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Chapter 1

German Summary

In der heutigen Zeit ist die Welt von der Globalisierung geprägt. Personen und Güter bewegen sich
jeden Tag in unglaublichen Mengen von einem Ort zum anderem. Dabei kann für jede mögliche
Anfrage eine eigenständige Anforderung an die Art der gewählten Strecke bestehen. Flexibilität bei
Routenfindungssystemem wird deswegen immer wichtiger. Bisherige Arbeiten auf dem Gebiet be-
fassten sich meist mit einem einzelnem zu optimierendem Kriterium. Einen ausfürlichen Überblick
gibt [DSSW09]. In unserer Sicht der Dinge wird dieses in Zukunft nicht mehr ausreichen. Statt
nur eine einzelne mögliche Route anzubieten könnte man sich einen Schieberegler für einen Web-
server oder ein Navigationsgerät vorstellen. Bei diesem kann der Nutzer dann selbst entscheiden,
wie viel extra Zeit er aufbringen möchte um mögliche Kosten einzusparen. Oder der Server könnte
in Anlehnung an die Präsentation von alternativen Zugverbindungen eine Folge von im Parameter
nah beieinander liegenden Routen anbieten. Der Nutzer könnte sich dann für eine dieser Routen
entscheiden oder weitere Variation des Parameters anfragen.

Um solche Anforderungen zu erfüllen präsentieren wir einen Algorithmus für das parametrisierte
kürzeste Wege Problem. In diesem Problem weisen wir jeder Kante eines Graphen eine lineare
Kostenfunktion von der Form w(p) = τ + p · κ mit zwei Gewichtstermen τ, κ und einem Param-
eter p zu. Das Ziel ist es dann den kürzesten Weg bezüglich eines gewählten Parameters p zu finden.
Dieses Problem wurde bisher recht wenig betrachtet. Für unseren Algorithmus wählen wir dabei τ
und κ aus N. Bei p beschränken wir uns dabei auf ein Intervall [0, pmax] von natürlichen Zahlen.
Diese Einschränkung ermöglicht eine schnellere Vorberechnung, da insgesamt die Anzahl möglicher
alternativen eingeschränkt wird. pmax kann dabei gewählt werden um den maximalen Einfluss des
Gewichtes κ zu bestimmen.

Zum Beispiel kann mit Hilfe von Dijkstra’s Algorithmus ein entsprechender kürzester Weg ge-
funden werden, indem man die Kostenfunktion wenn nötig auswertet. Aktuellere Methoden im Bere-
ich der multikriteriellen kürzeste Wege Suche beschäftigen sich meist mit dem Ansatz der Pareto-
optimalität. Dabei sucht der Algorithmus eine Menge von Pfaden, die nicht von einem anderen
Pfad dominiert werden. Die Kantengewichte werden dabei durch Vektoren von Gewichten in der
Form (w1, . . . wk) beschrieben. Wir bezeichnen dann einen Vektor W ′ = (w′1, . . . , w

′
k) als von

W = (w1, . . . , wk) dominiert, wenn ∀i ∈ [1, k] : wi ≤ w′i and ∃i ∈ [1, k] : wi < w′i.
Nach unserer Ansicht bestehen bei diesem Ansatz einige Probleme. Die meisten Algorithmen lei-

den dabei unter dem Problem, dass die Anzahl der möglichen Pareto-optimalen Pfade zu stark ansteigt
um eine effiziente Vorberechnung zu erlauben. Deswegen muss meist die Anzahl der Pfade mit Hilfe
von Heuristiken oder verschärften Dominanzkriterien eingeschränkt werden. Wir beschäftigen uns in
dieser Arbeit mit den linearen Kantenfunktionen. In Kombination mit aktuellen hierarchischen Tech-
niken gelingt es uns dabei für Straßennetze in kontinentaler Größe schnelle Anfragen zu ermöglichen.

Wir adaptieren für unsere Zwecke die von Geisberger et al. vorgestellten Contraction Hierar-
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chies [GSSD08]. Dieser Algorithmus weist den Knoten eines Graphen mit Hilfe einer Heuristik eine
Wichtigkeit zu. Diese Heuristik hat dabei zwar Einfluss auf die damit erreichbaren Anfragezeiten,
der Algorithmus berechnet aber für jede mögliche Ordnung korrekte kürzeste Wege. Die Heuristik
bedient sich dabei mehrerer Eigenschaften der Knoten und des Graphens, die sich aus der bisherigen
Bearbeitung und der Struktur des Eingabegraphen ergeben. Eine mögliche Eigenschaft ist dabei zum
Beispiel die Anzahl der schon kontrahierten direkten Nachbarn. Ein Knoten wird dabei als wichtig
betrachtet, wenn er viele schon kontrahierte Nachbarn besitzt. Viele dieser Eigenschaften können
sich dabei während der Vorberechnung verändern. Mit Hilfe der Heuristik wählt der Algorithmus
dabei immer einen nächsten Knoten aus um diesen zu kontrahieren. Dabei suchen wir uns immer
den zur Zeit am unwichtigsten erscheinenden Knoten. Bei der Kontraktion wird der Knoten aus dem
Graphen entfernt und wenn notwendig zusätzliche Kanten eingefügt, um einen Overlay Graphen zu
erhalten. Diese Kanten, die wir Shortcuts nennen, werden immer dann eingefügt, wenn ansonsten
kürzeste Wege Distanzen zwischen im Graphen verbleibenden Knoten verändert werden würden. Für
eine Suche wird der so entstandende Graph dann in einen Vorwärts-Graphen und einen Rückwärts-
Graphen geteilt. Auf diesen beiden Graphen wird dann eine simultane Suche vom Start- und vom
Zielpunkt aus gestartet. Diese Suchen treffen sich während ihres Verlaufes garantiert an einer höheren
Stelle in der Hierarchie.

Für unseren Algorithmus müssen wir dabei besonders die Vorberechnung anpassen. Während
der Vorberechnungsphase müssen bei der Kontraktion eines Knotens sogenannte Zeugen gefunden
werden. Ein Zeuge ist dabei eine alternative Route zwischen zwei Nachbarknoten, die höchstens die
gleiche Reisezeit benötig wie die über den zu kontrahierenden Knoten. Wird ein solcher Zeuge ge-
funden, müssen wir keine Kante in den Overlay-Graphen einfügen. Ist eine solche Kante allerdings
nicht vorhanden, benötigen wir einen sogenannten Shortcut, der den Weg über den zu kontrahieren-
den Knoten repräsentiert. Für den flexibelen Fall ist die Situation nicht mehr so einfach. In diesem
Fall können wir auch teilweise Zeugen für einen Pfad haben. Diese können dabei, auf Grund von
Konkavität der minimal möglichen Kosten über alle Parameter und Pfade, im unteren Parameterbere-
ich oder im oberen Parameterbereich als Zeuge fungieren. Das ermöglicht es uns mögliche Shortcuts
auf Notwendigkeitsintervalle einzuschränken.

Da wir beweisen können, dass maximal zwei Pfade benötigt werden um einen gültigen Zeugen
darzustellen für das vollständige Parameterintervall, benutzen wir eine einfache Erweiterung des Di-
jkstra Algorithmus für unsere Zeugensuche. Wir erwarten dabei, dass wir auch nur wenige Aufrufe
unserer Erweiterung durchführen müssen um diese zwei Pfade zu finden. Der Algorithmus sucht
dabei auf einem zu betrachtenden Intervall [L,U ] zuerst für den Parameter L den kürzesten Weg.
Danach bestimmen wir den maximalen Parameterwert L′, für den der gefundene Pfad ein Zeuge ist,
und starten die Suche mit dem Parameterwert L′ + 1 neu. Dieses wird so lange wiederholt bis der
Algorithmus entweder bis zum Parameterwert U einen Zeugen gefunden hat, oder kein größerer Pa-
rameterwert mehr bestimmt werden kann. Im letzteren Fall beschränken wir das Notwendigkeitsinter-
vall durch eine identische Suche, die beim Parameter U beginnt und den kleinstmöglichen Parameter
sucht. Dabei konnten wir in der Praxis einen Durchschnitt von nur zwei Aufrufen des Dijkstra Al-
gorithmus feststellen. Da wir für diesen Algorithmus einen nächsten Parameter bestimmen müssen,
wählen wir als Parameter nur natürliche Zahlen.

Weil die Leistung und die Vorberechnung einer CH allerdings sehr stark von der gewählten
Ordnung der Knoten abhängt, mussten wir im Verlauf der Arbeit feststellen, dass eine einzelne
Knotenordnung zu zu langen Vorberechnungszeiten führte. Deswegen entwickelten wir einen Teile-
und-herrsche Ansatz, der es uns ermöglicht auch große Graphen möglichst effizient zu berechnen.
Dabei versuchen wir der Anteil mehrfach erledigter Arbeit möglichst gering zu halten.

Weiterhin nutzen wir für unseren Algorithmus Techniken, die auf dem Kern der berechneten Hi-
erarchie genutzt werden. Der Kern der Hierarchie ist dabei die Menge der |Kern| Knoten, die nach
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unserer Ordnung die höchsten Zahlen zugewiesen bekommen. Diese Techniken nutzen wir dabei
sowohl auf einem kontrahierten als auch einem nicht kontrahiertem Kern. Dazu benutzen wir die
Kombination des A*-Algorithmus mit Landmarken und der Dreiecksungleichung, oder auch ALT
genannt. Diese Technik nutzt zentrale Punkte im Graphen um untere Schranken für die kürzesten
Wege mit Hilfe der Dreiecksungleichung abzuschätzen. Mit Hilfe dieser Abschätzung kann die Suche
mit einem Richtungssinn kombiniert werden.

In der Kombination gelingt es uns damit für Straßennetzwerke bis zu der Größe von Europa eine
effiziente Vorberechnung durchzuführen. Wir schaffen es dabei Anfragen nach kürzesten Wegen für
einen beliebig wählbaren Parameter p ∈ [0, pmax] innerhalb von unter zwei Millisekunden zu beant-
worten. Für kleinere Straßennetze in der Größe von Deutschland schaffen wir das sogar innerhalb von
mehreren hundert Microsekunden. Damit erreichen wir für Europa eine Geschwindigkeitssteigerung
mit einem Faktor von über 8 000. Unsere Vorberechnungszeiten sind dabei für Graphen wie Deutsch-
land im Bereich von zwei bis drei Stunden und gehen für Graphen in der Größe von Europa auf bis
zu 24 Stunden.

Einer der größten Unterschiede unseres Algorithmus zu allen anderen bisher präsentierten Algo-
rithmen, die uns bekannt sind, ist, dass wir jeweils nur einen Weg für einen festen Parameter berech-
nen. Allerdings gehen wir davon aus, dass wir innerhalb von linearer Zeit, abhängig von der Zahl
möglicher Alternativrouten, alle möglichen Wege bestimmen können.

Damit gelingt es uns insgesamt einen Algorithmus vorzustellen, der es schafft in einem Server
Szenario eine Folge von Anfragen zu beantworten, in der der Nutzer die Art der gewählten Route nach
seinen Bedürfnissen beinflussen kann. Dabei könnte zum Beispiel eine Vorauswahl von möglichen
Routen präsentiert werden und der Nutzer kann sich wiederum weitere Routen anfragen, die im Pa-
rameterbereich einer der präsentierten Routen liegen. Unserer Ansicht nach ist diese Art der Flexibil-
ität sehr gut geeignet um kürzeste Wege Anfragen auf großen Straßennetzen variabel zu gestalten.
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Chapter 2

Introduction

In a world that is shaped by globalization, transportation is becoming more important each day. People
and goods need to travel from one location to another each day in quantities beyond imagination.
Route planning devices have become a big part of our life. Nearly every cellphone supports us in
finding our way with virtually no effort. But those devices are insufficient. They usually still rely on
heuristics to perform their tasks and to compensate for their lack of computational power and memory.
While this may be sufficient for a single person on the way to work, it is easy to find examples where
heuristics are not enough. For example, in logistics, finding optimal routes can save a lot of money,
since the small savings in gas add up very fast. Another benefit of the optimal routes is the decrease
in CO2 emissions that could be achieved by following optimal routes. Note that we do not solve the
ressource constrained shortest path problem. Our Algorithm can only be used to find routes with
lower costs if we do not have deadlines to meet. Therefore, the most prominent example would be
a webserver that presents the user a number of possible routes to choose from. This could allow to
present routes similar to alternative train connections. Someone could also imagine a car navigation
system that provides a slider to adjust the calculated route as necessary.

In 1959 Edsgar W. Dijkstra introduced an algorithm to the problem of finding shortest paths in
a static graph [Dij59]. A lot of speed-up techniques known today are based on Dijkstra’s algorithm.
To provide fast queries on large graphs, one can take advantage of the fact that road networks do not
change a lot over time. Therefore, many techniques perform time consuming preprocessing routines
to exploit the precalculated information during the queries. If we use the fastest of these algorithms,
we can gain speedups of up to one million at the cost to preprocessing time and space overhead.

Most times algorithms focus only on one single criterion to calculate the shortest routes, e.g., a
combination of the traversal time and estimated traversal costs at a fixed ratio. But there are a lot
of possible terms we can choose from. Examples include the fuel costs, toll fees as on the German
Autobahn or many more. This has been sufficient for a long time. Today we have very diverse needs
on the different routes. A familiy traveling abroad may want the fastest route to keep the traveling
time short. A student may want to save as much money as possible and therefore choose a cheaper
road.

The route that leads to the minimal cost does not have to be the route with the fastest time. To
avoid the toll fee, it might pay off to take the slower country road instead of the freeway. Even though
this increases the traveling time, it may result in lower costs for the respective company. We observe
that it is possible to modulate a set of different weight terms in a term we call the cost of a road. We
can combine the work payments of a company driver, the fuel costs, toll payments and many more.
With this observation we present an extension to the known technique of Contraction Hierarchies
presented by Geisberger et al. [GSSD08]. This thesis will present a way to modify the Contraction
Hierarchy (CH) algorithm to provide fast flexible queries that allow us to choose a combination of a
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set of weight terms at runtime.



2.1. RELATED WORK 13

2.1 Related Work
In the past, there has been extensive work on single-criteria speed-up techniques. These methods
require to select the objective function prior to the preprocessing. We refer to [DSSW09] for an
overview. In general, these objective functions can be arbitrary, but many of them achieve their best
performance with the travel time metric. In this thesis, we will use flexible objective functions during
our preprocessing. The flexible objective functions can be modulated by the use of linear functions
depending on a parameter p. We could get to the same functionality as our algorithm if we perform
any single-criteria speedup method for every parameter p and select the correct preprocessed data at
query time. Obviously this will lead to a huge amount of preprocessing and data overhead.

In general we can classify the single-criteria algorithms into three categories: hierarchical ap-
proaches, goal-directed methods and combinations of both algorithms. Our algorithm is closely re-
lated to the Contraction Hierarchy method, which we use as a base for our algorithm. We further
utilize techniques from goal directed approaches, i.e., the ALT-algorithm. In the following we will
describe some of the methods of single-criteria algorithms.

2.1.1 Goal Directed Approaches
Firstly, we want to shortly describe two goal directed approaches; the ALT algorithm and the ArcFlag
algorithm.

ALT

Goldberg and Harrelson presented the ALT algorithm [GH05]. It is an extension to the classic Di-
jkstra’s algorithm. Goldberg and Harrelson augment the search with a sense for direction. In a
preprocessing step, their algorithm calculates a potential function, which they add to the graph. For
this, they select distinct points in the graph, which they call landmarks. In combination with the
triangle inequality the algorithm can then approximate the length of a path between a source and a
target. To efficiently use the triangle inequality we have to compute the distances from all nodes to
the landmarks and vice versa in advance. This methods therefore comes with a large space overhead.
Still, this method proves quite useful if we do not have to use it on the entire graph, but on the core
of a hierarchical approach. We will utilize this algorithm in this thesis. Therefore, we provide a more
detailed description in Section 3.

ArcFlags

Another goal-directed approach is the Arc Flags algorithm Lauther introduced [Lau97]. The algo-
rithm is based on a partition of the original graph into a distinct set of regions. Lauther augments the
original edges with a set of flags. Theses flags indicate for each region wether a shortest path exists,
leading into the region that uses the given edge. During a search, we can use this flags to prune the
search on edges that do not lead into the region of the target. To calculate the flags, shortest paths
have to be precomputed starting at all border nodes of a given region. In the past some experiments
showed that the combination of the ArcFlag algorithm with the ALT method can provide even better
results in terms of query times.

2.1.2 Hierarchical Approaches
Hierarchical methods try to exploid some graph induced node order. For the hierarchical approaches
we will focus on the Contraction Hierarchies method, since it is closely related to our algorithm. For
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a more detailed discussion we refer to [Sch08b].

Highway Hierarchies

This algorithm, introduced by Schultes et al. groups nodes and edges into a hierarchy of levels
by alternating between two procedures [SS05]. In a contraction step, the network is contracted by
removing low-degree nodes. In this node reduction phase, the algorithm bypasses unimportant nodes
and introduces shortcut edges to preserve shortest path distances. In particular, this step removes all
nodes of degree one and two. Edge reduction then removes non-highway edges, i.e., edges that only
form a shortest path in a local area around a source or a target. For a more detailed description of the
locality principle we refer to [Sch08b].

Highway Node Routing

Highway node routing bases on a sequence of node sets V := V0 ⊇ V1 . . . ⊇ VL [SS07]. The
algorithm computes a hierarchy of overlay graphs for each node level l. The level-l overlay graph
consists of a node set Vl and an Edge setEl in such a way that it preserves all shortest path distances in
Vl in correspondence with the underlying GraphGl−1 = (Vl−1, El−1). A bidirectional query algorithm
takes advantage of the multi-level overlay graphs. As we will describe later in Section 3.4.2 for the
Contraction Hierarchies, which form a special case of the Highway Node Routing, the query can be
performed upwards in the hierarchy.

Contraction Hierarchies

Geisberger et al. introduced the Contraction Hierarchy method [GSSD08]. A Contraction Hierarchy
uses a single node order and contracts the nodes in this order. The algorithm selects the node order
through a priority queue, sorted by an estimate of how important it is to contract a node next. For
the query the CH splits the graph into two distinct graphs. We call these graphs the forward graph
G↑ := (V,E↑) with E↑ defined as: E↑ := {(u, v) ∈ E| u contracted before v } and the backward
graph G↓ := (V,E↓) with E↓ defined as: E↓ := {(u, v) ∈ E| u contracted after v }. The query
algorithm then uses a modified version of the bidirectional Dijkstra’s algorithm. We perform a forward
search in G↑ and a backward search in G↓. If, and only if, an s-t-path exists in the original graph,
then both search spaces will meet up at a node v that has the highest order of all nodes in an s-t-path.
For our algorithm we adopt this method with a significantly different contraction procedure. We will
discuss the algorithm of Contraction Hierarchies more thoroughly in Section 3.

Transit-Node Routing

Transit-Node Routing is currently the fastest of the available single-criteria speedup methods [BFSS07].
This algorithm selects a set of important (transit) nodes. For these, a distance table is computed. Fur-
thermore, the algorithm computes a distance table for all relevant connections between the remaining
nodes and the transit nodes. Since it turns out that only about ten such access connections per node
are needed, one can “almost” reduce the routing in large road networks to about 100 table lookups.
Interestingly, by this method the local queries, for which the shortest path does not touch any transit
nodes, become the difficult queries. A way of solving this problem is to introduce several layers of
transit nodes. For lower level transit nodes this approach need not store routes that touch higher level
transit nodes. This speedup-technique reduces routing times to a few microseconds. Since this tech-
nique utilizes a hierarchical method to calculate a good set of transit nodes, these exceptionally good
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query times come at the cost of preprocessing times an order of magnitude larger than the underlying
speedup-technique alone.

2.1.3 Combinations
SHARC

Combining shortcuts from contraction approaches and ArcFlags, Bauer and Delling introduced their
algorithm SHARC in 2008 [BD08]. It is a generalization of the two-level ArcFlag method presented
[MSS+06]. The preprocessing of this approach iteratively partitions the graph into regions, bypasses
unimportant nodes and removes arcs for which the algorithm has computed all flags. To the best of
our knowledge an adaption of the SHARC algorithm is the most successful work on multi-criteria
speed-up methods so far. However, the Pareto-SHARC only works if the number of different paths
between two arbitrary nodes is small [DW09]. This is the case if the edge weight functions are either
very similar or if we introduce additional restrictions on the shortest paths.

CALT

The CALT algorithm is a combination of the Contraction Hierarchy method and the ALT-algorithm
described above presented by Bauer et al. [BDS+08]. A more thourough discussion can also be found
in [Sch08a]. It uses a Contraction Hierarchy algorithm to compute a hierarchy up to a certain level.
The remaining overlay graph is called the core of the hierarchy. On this core Bauer computes a set of
landmarks and the respective distances for the – in comparison to the original graph – considerably
smaller overlay graph to use the the ALT-algorithm. In this thesis we will also make use of the ALT
algorithm on the core of our hierarchy. We will therefore adapt the ALT method to work with the
flexible objective function of our approach.

2.1.4 Time Dependent Routing
In addition to the single-criteria research the time dependent routing is a field of interest today. In
the time dependent case we also utilize a variable edge weight function. In the time dependent case
the real edge weight can only be deduced at the arrival time at the edge. This approach calculates
an appropriate weight corresponding to the arrival at the desired edge. This differs significantly from
our approach, since our edge weights do not depend on the actual traversal time of the edge. We
decide on a parameter in advance and get an edge weight function for the entire search. The time
dependent routing is especially useful to circumvent traffic jams on popular roads or for finding train
connections. A basic assumption for the time dependent routing algorithms is the FIFO property.
The FIFO property is also called the non-overtaking property, because it states that if an individual
A leaves a node u via an edge (u, v) before another individual B, B cannot arrive at node v before
A. Kaufman et al. proved that the shortest path problem in FIFO networks is polynomially solvable
[KS93]. If the FIFO property is not fulfilled and we do not allow waiting, according to Orda et al. the
problem becomes NP-hard [OR90].

In contrast to the single-criteria shortest path problem, much less research has been done on
speedup-techniques for time dependent route planning. Multiple algorithms have been adapted to
the time dependent case. To the best of our knowledge, the most successful adaptions use the Con-
traction Hierarchy algorithm or the SHARC algorithm [BGS08, Del09]

The results in terms of query times for SHARC and the time dependent Contraction Hierarchy are
roughly comparable. Still, the time dependent Contraction Hierarchy suffers from a very high amount
of preprocessing data. This results from the shortcuts being expensive in form of space consumption.



16 CHAPTER 2. INTRODUCTION

2.1.5 Multi Criteria Route Planning
So far multi-criteria route planning has not been a field of great interest. Among the approaches to the
multi-criteria route planning problem that we know of most focus on the task of finding all Pareto-
optimal paths. In this context a Pareto-optimal path is a Path that is not dominated by any other path.
In the Pareto-shortest-path problem we process edge weigts in the form of a vector (w1, . . . , wk). We
say a weight L dominates another weight L′ if ∀i ∈ [1, k] : wileqw

′
i and ∃i ∈ [1, k] : wi < w′i.

The straightforward approach to generate all paths is a generalization of Dijkstra’s algorithm
[Han79, Mar84, Möh99]. The generalization changes the label setting Dijkstra’s algorithm to a label
correcting algorithm. It turns out that a crucial problem for the multi-criteria algorithm is the number
of labels we assign to a given node. The more labels we create, the more nodes we have to reinsert
into the priority queue. It has been proven that the worst case number of labels can be exponential in
V , yielding impractical running times [Han79]. Hence, [Han79] presents an FPAS for the bi-criteria
shortest path problem.

To the best of our knowledge most bi-criteria algorithms presented so far use a special version
of the A* search. Unfortunately these algorithms only yield small speedup factors and are therefore
much less practical than the single-criteria algorithms of today. [RE09] shows an overview of some of
the bi-criteria methods used so far. Most of them still suffer from large amounts of preprocessing and
therefore only work on small input graphs. The most work has been performed on networks deriving
from time table information. In these networks Müller-Hannemann et al. observed that the number
of labels is often limited and therefore the brute-force approach for finding all Pareto-optimal paths is
often feasible [MW01]. Still, these special conditions are only given for a very distinct set of graphs.

The only advanced speedup-technique we know of to be modified for multi-criteria routing is the
SHARC algorithm. Delling managed to generate query times between 2 and 300 ms for inputs like
the European road network, depending on different restrictions which we will discuss later [Del09].
As this clearly shows, the quality of the Pareto-approach largely depends on the underlying weight
functions and the severe restrictions on the number of labels.

Even though the Pareto-optimal shortest path problem has attracted more interest in the past,
the parametric shortest path problem has been studied. Karp and Orlin presented one of the first
algorithms we know of to focus on the parametric shortest path problem [KO80]. They presented
two algorithms with respective running times of O(n3) and O(nm log(n)) for a modified shortest
path problem. For a graph G = (V,E) they select E ′ ⊆ E. For a constant edge weight w(e) and a
parameter p ∈ R, they define the weight of an edge e ∈ E ′ as w(e)−p. The weight of an edge e /∈ E ′
remains unchanged. In 1991 Young et al. improved the running times of Karp and Orlin’s algorithm
to O(nm+ n2 log(n)) with a Fibonacci-Heap [NY91].

Both of these algorithms follow the same principle that Ziegelmann also describes in his thesis
[Zie01]. But, in contrast to the cost function described above, Ziegelmann does not modify his edge
weights only for a subset of edges. He modulates his parametric weight function as w(e) := t+ p · c
with t, p, c ∈ [0,∞]. Starting at a shortest path tree T0 that only represents a shortest path tree for a
parameter value of zero, Ziegelmann calculates the maximal parameter p for which the tree T0 is still
a shortest path tree. For this Ziegelmann has to scan all non-tree edges. The tree T0 is then modified
to generate a shortest path tree T1 for the parameter p. With this method Ziegelmann manages to
generate running times of O(m ·

∑
v∈V dc(v)), with dc(v) denoting the distance from the source to the

node v in terms of the value c. Ziegelmann also argues that
∑

v∈V dc(v) ≤ n2C for C = maxe∈Ec(e),
with c(e) denoting the c value of the edge e. Therefore,F he manages to provide an algorithm for
finding all possible parametric shortest paths in O(mn2C). Still, none of the described algorithms
uses preprocessing to provide fast queries. Therefore, none of those seem feasible to provide the fast
and flexible queries we seek.
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2.2 Overview
This thesis will describe the first algorithm for providing fast and flexible queries on continental-sized
road networks using linear weight functions. The thesis is structured as follows: First, we will present
the basics needed to describe our algorithm. Section 3 will describe the data structures and algorithms
our algorithm bases on. The section describes the definitions of graphs and priority queues and will
give a short introduction to the shortest path problem. Following this, we will go on to describe a se-
lection of speedup-techniques that have been developed for single-criteria algorithms. A special focus
lies on the Contraction Hierarchy method presented by Geisberger et al., as we base our algorithm on
the CH [GSSD08]. Furthermore, we also utilize the ALT method on a core of the hierarchy provided
by our adapted CH. Therefore, we will give a more detailed discussion over these techniques here.

In Section 4 we will describe our contribution to the field of route planning. The section introduces
the augmented problem of flexible objective functions. We will describe the differences between the
classic single-criteria speedup-techniques and our new bi-criteria algorithm. Following an analysis of
the properties of linear weight term combinations, we will present the description of some algorithms
to modify the single-criteria methods presented in Section 3. We will describe how to adapt them
to make them perform on our flexible objective functions. In this context, we will also focus on the
differences to the algorithms based on Pareto-optimality that have been described recently. Further-
more, we will prove the correctness of our algorithm. In the comparison to other algorithms we will
also show that Pareto-SHARC as one of the best other algorithms to provide flexible queries is only a
heuristic.

In our experimental section in Section 5 we will present the results we get with our algorithm.
We will analyze the algorithm in term of performance and robustness and also compare our algorithm
more closely to the SHARC algorithm. To allow reproduction of our results, we will provide an
overview of our exact experimental settings. After a description of the settings, we will present our
main results.

In Section 6 we finally present the conclusion we drwe from our experiments. We also provide
some ideas for further improvement of our algorithm.

In the appendices we give some further information and provide a closer look at the data-structures
of our algorithm. The appendices contain an illustration of some of the query data-structures, as they
are most important for our algorithm. For this we will provide a small example graph to give an
overview of how we need to construct our search graph.
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Chapter 3

Preliminaries

This chapter introduces the basic concepts and algorithms used throughout this thesis. For a more
detailed discussion the reader may consult one of the many books available on the topic of algorithm
theory, as “Network Flows” by Ahuja et al. [AMO93] or “Datastructures and Algorithms” by Kurt
Mehldorn and Peter Sanders [KM08].

3.1 Graph Definitions
We define a graph G = (V,E) as a set of nodes or vertices V and a set of edges or arcs E ⊆ (V ×V ).
If (u, v) and (v, u) for u 6= v represent different edges, we call the graph directed, else undirected.
Usually we denote with n = |V | the number of nodes and with m = |E| the number of edges. The
reverse graph Ḡ = (V, Ē) we define by the identical set of nodes and all the edges of E reversed:
Ē = {(v, u)|(u, v) ∈ E}.

We might assign a weight function w : E 7→ R+ to the graph and thus make it a weighted graph.
Note that this is the basic way to make a graph weighted. Since one of our algorithms needs integer
values to function correctly, we will only use natural numbers for edge weights. Furthermore, we
restrict ourselves to an interval of possible parameters [0, pmax] to limit the amount of possible routes.
Therefore, we will actually assign a linear weight function w(e, p) : (E× [0, pmax]) 7→ N to the graph.

We define a path P := 〈n1, . . . , nk+1〉 as a sequence of edges e1 = (n1, n2), e2 = (n2, n3), . . . , ek =
(nk, nk+1). Note that two paths 〈s, . . . , t〉 and 〈s, . . . , t〉′ do not have to be identical. If we want to
describe an s-t-path that avoids a given node u, we write 〈s, . . . , t〉63u. We also might decide to ac-
tually give all nodes the paths uses. As a result we can define the weight of a path P at a parameter
p as w(P, p) =

∑k
i=1w(ei, p). In the single-criteria case, we will omit the p. We call the length of

the shortest path between two nodes u and v d(u, v, p) := min〈u,...,v〉)(w(〈u, . . . , v〉 , p) the distance
between u and v.

For a given graph G = (V,E) a graph G′ = (V ′, E ′) with V ′ ⊆ V forms an overlay graph if
∀(u, v) ∈ V ′ × V ′ : ∀p ∈ [0, pmax] : d′(u, v, p) = d(u, v, p) with d′(·) denoting the distance in G′ and
d(·) denoting the distance in G.

3.2 Priority Queues
A priority queue Q is a data structure designed to manage a set of elements. Each element is assigned
a key with an associated strict weak ordering. We usually call this key the priority p(q) for an element
q ∈ Q. A priority queue supports the following operations:

• insert – inserts an element into the priority queue

19
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• deleteMin – removes the element with the smallest priority from the queue and returns it

• decreaseKey – updates the priority of a node that already belongs to the priority queue. The
new value has to be smaller than the old value.

Since the priority queue introduces a large overhead, a lot of theoretical work has focused on how
to reduce the overhead of the priority queue operations.

With the use of advanced speedup-techniques the priority queue optimization has grown less im-
portant. Dominik Schultes argued that even simple and not tuned priority queues only induce a factor
of around two of overhead, compared to highly tuned priority queues [Sch08b]. He bases this on the
low number of priority queue accesses we need with todays fast algorithms. Therefore, it does not
pay of anymore to optimize the decrease key operation, since they only occur seldom in sparse road
networks.

3.3 Single-Criteria Shortest Path Problem
For a given graph G = (V,E) and two nodes s, t of the single-criteria shortest path problem, the goal
is to find d(s, t). A well-known algorithm for finding a shortest path is Dijkstra’s algorithm; pseudo-
code for this algorithm is given with Algorithm 1. The algorithm iteratively computes the distance
from a given node s to all other nodes v ∈ V . During a Dijkstra search, we distinguish between
three states a node can take. We call a node either unreached, reached, or settled. At the beginning,
all nodes besides the source-node s are unreached, and their respective distances are set to infinity
(d(v) =∞, ∀v ∈ V/{s}). We set s reached with d(s) = 0. The algorithm now uses a priority queue
with a tentative distance for the priority key. In the beginning we use s as an initial insert into the
priority queue. In each step we remove the node u with the lowest tentative distance and the node
becomes settled. The distance of the node is now provably the final distance and will not be subject
to change anymore. An illustration of the algorithm is given in Figure 3.1. To complete a single step
of the algorithm, we look at all incident edges (u, v) ∈ E. If we have neither reached nor settled the
node v, we insert it into the queue. We set its respective key to d(u) + w(u, v). If we have already
reached v and d(u) + w(u, v) < d(v), we decrease the key of v.

It is important to realize that Dijkstra’s algorithm will only produce a correct result for an input
graph with w(e) ≥ 0. Especially if the graph contains a reachable negative loop, the algorithm will
not terminate. The algorithm performs in O(|E|+ |V | · log |V |) when we use a Fibonacci heap.

We can easily modify the algorithm to grow a shortest path tree. To do so, we just keep a parent
pointer, which we update whenever we perform an insert or update operation. With these pointers we
can follow a path backwards from the desired target to the source. We make no statement about the
parents of unreached nodes.

All nodes reached during the search form the so-called search space. One can imagine the search
space as a sphere that grows around the given source. The settled nodes are located inside the sphere,
the reached nodes form the surface. This analogy shows that we can reduce the search overhead with a
bidirectional search from the source and the target. When we use this so-called bidirectional Dijkstra
we only have to continue the search until the search spheres intersect. We can stop a bidirectional
search the moment we settle a node that we have already settled in the search in the other direction.
It is not sufficient to stop the search the moment we have reached a node in both directions, since
the distance may still be improved. We illustrate this incident in Figure 3.2. The node path over the
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Algorithm 1: Dijkstra’s algorithm
input : A graph G = (V,E), a source s, a target t
output : The shortest distance from s to t

for v ∈ V / {s} do1

d(v) =∞2

d(s) = 0; min = ⊥3

insert s in Q4

while !Q.empty() and min 6= t do5

min = minimal element in Q6

delete minimal element from Q7

for e = (min,v) ∈ E do8

if d(min) + w(min, v) < d(v) then9

d(v) = d(min) + w(min, v)10

if v /∈ Q then11

insert v in Q12

else13

update d(v) in Q14

return d(t)15

Figure 3.1: Illustration of the Dijkstra algorithm. Green nodes are settled, yellow nodes are reached.
The red nodes are unreached. The label of a node shows its (tentative) distance.
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only node yet reached by both searches obviously does not form a shortest path from the source to
the target. Still, it suffices to stop the search the moment we settle a node in both search directions.

Figure 3.2: Illustration of a bidirectional Dijkstra’s algorithm. Green nodes are settled, yellow nodes
are reached. The red nodes are unreached. The label of a node shows its (tentative) distance.

3.3.1 Pareto-Paths

Let the edge weights consist of vectors L = (w1 . . . , wk) with wi ∈ R+
0 . As we mentioned in Sec-

tion 2.1.5 , we say a weight L dominates another weight L′ if ∀i ∈ [1, k] : wileqw
′
i and ∃i ∈ [1, k] :

wi < w′i. We define the sum of two weight vectors by L ⊕ L′ = (w1 + w′1, . . . , wk + w′k). In a
Pareto-optimal shortest path search, we are interested in the set of all non-dominated path lengths.
We call this set the Pareto-set ρ(s, t).

3.4 Speedup-Techniques

3.4.1 ALT

The ALT algorithm is a modification of the A* search, which has it origins in artificial intelligence
studies [MSS+06].

A* search

The A* search improves Dijkstra’s algorithm by adding a sense of direction. To an arbitrary graph
G = (V,E) we add a potential function π : V 7→ R. We can now define a reduced edge-weight for an
edge e = (u, v) by wπ(u, v) = w(u, v) +π(v)−π(u). We call a potential function π(·) feasible if the
following condition holds: wπ(e) ≥ 0|∀e ∈ E. For a path P = 〈n1, . . . , nk+1〉, the potential function
only changes its weight wπ(P ) :=

∑k
i=1wπ(ni, ni+1) by the constant value of π(n1) − π(nk+1). If

π(t) ≤ 0 and wπ is feasible, the potential π(u) forms a lower bound on the distance d(u, t). Figure 3.3
illustrates a graph with modified edge weights as described here. In an A*-Dijkstra algorithm the edge
weights remain unchanged. Thus, we can use a changed priority key k(u) = d(s, u) + π(u) in the
priority queue. Therefore, we prefer nodes that have a shorter approximated distance to target. This
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Figure 3.3: Illustration of a Dijkstra Algorithm with a potential function applied. The potential of the
nodes is indicated beneath them. The reduced edge weights are shown under the original weights.
Reached nodes are yellow, settled nodes green.

is obviously equivalent to running a Dijkstra’s algorithm on a graph with reduced edge weights, since
d(s, u) + π(u)− (d(s, u) + π(u)− π(s)) = π(s), which is a constant value.

When combining the A* search with the bidirectional Dijkstra, several issues have to be addressed.
We call two potential functions πf and πb consistent if πf + πb = const.

For a bidirectional A* search we distinguish between two different approaches, the symmetric
approach presented by Pohl [Poh71] and the consistent approach proposed by Ikeda et al. [IHI+94]

In the case of two non-consistent potential functions, we have to use a more complex stopping
criterion. It is not sufficient to stop the search the moment we have settled a node in both directions,
since we use different weight functions.

Symmetric Approach

When we use two non-consistent potential functions, we cannot stop the search the moment the
searches have settled a node in both directions [Poh71]. Every time the search spaces meet at a node
u we compute a tentative shortest path. If no shorter path has been encountered so far, the path
becomes the current candidate. We stop the search when either the priority queues are empty or if we
are about to settle a node that has a larger priority key than the stored tentative distance. We can prune
the search at all nodes v, which we have already settled in the other direction. Since we have already
found a shortest path from v to the target, we can gain no further information when we continue the
search beyond v. If we use the symmetric approach, the search spaces normally meet faster. But due
to the stopping criterion, the search has to continue for a long time after the search spaces have met.

Consistent Approach

With this approach we construct a consistent potential function out of two feasible potential functions
πf and πb [IHI+94]. We define πfc = 1

2
· (πf (u) − πb(u)) and πbc = −πfc = 1

2
· (πb(u) − πf (u)).

To achieve better lower bounds we can add 1
2
πb(t) and 1

2
πf (s) to the forward and backward potential

respectively. This does not compromise the consistency or the feasibility, since we only add a constant
value. The consistent approach potential function is inferior to the direct potential functions that we
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Figure 3.4: Illustration of the relations that are used during the computation of the lower bounds using
proxy nodes.

use in the symmetric approach in terms of the lower bounds it provides. But due to the simpler
stopping criterion we often have to settle less nodes, and thus the consistent approach often performs
faster.

ALT algorithm

The ALT algorithm describes a way of choosing the potential function for an A* search and was
proposed by Goldberg and Harrelson [GH05]. The algorithm uses a small set of nodes and the triangle
inequality to calculate feasible lower bounds on d(u, v)|u, v ∈ V . We refer to this set of nodes as
landmarks. In a preprocessing step we choose a subset of the nodes as landmarks. We also compute
the distances from the landmarks to all other nodes and vice versa. Doing so, we can calculate the
potentials with simple table lookups. Let d−→

L
(u) denote the distance from u to a given landmark L

and d←−
L

(u) the distance from L to u then the triangle inequality yields d(u, t) ≥ d−→
L

(u) − d−→
L

(t)
and d(u, t) ≥ d←−

L
(t) − d←−

L
(u). Goldberg and Harrelson introduced a method of how to improve the

result using maxL(d−→
L

(u), d←−
L

(u)) as potential function [GH05]. To avoid the overhead of using all
landmarks, Goldberg et al. argue that one may use only a subset of them at the start of the algorithm
and add more landmarks as necessary [GW05]. The choice of the landmark set is crucial for the
performance of the algorithm. Viable approaches include the avoid algorithm and the maxCover
algorithm. Usually the maxCover algorithm provides better results but has longer preprocessing times
than the avoid algorithm. For a more detailed discussion on the selection methods we refer to [GW05].

Core ALT

For the use on a hierarchy core, we have to adapt the ALT algorithm, since the source and the target
of a search may not belong to the core. Since we only perform the ALT preprocessing on the core, we
might not know the distances d−→

L
(t), d←−

L
(t) and d−→

L
(s), d←−

L
(s) respectively. To deal with this situation,

we introduce so-called proxy nodes as already defined by Bauer et al. [BDS+08]. We define a proxy
node s′ ∈ VC of a node s ∈ V/VC as the node with the minimal distance from s. There are two
possible candidates to choose as a proxy node to a node s. The node s′ that minimizes d(s, s′) or the
node s′ that minimizes d(s′, s). As we will show in the following, it is sufficient to only know d(s′, s)
to compute a lower bound on the distance d(s, v).

As illustrated in Figure 3.4(a) we can find the following triangle equalitys. If we look at the nodes
s′, s and v the triangle inequality yields d(s′, v) ≤ d(s′, s) + d(s, v). With s, v and L respectively, the
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Figure 3.5: Illustration of the relations that are used during the computation of the lower bounds using
proxy nodes.

triangle inequality yields d−→
L

(s′) ≤ d(s′, v) + d−→
L

(v). When we combine this two inequalities we get
d(s, v) ≥ d−→

L
(s′)− d−→

L
(v)− d(s, s′). Analogously we can show that

d(s, v) ≥ d←−
L

(v)− d←−
L

(s′)− d(s′, s) holds.
In the same matter we can deduce lower bounds for the distances d(v, t). Figure 3.5 illustrates the

same relations for the target as illustrated in Figure 3.4 for the source.
The resulting inequalities are: d(v, t) ≥ d−→

L
(v)−d−→

L
(t′)−d(t, t′) and d(v, t) ≥ d−→

L
(t′)−d−→

L
(u)−

d(t, t′)

To use these inequality’s as a potential function we need to know the distances d(s′, s) and d(t, t′).
They can either be precomputed and stored for every node, or can be calculated on the fly. In a lot
of hierarchies only a few steps are needed to reach the core. Therefore, we can easily compute the
needed distances on the fly. The overhead introduced by the proxy searches in the reverse graph is
very small compared to the work that has to be done in the core.

Figure 3.6 illustrates the CALT algorithm. In the figure the Landmarks themselves are not shown
for simplicity reasons. We represent the two phases of the search with differently colored nodes. We
continue the hierarchical part until the nodes circled in bold, called entry points, have all been found.
From this point on we perform a bidirectional ALT algorithm using only the nodes in the core.

3.4.2 Contraction Hierarchies

Given a graph G = (V,E), a Contraction Hierarchy is a special case of Highway Node Routing with
|V | levels as shown by Geisberger [Gei08]. For the contraction the nodes are organized according to
their respective levels. In each step, as illustrated in a simplified version in Algorithm 2, we choose
the next node x according to this order and contract it. In the contraction process we inspect all paths
P = 〈u, x, v〉. If a path P̃ exists that does not contain x with w(P ) ≥ w(P̃ ), we do not have to do
anything. We call such a path a witness. If the path P̃ does not exist, we have to insert a so-called
shortcut to preserve the shortest path distances.

One important part of this process is the order in which the nodes are chosen for contraction.
For example, on long paths the order can result in a linear search time or a logarithmic query. The
number of created shortcuts also depends on the contraction order. To determine the order in which
we contract the nodes, a lot of different criteria can be used.
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Figure 3.6: Illustration of a core search. The core-entry points are drawn in bold, the meeting point of
the searches is labeled m. The source and target nodes as well as the respective proxy nodes are also
labeled.

Algorithm 2: Simplified Contraction Hierarchies
input : A graph G = (V,E)
output : A graph G′ = (V,E ′)

while ∃ uncontracted node do1

v = currently most promising choice2

for (u, v) ∈ E with u not contracted do3

for (v, w) ∈ E with w not contracted do4

if (u, v, w) “may” be the only shortest path from u to w then5

E := E ∪ (u,w), c(u,w) := c(u, v) + c(v, w)6

return G7



3.4. SPEEDUP-TECHNIQUES 27

Node Ordering

In the approach presented by Geisberger et al., the order is calculated during the contraction process
itself [GSSD08]. A priority queue is used in their algorithm to heuristically choose a node to contract.
This queue orders the nodes according to a linear combination of several terms that will change over
the contraction process. Since every contraction can influence the remaining graph, a lot of priority
terms have to be updated. For this the following techniques can be used.

• periodic updates: periodically all priorities are reevaluated and the priority queue is rebuilt.

• neighbor updates: whenever a node x is contracted, the priority terms of all its neighbors are
updated. This is a fair approximation of the direct impact a node contraction can have. Note
that more nodes besides the direct neighbors can be affected by the contraction of a node.

• lazy updates: whenever a node x is contracted, its priority key is recalculated. If it does not
exceed the priority key of the second largest element x′, we contract x. Otherwise, the nodes
priority is updated and the selection process reiterated. If we experience more than a certain
amount of reiterations in a period of a thousand contractions, the lazy update mechanism will
trigger a complete queue update. The number of lazy update iterations serves as an approxima-
tion for the actuality of the remaining node priorities.

For the actual node order Geisberger et al. proposed a wide variety of terms to classify the “im-
portance” of a given node. In the following we want to shortly discuss the terms we also use for our
algorithm. For a more detailed discussion of the subject we refer to [GSSD08].

Edge Difference: We calculate the edge difference using the searches that are used to find witness
paths. This value presents the change in the number of edges for the resulting overlay graph during
the contraction of a node v. Arguably this is one of the most important terms for the priority key since
the number of edges has to be kept small.

Uniformity: Geisberger et al. showed that focusing on small regions will lead to more linear
hierarchies where queries follow long paths. They also presented two possible approaches to more
uniformly contract nodes all over the graph:

• Deleted Neighbors: The deleted neighbors approach counts the number of already contracted
neighbors. The term deleted stems from the priority queue approach, where a contracted node
has to be deleted from the priority queue as the node with the minimal key. If a node has a lot
of already contracted neighbors, including nodes reached over shortcuts, it will be contracted
late. We can update this parameter during the contraction by modifying the counters for all
neighbors.

• Voronoi Regions: In the overlay graph containing only the non-contracted nodes, the Voronoi-
Region R(v) is defined as the set of nodes in the input graph that is closer to v than to any
other node in the overlay graph. Geisberger et al. propose to use the square root of the size of
the Voronoi-Region as a term for the priority queue key. Geisberger et al. showed that under
certain conditions only O(n · log n) steps of the Dijkstra algorithm are necessary to compute
the Voronoi-Regions during the contraction process, thus making them reasonably efficient.
Since the regions can only grow, this term does not render the lazy update process, as described
above, incorrect. In the parametric shortest path problem we use the parameter 0 to compute
the Voronoi regions.

• Shortcut Original Edges Count:The term of the number of original edges a shortcut represents
is another possible node ordering term. It helps to keep a balance in the length of the shortcuts.
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Figure 3.7: Illustration of the witness search problem and the two possible situations.

For the node ordering we use the square root of the number of original edges. In addition to
the simple count of the number of edges we also utilize a further term involving the number of
original edges a shortcut represents. We calculate for every needed shortcut the quadratic mean
between the number of edges of the two edges a shortcut represents. The Shortcut Distance
Mean favors more balanced shortcuts.

• Edges Added and Edges Removed: Geisberger proposed the edge difference as a node ordering
term. We actually split this term into two terms. The edges added and the edges removed.
During the contraction of a node, all edges from and to the respective node are removed from
the graph. We call those the removed edges. The edges we add during the witness searches for
all necessary paths form the added edges. If we weight both terms equally, this results in the
edge difference, as we subtract the value of the deleted edges from our priority term.

• Search Space Size: A further criterion is the size of the search space. With this term we may
choose to favor nodes in less dense areas of the graph since the search space will contain more
edges in dense areas.

Let G = (V,E ′) be the overlay graph for the current contraction step. Following the node order
determined by the priority queue, we individually contract each node y. During the contraction of a
node y we look at every pair of nodes x, z with (x, y) ∈ E ′ and (y, z) ∈ E ′. For each pair we perform
a Dijkstra’s algorithm, restricted onto a local area around the node x, omitting the node y in the search.
This situation is illustrated in Figure 3.7(a). If we cannot find a witness path as described above for
the path 〈x, y, z〉, we add a shortcut edge to the graph. This shortcut represents the path over y. We
illustrate this situation in Figure 3.7(b). We can then omit the incoming edges of y, since we insert a
shortcut for every pair of edges of y that may be part of a shortest path. Finally, Figure 3.7(c) depicts
the situation with an existing witness path. In contrast to the situation depicted in Figure 3.7(b), we do
not have to insert the shortcut edge. The witness searches are therefore essential to keep the number of
edges for the overlay graph small. If we do not search for witnesses, the graph will converge against a
complete graph. Note that, due to the limitation of the witness-search, we may insert some shortcuts
even though another shortest path exists. This will not affect the correctness, since we only represent
an unneeded or a parallel path.
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Query

To describe the query of a Contraction Hierarchy, we have to make some definitions first. Let L(·)
denote the level of the node in the Contraction Hierarchy. We divide the graph G = (V,E) into a
forward graph G↑ := (V,E↑) with E↑ defined as: E↑ := {(u, v) ∈ E|L(u) < L(v)} and a backward
graph G↓ := (V,E↓) with E↓ defined as: E↓ := {(u, v) ∈ E|L(u) > L(v)}. In the Contraction
Hierarchy query we use a modified version of the bidirectional Dijkstra’s algorithm. It consists of a
forward search in G↑ and a backward search in G↓. [GSSD08] and [Sch08b] contain a proof that for
an arbitrary shortest path P = 〈s, . . . , t〉 a Path P ′ exists in the contracted hierarchy and the searches
in G↑ and G↓ will meet up at node u ∈ P ′ with L(u) = max{L(v)|v ∈ P ′}.
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Chapter 4

Flexible Objective Functions for Contraction
Hierarchies

A lot of work in multi-criteria routing has been done regarding Pareto-optimality. In contrast to the
Pareto-approach, which focuses on finding all possible non-dominated routes between a source and a
target, we try to explore alternative methods to add flexibility to the problem of finding shortest paths.
For our multi-criteria Contraction Hierarchy, in short MCCH, we try to modulate the possible choices
with linear functions. We chose to concentrate on a combination of two weight terms. If we use t1
and t2 to denote the weight terms we can combine these terms in two ways to gain a weight function
w(p), where p specifies a selectable parameter. The first method, which we already described in the
preliminaries, is given by w1(p) := t1 + p · t2. In this case we can choose p ∈ R+

0 or p ∈ N0. Another
possibility would be to combine the terms in the following way: w2(p) := (1 − p) · t1 + p · t2, for
0 ≤ p ≤ 1, p ∈ R. In this work we chose to use the first approach with the weight function w1,
but we can easily reduce the second weight function to w2(p) = t1 + p · (t2 − t1), which forms a
similar weight function compared to the weight function we chose. By modulating the edge-weights
as a linear function, we will show that we can provide fast and flexible routing for even continental
sized route networks. To be more exact: We define our weight function to consist of two weight
terms, which we will refer to by τ and κ. For the parameters we choose a distinct parameter interval
[0, . . . , pmax] and pmax ∈ N0. Therefore, we define our weight function as w(p) := τ + p · κ for
all p ∈ [0, . . . , pmax]. We will describe how to calculate the used weight terms in the experimental
section.

4.1 The Multi Criteria Contraction Hierarchy Search Space
In contrast to a normal Dijkstra’s algorithm we have several issues that need to be addressed. Since we
utilize the Contraction Hierarchy method for our approach, we have to modify the node ordering and
the contraction to suit our enhanced needs. Especially during the contraction, the witness searches
need adjustment. Instead of a single shortest path we have to find a set of paths, comparable to the
Pareto-set so that for every parameter p an alternative route exists. Thus, a single Dijkstra’s algorithm
will not suffice as a witness search. To further discuss this, we have to make a few observations first.
Obviously the weight of a path P will always be a linear function, as it is the sum of linear functions.
In a Cartesian coordinate system, let the x-axis represent the parameter values and the y-axis represent
the weight of a path P at the parameter p: If we depict the weight function d(s, t, p) for a fixed source
s and target t with ds,t(p), we can show that ds,t(p) is concave. A graphical illustration of multiple
weight functions and the resulting ds,t(p) can be found in Figure 4.1(a).
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Figure 4.1: Illustration for Lemma 4.1

Lemma 4.1 The function ds,t(p) is concave in p.

Proof. We will prove this by showing that the area under ds,t(p) is convex. Let us assume that the
area under ds,t(p) is not convex. In that case we can find two distinct points a and b with a = (pa, wa),
b = (pb, wb) and wa ≤ ds,t(pa)∧wb ≤ ds,t(pb), W.L.O.G. pa < pb and we can find a 0 ≤ t ≤ 1, t ∈ R
with c := (pc, wc) = (a+ t · (b− a)) and wc > ds,t(pc).

Thus, we can find a path Pw = 〈s, . . . , t〉 with w(Pw, pc) < wc, as ds,t(·) forms the minimum over
all paths between s and t. This path Pw can be chosen as the path with the minimal weight at pc over
all paths.

Since wa ≤ ds,t(pa) and wb ≤ ds,t(pb) hold – as ds,t(p) is the minimum over all paths from s to t
including Pw – wa ≤ w(Pw, pa) and wb ≤ w(Pw, pb) hold. Therefore, we have exactly two common
points between w(Pw, p) and (a + p · (b − a) for p ∈ [pa, pb]. One of these points is located in the
interval [pa, pc) and the other is located in the interval (pc, pb]. In those intervals the common point
is unique, since we compare to straight lines that fulfill the ≤-relation at a and b and the >-relation
at pc respectively. We depict this situation in Figure 4.1(b). Therefore, we have exactly two distinct
common points between two straight lines. Since there can either be no, one or an infinite number of
common points between two straight lines, the point c cannot exist. Therefore, we have proven ds,t(p)
is concave. �

4.2 Construction
We can compare the construction part of a multi-criteria Contraction Hierarchy to the single-criteria
Contraction Hierarchies (CH) introduced by Geisberger et al. [GSSD08]. We select a total order over
all nodes, and contract all nodes in this order. First we will discuss the node ordering process. After
this we will focus on the contraction process and introduce some approaches to realize hierarchies of
huge inputs as the European road network.

4.2.1 Node Ordering
As shown by Geisberger et al., a single-criteria CH is very sensitive to the underlying node order
[GSSD08]. In our approach we have to find a node order that will represent all parameters in the
interval [0, pmax]. For small parameter values the time metric has the biggest influence on the shortest
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paths. Along with the parameter we allow to gradually increase the amount of cost that we take into
account. Therefore, we chose a more general node order than the order proposed by Geisberger et
al., which only focuses on single-criteria hierarchies [GSSD08]. We suspect a node order that bases
mostly on uniformity, as we described in the preliminaries, to deliver the best possible results. We
chose to concentrate on the priority terms added shortcuts, deleted neighbors, the edges removed,
the size of the search space, the shortcut original edges count, the shortcut distance mean and the
Voronoi regions. For the contraction process we choose the factors for added shortcuts and deleted
neighbors 150, the edges deleted 40, the search space 80, the shortcut original edges count and the
shortcut distance mean 10 the Voronoi regions 50. As we will discuss later, we could not find a single
node order, which was general enough to represent all parameters in a good way. We will discuss this
problem more closely in Section 4.3.1.

4.2.2 Lazy updates
As Geisberger et al. already discussed, the priority terms for the node order change during the con-
traction [GSSD08]. Whenever we contract a node, we update the priority terms of all of its direct
neighbors. Still, with this method we do not reach all nodes with this method that might be affected.
We therefore also perform lazy updates. Every time we remove the node with the currently minimal
key from the priority queue, we perform a simulated contraction to calculate the current nodes prior-
ity. If the node remains the one with the highest priority we continue with the current contraction. If
the node becomes less important than the following node, we reinsert it into the priority queue and
continue with the next node in the same matter. Whenever we perform more than a certain number of
lazy updates within a given period, we perform an update of the priority terms for the whole priority
queue.

4.2.3 Contraction
In this section we will focus on the details of the contraction process, especially on how we locate
witness paths. After this we will show how to improve the performance of the algorithm and how to
deal with the situation of a multi-criteria Contraction Hierarchy.

As we already discussed earlier, we search for witness paths during the contraction. A witness
path is an alternative route that allows us to omit a shortcut. In the single-criteria case we need only a
single path as a witness. In the multi-criteria case a single path might not suffice.

A simple implementation of the witness searches could be to perform a single-criteria witness
search for every parameter p ∈ [0, pmax], which is infeasible for large |[0, pmax]|. We could also
perform a Pareto-search. But as we already discussed in Section 4.3, the number of labels might get
to large. Instead we do something more tailored to our objective function.

As we observed in Lemma 4.1, the minimum over all shortest paths from a source to a target forms
a concave function. This observation implies another observation.

Lemma 4.2 Let 〈x, y, z〉 be a possible shortcut. The interval [L,U ] can be partitioned into three,
possibly empty partitions [L,L′], [L′ + 1, U ′ − 1] and [U ′, U ] with L′, U ′ ∈ N and the following three
properties:
(a) If [L,L′] is not empty, then there exists a single witness path for all p ∈ [L,L′]. (Figure 4.2(a), 4.2(b))
(b) If [U ′, U ] is not empty, then there exists a single witness path for all p ∈ [U ′, U ]. (Figure 4.2(c), 4.2(d))
(c) If [L′ + 1, U ′ − 1] is not empty, then for all values of p in it, there exists no witness path for all
p ∈ [L′ + 1, U ′ − 1] (Figure 4.2(g), 4.2(h))

This lemma implies that two paths will suffice to decide on the size of the necessety interval
of a shortcut. We depict all important possibilities in Figure 4.2. Lemma 4.2 also implies that we
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can constrain necessary shortcuts to small parameter intervals on which they are needed. Therefore,
we add a necessity interval [L′ + 1, U ′ − 1] to all edges, indicating for which parameter values the
shortcut is necessary. Edges of the original graph are necessary for the whole parameter interval
[0, pmax]. These edges can also be restricted with interval reduction, when we find a path during our
search that is shorter for some parameters p. During the contraction of the path 〈x, y, z〉 with (x, z)
necessary on the interval [Lx, Ux] and (y, z) necessary on the interval [Ly, Uy] we only have to search
for witnesses on [Lx, Ux]∩ [Lz, Uz]. We observed that the limitation to the minimal necessity interval
yielded a much better performance compared to the unconstrained parameter intervals.

