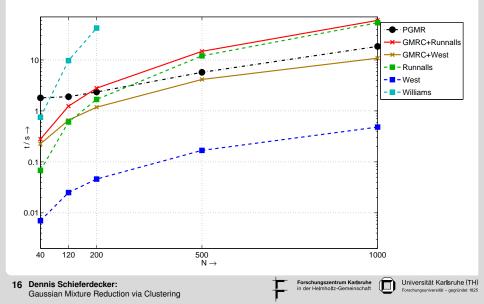
Universität Karlsruhe (TH Forschungsuniversität • gegründet 1825





PGMR GMRC+Runnalls 10 - Runnalls - West - Williams $\mathsf{t}/\,\mathsf{s} \rightarrow$ 0.1 0.01 120 200 500 1000 40 $N \rightarrow$ Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Universität Karlsruhe (TH) 16 Dennis Schieferdecker: Forschungsuniversität - gegründet 1825

Gaussian Mixture Reduction via Clustering



	algorithm	running time	norm. ISD
GMRC	complete	$\boxed{\textbf{2.793}\pm \textbf{0.052s}}$	$\overline{\textbf{0.658}\pm\textbf{0.494}}$
	w. random init. w/o local search w/o refinement	$ \hline \hline 1.135 \pm 0.045s \\ 1.742 \pm 0.043s \\ 2.737 \pm 0.036s \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} \hline 1.272 \pm 1.561 \\ 0.774 \pm 0.872 \\ 1.697 \pm 0.432 \end{array}$
Runnalls		$\boxed{1.678\pm0.024\text{s}}$	$\overline{\textbf{3.606}\pm\textbf{0.752}}$

- a good initial solution is mandatory
- local search primarily improves variance
- refinement has single-most impact on approximation guality

	algorithm	running time	norm. ISD
GMRC	complete	$\boxed{\textbf{2.793}\pm \textbf{0.052s}}$	$\overline{\textbf{0.658}\pm\textbf{0.494}}$
	w. random init. w/o local search w/o refinement	$ \hline \hline 1.135 \pm 0.045s \\ 1.742 \pm 0.043s \\ 2.737 \pm 0.036s \\ \hline \end{tabular} $	$\begin{array}{c} \textbf{1.272} \pm \textbf{1.561} \\ \textbf{0.774} \pm \textbf{0.872} \\ \textbf{1.697} \pm \textbf{0.432} \end{array}$
Runnalls		$\boxed{1.678\pm0.024\text{s}}$	$\overline{\textbf{3.606}\pm\textbf{0.752}}$

- a good initial solution is mandatory
- local search primarily improves variance
- refinement has single-most impact on approximation quality

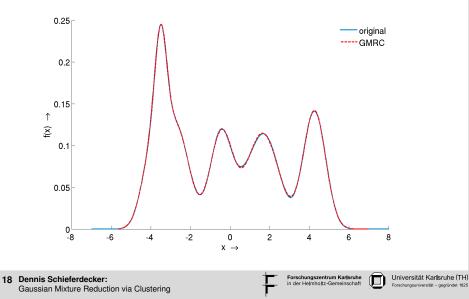
	algorithm	running time	norm. ISD
GMRC	complete	$\boxed{\textbf{2.793}\pm \textbf{0.052s}}$	$\overline{0.658\pm0.494}$
	w. random init. w/o local search w/o refinement	$ \hline \hline 1.135 \pm 0.045s \\ 1.742 \pm 0.043s \\ 2.737 \pm 0.036s \\ \hline \end{tabular} $	$\begin{array}{c} \hline 1.272 \pm 1.561 \\ 0.774 \pm 0.872 \\ 1.697 \pm 0.432 \end{array}$
Runnalls		$\boxed{1.678\pm0.024\text{s}}$	$\overline{\textbf{3.606}\pm\textbf{0.752}}$

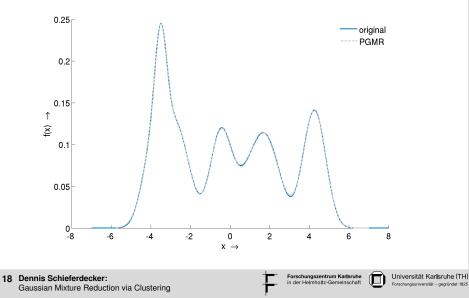
- a good initial solution is mandatory
- local search primarily improves variance
- refinement has single-most impact on approximation quality

	algorithm	running time	norm. ISD
GMRC	complete	$\boxed{\textbf{2.793}\pm \textbf{0.052s}}$	$\overline{\textbf{0.658}\pm\textbf{0.494}}$
	w. random init. w/o local search w/o refinement	$ \hline \hline 1.135 \pm 0.045s \\ 1.742 \pm 0.043s \\ 2.737 \pm 0.036s \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} \hline 1.272 \pm 1.561 \\ 0.774 \pm 0.872 \\ 1.697 \pm 0.432 \end{array}$
Runnalls		$\boxed{1.678\pm0.024\text{s}}$	$\overline{\textbf{3.606}\pm\textbf{0.752}}$

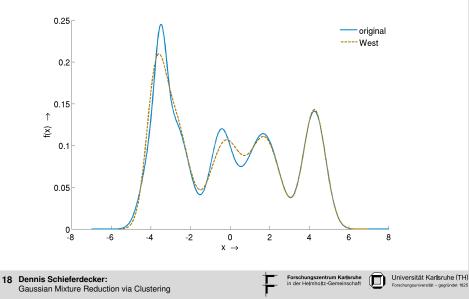
- a good initial solution is mandatory
- local search primarily improves variance
- refinement has single-most impact on approximation quality

Visualization

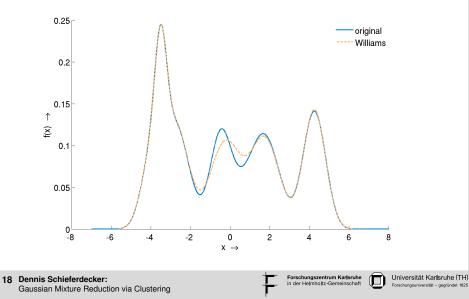




Visualization



Visualization



Conclusion

Summary

novel mixture reduction algorithm

- top-down approach, using a global deviation measure
- based on k-means clustering method
- combines discrete and continuous optimization methods
- compared to the current state-of-the-art PGMR:
 - faster computation
 - similar approximation quality

Outlook

- extension to multivariate Gaussian mixtures
- refine empirical choice of
 - West's and Runnalls' algorithm in the preprocessing step
 - k-means as clustering approach
 - introduce adaptive reduction of components

Conclusion

Summary

novel mixture reduction algorithm

- top-down approach, using a global deviation measure
- based on k-means clustering method
- combines discrete and continuous optimization methods
- compared to the current state-of-the-art PGMR:
 - faster computation
 - similar approximation quality

Outlook

- extension to multivariate Gaussian mixtures
- refine empirical choice of
 - West's and Runnalls' algorithm in the preprocessing step
 - k-means as clustering approach
- introduce adaptive reduction of components

Thank you for your attention!

time for questions

20 Dennis Schieferdecker: Gaussian Mixture Reduction via Clustering Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität

