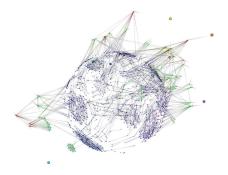
Better Approximation of Betweenness Centrality

Robert Geisberger Peter Sanders Dominik Schultes

Workshop on Algorithm Engineering & Experiments, 2008

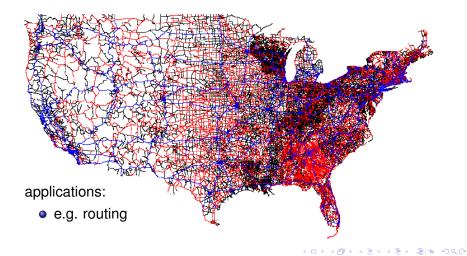

Robert Geisberger, Peter Sanders, Dominik Schultes Better Approximation of Betweenness Centrality

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q @

Motivation

Automatic analysis of networks requires fast computation of centrality indices.

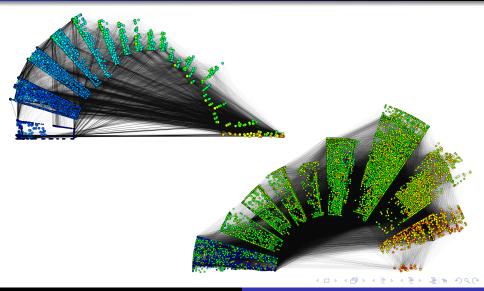
The networks grow faster than the speed of our computers so fast approximation algorithms gain importance.



★ E ► ★ E ► E

= 2000

Computation of centrality indices Previous Work


Transportation

Motivation

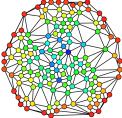
Our Contributions Summary Computation of centrality indices Previous Work

Graph drawing

Computation of centrality indices Previous Work

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Definition Betweenness Centrality


Let

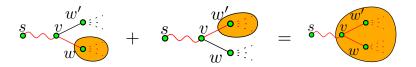
- G = (V, E) be a weighted directed (multi)-graph,
- *SP_{st}* = set of shortest paths between source *s* and target *t*

• $SP_{st}(v)$ = set of shortest paths that have v in their interior.

Then the *betweenness centrality* for node *v* is

$$c(v) := \sum_{s,t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}$$
, where $\sigma_{st} := |SP_{st}|$ and $\sigma_{st}(v) := |SP_{st}(v)|$.

Computation of centrality indices Previous Work


· · 프 · · · 프 · · 프

E Dan

Exact algorithm

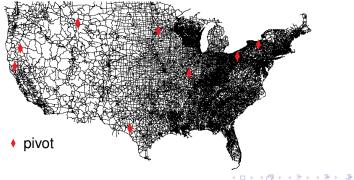
Brandes [Brandes01] exact algorithm:

- solve single source shortest path problem (SSSP) from each node
- backward aggregation of counter values

Time requirements:

- $\Theta(nm)$ for unit distance, otherwise
- $\Theta(nm + n^2 \log(n))$.

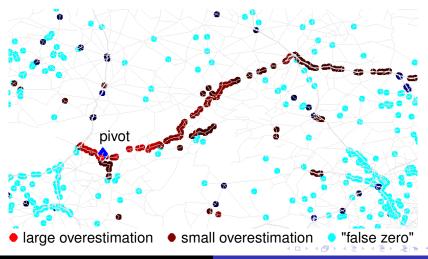
Computation of centrality indices Previous Work


1= 9QP

Approximation approach

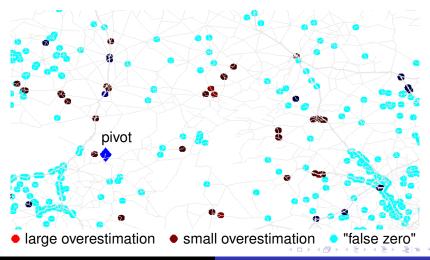
Brandes and Pich [BrandesPich06] approximation algorithm:

- choose subset k of starting nodes (pivots)
- solve only k single source shortest path problem (SSSP)
- extrapolate betweenness values


This yields an *unbiased* estimator for betweenness.

Computation of centrality indices Previous Work

Deficiency of previous approach


Overestimation of betweenness values of nodes near a pivot.

Motivation Generalized Framewor Our Contributions Efficient Implementation Summary Experiments

Main idea

Consider the *length* to the pivot to *scale* contributions.

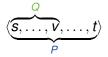
Generalized Framework Efficient Implementation Experiments

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Generalized Framework

Parameters:

- *length function* ℓ on the edges For a path $P = \langle e_1, \dots, e_k \rangle$ let $\ell(P) := \sum_{1 \le i \le k} \ell(e_i)$
- scaling function $f : [0, 1] \rightarrow [0, 1]$


Features:

- unbiased estimator
- focus on differences between approximation methods

Generalized Framework (continuation)

For each shortest path of the form

we define a scaled contribution

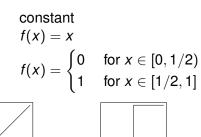
$$\delta_{P}(\mathbf{V}) \coloneqq \frac{f(\ell(Q)/\ell(P))}{\sigma_{st}}$$