Proof ( of Lemma 4.2 ). Let w̃(p) := w(〈x, y, z〉 , p) be the weight function of the possible shortcut.
We select a parameter Lmax and a parameter Umin as follows:

Lmax := max
{
l|∃P = 〈x, . . . , z〉 63y : w(P, l) ≤ w̃(l) ∧ w(P, l + 1) > w̃(l + 1)

}
,

Umin := min
{
u|∃P = 〈x, . . . , z〉63y : w(P, u) ≤ w̃(u) ∧ w(P, u− 1) > w̃(u− 1)

}
.

The definition of Lmax gives that we can find a single witness path for every p ∈ [L,Lmax]. This
holds, as we examine linear functions. Therefore, ∃P = 〈x, . . . , z〉63y : ∀p ∈ [L,Lmax] : w(P, p) ≤
w̃(p). In the same matter the definition of Umin gives that we can find a single witness path for every
p ∈ [Umin, U ].

First, let us assume that Lmax ≥ U . This is equivalent to Umin ≤ L. In this case L′ = U . This
results in [U ′, U ] = ∅ and [L′ + 1, U ′ − 1] = ∅.

Now let us assume that Lmax < U and Lmax + 1 ≥ Umin. If Lmax < U , but Lmax + 1 ≥ Umin,
the two paths that provided Lmax and Umin cover the whole parameter interval and therefore form a
multi-criteria witness. In Figure 4.2(e) these paths would be represented by the paths 〈x, b, z〉 and
〈x, c, z〉. Therefore, we can choose L′ = Lmax and U ′ = Lmax + 1 with [L′ + 1, U ′ − 1] = ∅.

If neither is the case, we cannot find a witness for any parameter p ∈ [Lmax + 1, Umin− 1]. Let us
assume we could find a path P̃ = 〈x, . . . , z〉 63y with w(P̃ , p′) ≤ w̃(p′) and p′ ∈ [Lmax + 1, Umin − 1].
Since p′ ∈ [Lmax + 1, Umin− 1], neither w(P̃ , L) ≤ w̃(L) nor w(P̃ , U) ≤ w̃(U) can hold. Otherwise
the path P̃ would conflict with the choice of Lmax and Umin. Therefore, we have exactly two common
points. One in the parameter interval [L, p′ − 1] and one in the interval [p′ + 1, U ]. Since we deal
with linear function of degree one, we cannot have exactly two common points. As a result of this
antagonism the path P̃ cannot exist. Therefore, we cannot find a witness for any parameter p ∈
[Lmax + 1, Umin − 1]. Thus, we can select L′ = Lmax and U ′ = Umin. �

Note that we do not need to find the best possible paths for all parameters p. Figure 4.3(a) illus-
trates a possible contraction situation. Possible witnesses for the path 〈u, v, w〉 are the paths 〈u, x, w〉
and 〈u, a, b, c, w〉. Let us assume a parameter interval [0, 2]. Neither of the possible witness paths is
smaller than the other on the whole parameter interval. Still, both paths are a valid witness paths for
the path 〈u, v, w〉, as can be seen in Figure 4.3(b).

This observation allows us to propose a parameter increasing witness search to find a multi-criteria
witness. If we can find a witness for every parameter p, the parameter increasing witness search will
suffice to finde a witness for every p. If on the other hand we cannot find a witness, we want to
restrict the necessetiy interval of the inserted edge as much as possible. Therefore, we also introduce
a parameter decreasing witness search. The combination of those algorithms allows us to restrict the
necessity interval at both ends. We expect this algorithm to work reasonably well, since Lemma 4.2
suggests that a few iterations of Dijkstra’s algorithm may suffice on average to find a witness.
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Algorithm 3: Parameter Increasing Witness Search
input : source x, target z, avoiding node y, an interval [L,U ]
output : a parameter p so that we can find an MCCH witness on [L, p]

p = L1

while p smaller or equal to U do2

//Calculate the shortest path 〈x, . . . , z〉63y for parameter p3

P = PerformDijkstra(x,z,y, p)4

if w(P, p) > w((x,y,z),p) then5

return p− 16

p′ = maxk with w(P, k) ≤ w((x,y,z),k)7

p = p′ + 18

return U9

Algorithm 4: Parameter Decreasing Witness Search
input : source x, target z, avoiding node y, an interval [L,U ]
output : a parameter p so that we can find an MCCH witness on [p, U ]

p = U1

while p greater or equal to L do2

//Calculate the shortest path 〈x, . . . , z〉63y for parameter p3

P = PerformDijkstra(x,z,y, p)4

if w(P, p) > w((x,y,z),p) then5

return p+ 16

p′ = mink with w(P, k) ≤ w((x,y,z),k)7

p = p′ − 18

return L9
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Algorithm 5: Witness Search
input : source x, target z, avoiding node y, an interval [L,U ]
output : the minimal interval [L′ + 1, U ′ − 1] for which a shortcut is necessary

L′ = ParameterIncreasingWitnessSearch( x,z,y,[L,U ] )1

if L′ ≥ U then2

return ∅3

//At his point we know that [L′ + 1, U ′ − 1] 6= ∅4

U ′ = ParameterDecreasingWitnessSearch( x,z,y,[L,U ] )5

return [L′ + 1, U ′ − 1]6

Lemma 4.3 If a witness exists for every p ∈ [L,U ], Algorithm 3 suffices to find a witness for the
complete interval [L,U ]. If for some p ∈ [L,U ] no witness exists, Algorithm 3 and Algorithm 4
can be used to calculate the minimal necessity interval [L′ + 1, U ′ − 1] as described in Lemma 4.2.
Therefore, Algorithm 5 will find the minimal necessety interval for a possible shortcut.

Proof. If the interval [L′ + 1, U ′ − 1] is empty following condition holds: ∀p̃ ∈ [L,U ] : ∃P =
〈x, . . . , z〉63y : w(P, p̃) ≤ w(〈x, y, z〉 , p̃). Therefore, Algorithm 3 will find a suitable P withw(P, p) ≤
w(〈x, y, z〉 , p) in every iteration. Since the weight functions are linear functions, the calculated path
P is a valid witness for every p̃ ∈ [p, p′]. Therefore, we only have to search for a further witness
starting at p = p′ + 1. Since Algorithm 3 increases p by at least one in every step, the algorithm
terminates after at most |[L,U ]| steps.

If the interval [L′ + 1, U ′ − 1] is not empty, ∀p ∈ [L,L′] : ∃P = 〈x, . . . , z〉63y : w(P, p) ≤
w(〈x, y, z〉 , p) holds. As we argued above, Algorithm 3 will perform at most |[L,L′]| steps to cal-
culate the maximal possible L′. Furthermore, ∀p ∈ [U ′, U ] : ∃P = 〈x, . . . , z〉63y : w(P, p) ≤
w(〈x, y, z〉 , p) holds. Therefore, the parameter decreasing witness search will also terminate after
|[U ′, U ]| steps and find the minmal possible U ′. Since Lemma 4.2 shows that ∀p ∈ [L′ + 1, U ′ − 1] :
∀P = 〈x, . . . , z〉63y : w(P, p) > w(〈x, y, z〉 , p), Algorithm 3 and Algorithm 4 find the maximal
possible L′ and minimal possible U ′. �

Note that these algorithms require discrete parameter intervals. The algorithms base on the pos-
sibility to select a next parameter value. This can only be done for discrete parameter values. If we
are only interested in finding witnesses for all parameter values p, Algorithm 3 would suffice. If we
want to constrain shortcuts to the smallest possible interval, we also have to perform a parameter de-
creasing witness search starting at U . This is described in Algorithm 4. The restriction to the minimal
necessity interval, as we do with Algorithm 5, has proven to be very useful. It helps to speed up
the contraction process as well as the query in the contracted graphs, as we only focus on edges that
are necessary for a chosen parameter p. During the contraction we only perform a witness search if
the intersection of the respective necessity intervals is non-empty. If the necessity intervals do not
intersect, there will never be a query that has to use both edges. Therefore, we do not have to search
for a witness.

We use a Dijkstra algorithm for our local search with some minor modifications. We perform a
one hop backwards search in combination with hop limits. The one hop backwards search allows us
to prune the search on nodes whose distance, combined with the minimal distance from the one hop
backward search, cannot provide a shorter path then we have already encountered. Also, we manage
to reduce the hop limit for the forward search. To keep the processing time short enough we limit the
search to a certain number of hops. For hop limits we select the staged hop limits Geisberger et al.
described [GSSD08]. A detailed discussion on the influence of hop-limits for the local searches can
be found in [Gei08].
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To further reduce the amount of possible necessary edges, we perform a parameter interval reduc-
tion. Whenever we add a shortcut to the graph, we check if the new edge covers an existing edge on
some part of the existing edges parameter interval. In this context we do not have to consider the new
edges parameter interval, as the constraints induce an additional path with even smaller edge weight.
If we cover the existing edge, we adjust its necessity interval.

4.3 Comparison to Related Work
Recently, Delling and Wagner modified the algorithm SHARC to compute Pareto-optimal shortest
paths [DW09]. In contrast to our approach, Delling and Wagner introduced a different method for
calculating multi-criteria shortest paths [DW09].

They use a straight forward generalization of Dijkstra’s algorithm to compute a Pareto-set ρ(s, t).
They maintain a list of labels at each node. For each step they extract the label with the smallest
minimum component. Similarly to Dijkstra’s algorithm, they calculate a tentative distance to all
adjacent nodes. If the weight vector is not dominated, they insert it into the list of labels. By this
method, the Dijkstras algorithm loses its label settling property. As we have already mentioned, it has
been proven in that the worst case can result in a number of labels exponential in |V | [Han79]. But
even if the number of labels does not become exponential in |V |, the number of labels can rise too
fast. Without any restrictions, even small graphs as the Karlsruhe road network will yield query times
around 80 ms and a number of around 50 target labels with the full Pareto-SHARC. To overcome
this problem, Delling and Wagner have to drastically reduce the number of possible labels. They
introduce two new optimization thresholds ε and γ. ε limits the maximal length of the Pareto-paths.
Let Lt = (W,w1, . . . , wk−1) and W denote the time component of the vector; they say a vector L
dominates another vector L′ if W · (1 + ε) < W ′. In addition to the length limitation they introduce
the factor γ. The factor γ introduces some kind of pricing. They only accept longer paths if the
new path induces a significant improvement in the other parameters. They formulate this with the
inequality W/(W ′ · γ) <

∑k−1
i=0 w

′
i/
∑k−1

i=0 wi.
Both label reduction techniques fail to preserve the sub-path optimality criterion. Figure 4.4 gives

examples for both domination criteria, where a label would be present at node x but the necessary sub-
path is dominated at node v. We will exemplary describe Figure 4.4(b) in detail. The example for the
ε domination criterion as depicted in Figure 4.4(a) can be described analogous. For a path 〈u, . . . , v〉
we have two possibilities. Firstly, the direct edge P = 〈u, v〉, and secondly the path P ′ := 〈u,w, v〉.
For simplification let γ be fixed at 1.0. At v the γ-condition evaluates as follows: 50

100
> 49

100
, which

is true, and the Path P ′ will not be considered as it is dominated by the direct edge (u, v). At x
the γ-condition for the concatenation of P ′ and (v, x), in comparison to the concatenation of P and
(v, x), evaluates to 51

101
> 99

150
which is false. Thus the alternative route via w should be considered

at x. Since the algorithm itself relies on the subpath optimality, multi parameter SHARC is only a
heuristic.

