
1 Dennis Schieferdecker:
Gaussian Mixture Reduction via Clustering

GRK 1194: Self-organizing Sensor-Actuator-Networks

Gaussian Mixture Reduction via
Clustering
Dennis Schieferdecker – schiefer@ira.uka.de
Marco Huber – marco.huber@ieee.org



Introduction
Gaussian Mixtures

2 Dennis Schieferdecker:
Gaussian Mixture Reduction via Clustering

Gaussian Mixture Density
weighted sum of Gaussians

f (x ; η) =
N

∑
i=1

ωi · N (x ; µi , σ2
i )

universal function approximator
used to model probability density
functions in estimation algorithms

target tracking,
machine learning,
speaker recognition,
. . .
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recursive processing
multiplication of Gaussian mixtures
convolution of Gaussian mixtures

number of components grows exponentially

Problem in Applications

given a mixture f̃ (x ; η̃) with N components (original mixture),

find a mixture f (x ; η) with K<N components (reduced mixture),

so that a deviation measure d(f̃ (x ; η̃), f (x ; η)) is minimized.

Solution
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greedy methods
start with full mixture
iteratively replace a set of
Gaussians with a smaller set
sets can be chosen, using
different deviation measures
(local, global, hybrid)

top-down approaches

constructive methods
start with one component
adaptively add/remove
components as required
progressive convergence
towards full mixture
PGMR

bottom-up approaches
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greedy methods
start with full mixture
iteratively replace a set of
Gaussians with a smaller set
sets can be chosen, using
different deviation measures
(West, Williams, Runnalls)

top-down approaches

constructive methods
start with one component
adaptively add/remove
components as required
progressive convergence
towards full mixture
PGMR - state-of-the-art

bottom-up approaches
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Gaussian Mixture Reduction via Clustering (GMRC)
top-down approach using a global deviation measure
three-step algorithm:

quickly determine a rough initial solution
push solution towards a good local optimum by local search
refine solution using numerical methods

Basic Operation
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Conception
each component η̃

i
of a mixture can be mapped

to a point (site) in a two-dimensional space
distances between points correspond to the
selected deviation measure
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BasicReduction
compute an initial solution η for our problem
(i.e. using West’s or Runnalls’ algorithm)
the components η

j
of the reduced mixture

correspond to preliminary cluster centers
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InitialClustering
associate each original component (site) η̃

i
with the nearest one η

j
of the reduced mixture

(preliminary cluster center),

using the Integrated Squared Distance (ISD):

dISD(f̃ (x ; η̃
i
), f (x ; η

j
)) =

∫
R

(
f̃ (x ; η̃

i
)− f (x ; η

j
))

)2
dx
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ComputeCenters
replace each reduced component η

j
with a new

one retaining mean and variance of the sum of
the associated original components η̃

i
equivalent to computing the center-of-mass of
the sites associated to each center
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Local Search
greedy approach
based on Lloyd’s algorithm (k-means)

Basic Operation
iteratively find the best association for each site η̃

i
to a center η

j
,

minimizing the selected deviation measure
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Finding the Best Association
associate a site η̃

i
with one of the current centers η

j

recompute and temporarily replace the affected centers η
tmp

determine normalized ISD (nISD) between the original and
the current temporary reduced mixture:

dnISD(f̃ (x ; η̃), f (x ; η
tmp

)) =
∫

R

(
f̃ (x ;η̃)−f (x ;η

tmp
)
)2

dx∫
R

f̃ (x ;η̃)2dx+
∫

R
f (x ;η

tmp
)2dx
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Finding the Best Association – continued
revert temporary association
repeat for all possible associations of site η̃

i
to a center

retain the association with the smallest deviation
(i.e. the reduced mixture which is closest to the original one)
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Parameter Optimization
optimize parameter vector η w.r.t. ISD

min
η

∫
R

(
f̃ (x ; η̃)− f (x ; η)