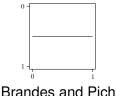
Overall, v gets a contribution from a pivot s

$$\delta_{s}(\boldsymbol{v}) \coloneqq \sum_{t \in V} \sum_{t \in V} \{ \delta_{\boldsymbol{P}}(\boldsymbol{v}) : \boldsymbol{P} \in SP_{st}(\boldsymbol{v}) \}$$

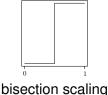
▲冊▶▲■▶▲■▶ ■目 のへで

Generalized Framework Efficient Implementation Experiments


Proposed Parameters

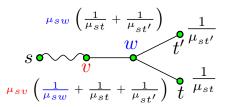

Length function ℓ :

- edge weight function used for shortest-path calculation
- unit distance


Scaling function *f*:

- Brandes and Pich
- linear scaling
- bisection scaling

Better Approximation of Betweenness Centrality


Generalized Framework Efficient Implementation Experiments

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Linear Time Computation

Brandes [Brandes01]:

- compute σ_{st} on the fly during the shortest path calculation
- subsequent aggregation phase, like exact algorithm linear scaling:
 - Let μ_{st} denote the shortest path distance from s to t, aggregate 1/μ_{st} instead of 1, multiply with μ_{sv} at the end.

Motivation Generalized Framework Our Contributions Efficient Implementation Summary Experiments

Linear Time Computation of bisection scaling

- use unit distance
- depth first traversal of shortest path DAG, keep an array storing the current path from s
- increment counter of current node v and decrement counter of middle node v'

Comments: • only efficient for $\sigma_{st} \in \{0, 1\}$ -1 + 1 -1 + 1 -1 + 1 -1 + 1

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

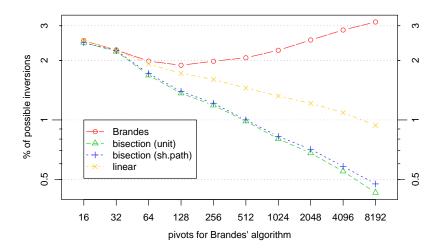
1= 990

• for $\sigma_{st} \ge 2$ sampling of shortest paths required

Generalized Framework Efficient Implementation Experiments

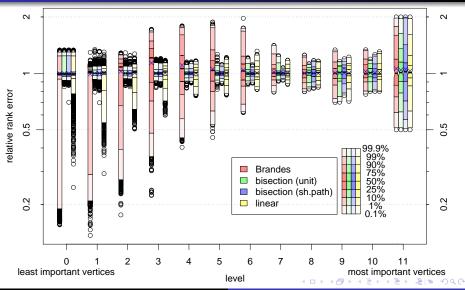
・ロ> < 回> < 回> < 回> < 回> < 回

Overview of used graphs


graph	nodes	edges	source
Belgian road network	463 514	596 1 1 9	PTV AG
Belgian road network (unit dist.)	463 514	596 1 1 9	PTV AG
Actor co-starring network	392 400	16 557 451	[NotreD]
US patent network	3774769	16518947	[NBER]
World-Wide-Web graph	325 729	1 497 135	[NotreD]
CNR 2000 Webgraph	325 557	3216152	[LabWA]
CiteSeer undir. citation network	268 495	2313294	[Citeseer]
CiteSeer co-authorship network	227 320	1 628 268	[Citeseer]
CiteSeer co-paper network	434 102	32 073 440	[Citeseer]
DBLP co-authorship network	299 067	1 955 352	[DBLP]
DBLP co-paper network	540 486	30 491 458	[DBLP]

Generalized Framework Efficient Implementation Experiments

> < ≣


ELE DQC

Belgium road network

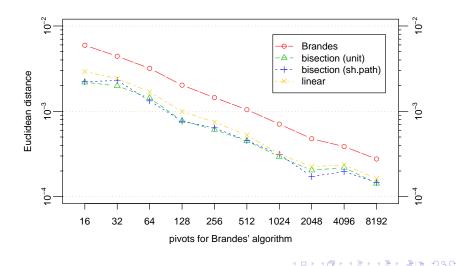
Generalized Framework Efficient Implementation Experiments

Belgium road network

Robert Geisberger, Peter Sanders, Dominik Schultes

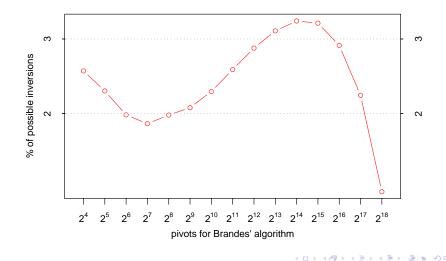
Better Approximation of Betweenness Centrality

• The bisection scaling algorithm achieves the best results.

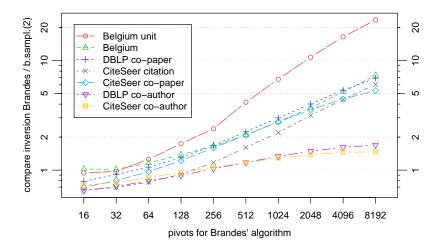

Future work

- efficient exact bisection scaling algorithm for $\sigma_{st} \ge 2$
- local searches to eliminate "false zeros"

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@


Appendix

Belgian road network


Appendix Additional Experiments

Belgian road network (Brandes and Pich)

Appendix

Additional networks

■▶ 三日 のへの