Furthermore, these restrictions have to be chosen very strictly to allow SHARC to precalculate
continental size road networks. SHARC can only allow routes of up to a 5% longer traveling time for
the western European road network to succeed with the preprocessing in a reasonable amount of time.
Following the increased amount of labels, a Pareto-SHARC with a up to 5% longer traveling time will
generate querys with an increased time of around 400 ms. For reasonable query times, Delling has to
restrict the alternative routes to routes less than 1% longer than the shortest route. Only by turning to
the combinations of the two heuristics, SHARC manages to process continental size road networks
with routes up to 50% longer than the shortest route in terms of traveling time.

In our approach we only induce a single-criterion to constrain the number of possible paths. We
restrict the number of valid parameters. This can roughly be compared to the epsilon threshold used
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vu 10|5 x

w
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3|5
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[105,100]
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(a) Example for the failure of the ε restriction

vu 49|100 x

w

50|25

50|1

50|25

[49,100]
[100,50]

[99,101]
[150,51]

(b) Example for the failure of the γ restriction

Figure 4.4: Illustration of the heuristically characteristic of the SHARC label reduction techniques

in the SHARC approach by Delling and Wagner. Still, the restriction to a parameter interval [0, pmax]
will guarantee sub-path optimality and will therefore result in exact shortest paths.

In our opinion, the Pareto-approach suffers from some shortcomings and will therefore not suc-
ceed in supplying the flexibility we need today. As we already mentioned earlier, the Pareto-approach
is often feasible on a small graphs, mostly derived from time table information [MW01]. On larger
graphs the Pareto-approach can result in a number of labels exponential in |V |. Even if the number of
labels will not be of exponential size, the number of labels that are Pareto-optimal will often grow too
large to provide fast queries. Therefore, approaches that use Pareto-optimal paths usually have to in-
troduce a lot of restrictions to reduce the number of possible labels. In contrast to the Pareto-approach
we take a different route. Let G = (V,E) be a graph. We add flexibility to the graph by modulating
the edge weights as a linear combination of several weight terms.

The advantage of our approach, compared to the classical Pareto-approach, is that our graph
becomes a single-criteria graph the moment we select a parameter p. By this way we successfully
avoid the problem of multiple labels per node. Still, this advantage makes a comparison between the
two approaches very difficult, as we only compute one possible path whereas SHARC computes all
possible shortest Paths at once.

4.3.1 Gradual Parameter Splitting

Geisberger et al. already discussed the problem that Contraction Hierarchy is very sensitive in terms
of node ordering changes [GSSD08]. The node order has to be selected very carefully to achieve
the intended results. In our preliminary experiments we discovered that a node order for a large
parameter interval will result in too many shortcuts. Due to the dense overlay graphs in the late
phases of the contraction process, the witness searches in the top levels of our hierarchy will lead to
preprocessing times too large for any practical use. As already mentioned in Section 2.1, we could
perform our algorithm on multiple distinct parameter intervals. This would leave us with a set of
different hierarchies to choose from. But we can do better; in our experiments we observed a lot
of shortcuts to be necessary for all parameters. These shortcuts would be present in each of the
distinct hierarchies and the respective contraction process would have to be repeated multiple times.
It is obvious that for a lot of nodes some shortcuts will always be necessary. More than half the
edges of our complete hierarchy proved to be necessary for all the distinct hierarchies we calculated.
For example, the edges of the original graph will be present in nearly every hierarchy. Also, if for
example a shortcut {x, (y), z} is necessary for the whole parameter interval, the shortcut will be
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present in every hierarchy that contracts the node y before x and z. Especially in the lower levels of
the hierarchy the number of edges that are necessary for the whole parameter interval was very large.
Most prominent reasons are dead-end streets or inner city areas where we have the same average
speed on every road. For example on the American road network, where we have a lot of similar
roads in the inner city areas, a lot of roads should result in nearly identical cost functions. In those
areas we should get much less alternative routes and therefore more shortcuts that are valid on the
whole parameter interval.

In our algorithm we try to avoid unnecessary work as much as possible. For this, we use a classical
divide and conquer approach. We select a threshold t as criterion for a possible split. This threshold
may be compared against the degree of the graph or against some other criterion. We contract the
graph for the whole parameter interval [L,U ] until the threshold mechanism triggers. Then we divide
the set of parameters in distinct parts [L,M ], [M + 1, U ] and perform the further contraction only
for the respective parameter intervals. This method can then recursively split the single parameter
interval, when another split may seem advisable. Since the node ordering process is so sensitive, our
method may still result in a suboptimal hierarchy for the parameter intervals but will prevent a lot of
work from being performed multiple times. Our experiments showed that we can contract a large part
of the graph for the full parameter interval [0, pmax]. This is partly a result of the dead-end streets and
inner city areas or similar other criterias we mentioned above, since these areas should give the same
shortest paths for all parameters. Only if we allow a lot of traveling speed changes, the parameter
becomes interesting.

All in all it seems sufficient to split at a relatively high level. Even though we have only a small
number of nodes left compared to the first part that we contracted for the whole parameter interval
at once, the small amount of node levels still seemed to leave enough room for the node order to
adapt. An indicator for this is that the top level intervals of a splitted hierarchy will only provide a
low number of common nodes. Note that we perform recursive splitting for each parameter interval
independently. Due to the diverse and specific needs for the different parameter values, we can split at
different hierarchy levels to adapt to the specific “difficulty” of a parameter interval. This adapts to the
needs that varying parameter values will lead to distinct numbers of shortcuts in different parameter
intervals. Especially in parameter intervals that provide a large variety of possible routes we need to
generate more individual node orders.

To limit the amount of main memory we need during the contraction process we utilize some
disk space too. Whenever we split at a certain level, we write the delta of our last contraction phase
to disk. When we need to reset the state of our contraction we can load the current overlay graph
back from disk. This saves a lot of main memory without slowing down the contraction process too
much. If we decide to provide more main memory, we could easily avoid this disk usage. For a
contraction process, the threshold is a tuning parameter. The lower we choose the threshold the more
our algorithm converges against a set of single-criteria CH. Note that we also adapted the threshold
for different parameter values. This is needed, since we have to predict the future of our contraction
process. Even though the contraction could be working fine at a given moment we could generate too
“difficult” overlay graphs. Therefore, the threshold needs to be chosen very carefully. Still, we want
to minimize the work performed multiple times and may therefore adapt the threshold on parameter
intervals we expect to be less “difficult”.

Splitting Approaches

We can choose several criteria for triggering a split. We have to decide on the moment of splitting
and on how to divide the given parameter interval. Note that the number of shortcuts is not directly
related to the size of the parameter interval. The complexity is more dependent on the variety of



4.4. GOAL DIRECTION FOR INCOMPLETELY CONTRACTED HIERARCHIES 41

routes between two given nodes that a parameter interval contains. A more detailed discussion of this
can be found in the experimental section. Possible criteria are the average degree of the graph or the
number of edges that are not necessary for the whole parameter interval, which we call partial edges.
In our experiments the number of partial edges proved to be a viable method, because it is a good
indicator for how far the respective parameter values veer away from a single-criteria CH. Note that a
single-criteria CH will keep the number of edges small. The further we get from a single-criteria CH
for a given parameter, the more edges we will add for the respective parameters. But even a single-
criteria CH will result in very dense graphs in the top levels of the hierarchy. Therefore, the degree
of the graph may not be an indicator as good as the number of partial edges. Thus we decided to use
the number of partial edges as a splitting criterion. Note that this method is very simple. We could
possibly get even better results if we also look at the kind of partial edges we create. Edges that are
necessary for nearly the complete parameter interval may not have an impact as strong as edges that
are only necessary for a very small parameter interval. For the question on how to perform the split
we propose two different methods.

• split in half: the direct and most simple version is to split the parameter interval in half. This has
shown to be a stable approach. But it might result in slower queries. If the relative traveling time
and energy cost values do not change in a similar fashion over the whole parameter interval,
we may get better results if we take the varying “difficulties” into account. We might end up
choosing to large intervals. Also, it might end up in splitting to similar parts of the parameter
interval.

• variable-split: instead of just splitting the parameter interval in half, the split can be performed
again taking into account the number of edges that are only necessary on a part of the parameter
interval. We first calculate the number of edges that become valid at a given parameter. We
split at the parameter that allows more than half of the edges to become necessary. During
our experiments such a parameter always existed. This can be explained through the property
of the cost function. Most shortcuts become necessary at a certain parameter and will remain
necessary. If we cannot find such a splitting parameter on a certain data set, we perform a split
as in the split in half approach. Still, our experiments showed that this situation does not occur
for our chosen weight functions.

In the following we will refer to those hierarchy parts for a parameter interval we did not split as top
level intervals.

4.4 Goal Direction for Incompletely Contracted Hierarchies
Experiments have shown that the number of edges that are created will grow very fast in the upper
levels of the hierarchy. This will result in extremely long preprocessing times for a complete hierarchy.
To cope with this, we may choose to perform the contraction only up to a certain level L. The
remaining |N | − L nodes form the so-called core of the hierarchy. Our experiments showed that
we can thus save a significant amount of preprocessing time. Note that this effect grows especially
strong, since we perform the contraction of the highest levels of the hierarchy more often because of
the splitting process. Therefore, the already more “difficult” contraction phases have to be calculated
much more often than those at lower levels. If we choose not to contract each of the top level intervals
of the splitting approach, we can save a significant amount of preprocessing time. Due to the splitting
process this generates a core for every top level interval. On each of theses cores we can utilize other
speedup-techniques as shown by Schieferdecker in [Sch08a]. In the following we will now discuss
how we can utilize the ALT algorithm for our contraction process.



42 CHAPTER 4. FLEXIBLE OBJECTIVE FUNCTIONS FOR CONTRACTION HIERARCHIES

ALT for Linear Objective Functions

We present two different methods to adapt the ALT algorithm for the bi-criteria case. For the prepro-
cessing we use an implementation for single-criteria ALT processing provided by Daniel Delling. We
therefore extract every core twice with different weights.

Traveling Time and Energy Cost Core

In analogy to the linear weight function we utilize for our graph we can deduce lower bounds and
therefore potential functions as explained above. To utilize the ALT algorithm for our linear weight
functions we use multiple inequalities. We generate landmarks and the respectively landmark dis-
tances both with regard to the time (τ) and the cost (κ). For each of the weight terms we can then
calculate a lower bound on the distances d(s, u) and d(u, t) respectively. In the following, we will
denote with dτ (s, u) the lower bound in the core using time weights and with dκ(s, u) the lower
bound in the core using cost weights. The bounds for the target node we name in the same way. With
those lower bounds we can then calculate a lower bound for a given parameter p in the same way we
calculate the edge weight function itself. Let d(s, u, p)τ denote the time component of the distance
from s to u for the parameter p and d(s, u, p)κ denote the energy cost component respectively; for
all parameters p the following inequality holds: d(s, u, p)τ ≥ dτ (s, u) and d(s, u, p)κ ≥ p · dκ(s, u).
Therefore, we can approximate d(s, u, p) ≥ dτ (s, u) + p · dκ(s, u).

Lower Bound and Upper Bound Core

As an alternative method we propose the lower and upper bound core. As we have shown in
Lemma 4.1, the linear edge weights form a concave function. The straight line between w(pL) and
w(pU) on an interval [L,U ] will provide a lower bound for each parameter p ∈ [L,U ]. We can there-
fore approximate the minimum distance for a given parameter with a linear combination of the lower
bound distances and the upper bound distances for a given core. Let C[L,U ] be the core for the top
level interval between L and U of our splitting approach. Let us denote the approximations in the core
using the lower bound weights and the upper bound weights with dL(s, u) and dU(s, u) respectively.
For any given parameter p ∈ [L,U ] and any two nodes s, u ∈ C[L,U ] we can now approximate with
Lemma 4.1 d(s, u, p) ≥ (1− p−L

U−L) · dL(s, u) + p−L
U−L · dU(s, u).