)2
dx

non-linear optimization problem
→ Newton approach
finds local optimum

Weight Optimization
solve system of linear equations

∫
R
N 2

1 dx
. . . ∫

R
N 2

L dx

 ω = ∑N
j=1 ω̃j


∫

R
ÑjN1dx

...∫
R
ÑjNLdx


finds global optimum
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Office PC (Intel Core2 Duo E8400)
OpenSUSE 11.0
Matlab 7.7.0 (R2008b)

Simulation Setup

reduction of mixtures with N ∈ {40, 120, 200, 500, 1000}
components down to K = 10
each evaluated with 1000 simulation runs



Results
Approximation Quality

15 Dennis Schieferdecker:
Gaussian Mixture Reduction via Clustering

40 120 200 500 1000

1

2

4

6

N →

nI
S

D
 / 

%
 →

 

 

PGMR

GMRC+Runnalls

GMRC+West

Runnalls

West

Williams



Results
Approximation Quality

15 Dennis Schieferdecker:
Gaussian Mixture Reduction via Clustering

40 120 200 500 1000

1

2

4

6

N →

nI
S

D
 / 

%
 →

 

 

PGMR

GMRC+Runnalls

GMRC+West

Runnalls

West

Williams



Results
Approximation Quality

15 Dennis Schieferdecker:
Gaussian Mixture Reduction via Clustering

40 120 200 500 1000

1

2

4

6

N →

nI
S

D
 / 

%
 →

 

 

PGMR

GMRC+Runnalls

GMRC+West

Runnalls

West

Williams



Results
Approximation Quality

15 Dennis Schieferdecker:
Gaussian Mixture Reduction via Clustering

40 120 200 500 1000

1

2

4

6

N →

nI
S

D
 / 

%
 →

 

 

PGMR

GMRC+Runnalls

GMRC+West

Runnalls

West

Williams



Results
Running Time

16 Dennis Schieferdecker:
Gaussian Mixture Reduction via Clustering

40 120 200 500 1000

0.01

0.1

1

10

N →

t /
 s

 →

 

 

PGMR

GMRC+Runnalls

GMRC+West

Runnalls

West

Williams



Results
Running Time

16 Dennis Schieferdecker:
Gaussian Mixture Reduction via Clustering

40 120 200 500 1000

0.01

0.1

1

10

N →

t /
 s

 →

 

 

PGMR

GMRC+Runnalls

GMRC+West

Runnalls

West

Williams



Results
Running Time

16 Dennis Schieferdecker:
Gaussian Mixture Reduction via Clustering

40 120 200 500 1000

0.01

0.1

1

10

N →

t /
 s

 →

 

 

PGMR

GMRC+Runnalls

GMRC+West

Runnalls

West

Williams



Results
Running Time

16 Dennis Schieferdecker:
Gaussian Mixture Reduction via Clustering

40 120 200 500 1000

0.01

0.1

1

10

N →

t /
 s

 →

 

 

PGMR

GMRC+Runnalls

GMRC+West

Runnalls

West

Williams



Results
Impact of Individual Steps
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algorithm running time norm. ISD

GMRC complete 2.793 ± 0.052s 0.658 ± 0.494

w. random init. 1.135 ± 0.045s 1.272 ± 1.561
w/o local search 1.742 ± 0.043s 0.774 ± 0.872
w/o refinement 2.737 ± 0.036s 1.697 ± 0.432

Runnalls 1.678 ± 0.024s 3.606 ± 0.752

(initialization with Runnalls’ algorithm; N = 200, K = 10)

a good initial solution is mandatory
local search primarily improves variance
refinement has single-most impact on approximation quality
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novel mixture reduction algorithm
top-down approach, using a global deviation measure
based on k-means clustering method
combines discrete and continuous optimization methods

compared to the current state-of-the-art PGMR:
faster computation
similar approximation quality

Summary

extension to multivariate Gaussian mixtures
refine empirical choice of

West’s and Runnalls’ algorithm in the preprocessing step
k-means as clustering approach

introduce adaptive reduction of components

Outlook
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Thank you for your attention!
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time for questions