Due to this combination of the potential functions, we can use one pair of time and cost landmarks
for a given core instead of calculating the landmarks on a per parameter basis. This comes at the cost
of some quality, since we find a lower bound on a lower bound. Still, it has proven a viable method
and helps to improve the quality of the core search. Especially in the lower and upper bound approach
the landmarks give correct distances for the parameters L and U for every core C[L,U ]. As already
discussed in Section 3 we may need to utilize proxy nodes for source and target combinations that
are not contained in the core for a given parameter. Note that for different set of parameters we may
or may not need proxy nodes, since the different node orders also generate different cores. During a
CALT search we use a single proxy node for the search that has the minimum combined distance from
the core to the source node. By this method we avoid the need to calculate landmarks and core graphs
for every parameter. We only have to compute one core with two different weight functions per top
level interval. Since our top level intervals contain up to 80 parameters, we save up to a factor of 40
in space and preprocessing time. This comes at the cost of multiple quality penalties on the potential
functions. Still, our experiments showed that we can improve the query times of a core approach with
the potential functions presented here.
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4.5 MCCH Query

In this section we will first describe the differences between a multi-criteria Contraction Hierarchy
query and a single-criteria CH query, including a more detailed illustration of the core-based query.
Then we will proof the correctness of the algorithm and present some techniques to speed up the
Query.

4.5.1 MCCH compared to Single-Criteria CH

For a completely contracted MCCH and a given parameter, the MCCH query is identical to a CH
query. For a given parameter we can evaluate the weight function, and thus the graph can be looked
at like a graph with a constant weight function. Therefore, we can perform a standard Contraction
Hierarchy search if we evaluate the edge functions as needed. The only difference to the standard
query is that not all edges stored are relevant for the current search. Edges that are not necessary for
the given parameter do not have to be considered in the search.

Core Query. We perform the core approach, as Bauer describes it, in two phases [BDS+08]. In the
first phase we perform a bidirectional CH query in the forward and the backward graph respectively
stopping at uncontracted nodes. To identify these nodes we can store a flag for each top level interval
of the split up hierarchy. This we call the first phase of the search. If we could not finish the search
during the first phase, we move on to the second phase. In the second phase we perform a core based
bidirectional ALT algorithm. We split the second phase itself into multiple parts. The first phase is
the calculation of the proxy nodes. To find these we have to perform another search upwards in the
hierarchy. We perform a backward search from the source node and a forward search from the target
node until the first core node is settled. Note that it is not guaranteed to find a path to the core in
the respective searches. If that is the case we use a special node as proxy node with the distance
form and to all landmarks as well as the proxy distance set to zero. This can reduce the search to a
simple bidirectional Dijkstra’s algorithm if neither a source proxy nor a target proxy can be found.
After the calculation of the proxy nodes we use a bi-direction ALT algorithm with the consistent
approach [IHI+94].

4.5.2 Correctness Proof

During our query we utilize the single-criteria Contraction Hierarchy query on our multi-criteria Con-
traction Hierarchy. In contrast to the single-criteria CH query we only use a subset of the graphs edges.
An edge belongs to the search graph if its necessity interval contains the current parameter p. The
proof that our algorithm performs correct shortest path queries therefore bases on the correctness of
the single-criteria CH query algorithm. A detailed proof of the correctness of the single-criteria CH
query can be found in [Gei08].

Theorem 4.4 For every parameter a single-criteria CH query can find a shortest path in a MCCH.

To prove Theorem 4.4 we first have to prove two other lemmas:

Lemma 4.5 For every path P = 〈u, . . . , v〉 that is valid on an interval [a, b] we can find for every
parameter p ∈ [a, b] a path P ′ := 〈u, u1, . . . , uh, v〉 with ∀i ∈ [1, h] : L(ui) ≥ min(L(u),L(v)) and
w(P ′, p) ≤ w(P, p) with L denoting the level of a node as defined in Section 3.4.2
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Proof. Let p ∈ [a, b]. Assume that we have a path P = 〈u = u0, u1, . . . , uh, uh+1 = v〉 with ∃ui :
L(ui) < min(L(u),L(v)). Pick ũ with ∀i ∈ [1, h] : L(ũ) ≤ L(ui). Since L(ũ) is minimal over all
ui, ũ was contracted before its direct neighbors x and y. Therefore, ∀p ∈ [a, b] : ∃P̃ = 〈x, . . . , y〉63eu :

w(P̃ , p) ≤ w(P, p) ∧ ∀y ∈ P̃ : L(y) > L(ũ). This holds, as we insert a shortcut for every p ∈ [a, b]

for which we cannot find a path P̃ as described. Thus, we can either replace ũ with a path consisting
out of nodes with higher level then ũ or omit it in the path if we had to insert a shortcut for the
respective parameter. Since the number of levels is limited, we can construct the desired path P ′ in a
limited number of steps. �

Lemma 4.6 For every edge (u, v) that is restricted to a parameter interval [a, b] and a parameter
p /∈ [a, b], we can find a path P = 〈u, . . . , v〉 in the graph created by our algorithm with w(P, p) ≤
w((u, v), p) and ∀x ∈ P : L(x) ≥ min(L(u),L(v)).

Proof. Let e = (u, v) be an edge restricted to an interval [a, b] and p /∈ [a, b]. Furthermore, let | · |
denote the number of edges of the original graph a given edge represents. First let us assume that
|e| = 1. Since the edge is an edge of the original graph and is restricted to an interval following holds:
∀p ∈ [0, a − 1] ∩ [b + 1, U ] : ∃P = 〈u, . . . , v〉 : w(P, p) ≤ w(e, p). This is the case, since we only
restrict edges of the original graph with parameter interval reduction. Therefore, those alternative
paths must exist for every parameter p in the respective intervals. Due to Lemma 4.5 we can replace
the path P with a path P ′ that fulfills ∀x ∈ P ′ : L(x) ≥ min(L(u),L(v)). This forms the basis for
our induction step.

Now let us assume |e| = N with N > 1. Since N > 1 the edge is created as a shortcut from
two edges ein and eout that are restricted to the intervals [ain, bin] and [aout, bout] with [ain, bin] ∩
[aout, bout] ⊇ [a, b]. Now |ein| < N and |eout| < N holds. With induction we can replace both edges
with a path Pin and Pout as described above. If p ∈ [ain, bin] or p ∈ [aout, bout] we can directly use ein
or eout. The concatenation of Pin and Pout therefore gives a path of the desired form for p. �

Proof ( of Theorem 4.4 ). Let ((G = (V,E), <)) be a multi-criteria Contraction Hierarchy. Let
s, t ∈ V be a source and a target node and let p be the desired parameter. By the definition of a
shortcut, it represents an existing path in the graph. The single-criteria CH query finds only paths of
the form

〈s = u0, u1, . . . , up, . . . , uq = t〉

ui < ui+1 for i ∈ N, i < p, and uj > uj+1 for j ∈ N, p ≤ j < q

Let p ∈ [0, pmax]. Let P = 〈s = u0, u1, . . . , up, . . . , uq = t〉 be an aribtrary path that is not of the
described form. Therefore ∃uk, k ∈ [1, q] : L(uk−1) > L(uk) < L(uk+1). Let the edge (uk−1, uk)
be restricted to the interval [ain, bin] and the edge (uk, uk+1) be restricted to the interval [aout, bout]. If
p /∈ [ain, bin], Lemma 4.6 implies that we can subsitute the edge with a path P ′ that is valid for p and
consists of nodes with higher or equal levels. In the same way we can find a path P ′′ if p /∈ [aout, bout].
With the use of Lemma 4.5 we can replace the concatenation of P ′ and P ′′ with a further path P ′′′

that consists of nodes with higher levels than uk.
Let MP := {uk|L(uk−1) > L(uk) < L(uk+1)}. We can now construct a path P̃ for every p, with

M eP = ∅ and w(P̃ , p) ≤ w(P, p). For this we recursively select the node um with ∀uj ∈ MP :
L(um) ≤ L(uj). As explained above we can replace the sub-path (um−1, um, um+1) with a path
consisting of higher level nodes. Since we have a limited set of levels this algorithm will terminate.
Thus, the Contraction Hierarchy query can find a path of equal or less weight for every arbitrary
source-target-pair and every parameter p. �
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4.5.3 Dealing with Split Hierarchies

One of the problems we face during a contraction is that we cannot find a node order that will result
in a viable hierarchy for a large parameter interval. One of the methods we propose is the divide
and conquer approach. This will result in multiple node orders for different levels in the hierarchy,
including multiple sets of edges. Therefore, we have to augment the definitions of the forward and the
backward graphs. The forward graph of a Multi Criteria Contraction Hierarchy contains all edges that
are directed upwards in a hierarchy for a given parameter. The backward graph will contain all edges
that are directed downwards in a hierarchy for a given parameter. During a query we can recognize
the edges not directed upwards for the given parameter by looking at its necessity interval. To save
memory, we can combine all edges that are identical in all aspects except the necessity interval. If
the two intervals of those identical edges lie next to each other, we can only insert one edge with the
combined necessity interval. These edges can be found with a simple sort of all edges of a given
source node. The split also will lead to multiple cores. Therefore, we have to store multiple sets of
landmarks and landmark distances. According to the number of splits that occur during the divide and
conquer approach we have to store a bit for every node, indicating if it is in the core of the respective
parameter interval.

If we use the core approach together with the splitting approach, we have to store multiple sets of
landmarks and distances. To recognize core nodes we can store a set of flags in the nodes of the graph
indicating if the node is in the core of the respective hierarchy. We can then choose the appropriate
set of landmarks and respective distances and perform the ALT search.

For the landmark variant of our search we want direct access to the landmarks of a node. For this
we need to map the core nodes to the numbers 0 to |core| − 1. Let MΘ(·) denote the mapping of
a node in the top level interval Θ. We decided to store the mapping directly in the respective node.
Since the cores of the respective top level interval only have a few common nodes, we manage to map
the nodes of each core to the numbers 0 to |core| − 1 in such a way that following condition holds:

∀u : u ∈ Θ ∧ u ∈ Θ′ ⇒MΘ(u) =MΘ(u).

Due to the small number of common nodes between two top level intervals, we can find such a
mapping with a simple greedy approach. We sort the nodes by the number of top level intervals a
node belongs to and process the mappings in the resulting order. For every node we select the first
number that is not used in any of the containing cores. If we only have nodes left that belong to one
of the intervals, we can map these nodes directly to the ids left for the respective core. If we run out
of free ids during the mapping process of the common nodes, we map to ids larger then |core| − 1.
This would lead to holes in the storage space for our landmark distances. Still, this case did not
occur during our experiments and we were always able to map our nodes directly into the interval
[0, |core| − 1]. Even if this holes would occure, we expect the number to be very small. Therefore,
the holes would not harm the perfomance of our algorithm.

4.5.4 Speeding up Multi-Criteria Contraciton Hierarchy Queries

Due to the flexibility and the splitting approach we generate a lot of edges that are only necessary
for a small fraction of the allowed parameters. Without compromising the correctness, we could use
all those edges in our search. However, our experiments showed that we would use an unnecessarily
large amount of edges, which we do not need to find a shortest path. We could also climb downwards
in the hierarchy of our current parameter when we use an edge from a different node order. Since a
single-criteria CH generates its high speedups through the upwards-only searches, we would severely
increase our query times if we would use all unnecessary edges. Therefore, we have to skip all edges
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that are not necessary for our current parameter value. Since we have to skip a lot of edges, we use a
bucketing approach. Each bucket will represent a smaller parameter interval, i.e., one of the top level
intervals of our hierarchy. For every bucket, we store an edge id array, containing the edge ids of
edges in the edge array. This extra array introduces another level of indirection. For every node wee
store, analogous to an adjacency array, offsets into the edge id array. In our experiments we found
a lot of edges belonging to all buckets. These edges result in a lot of edge ids that have to be stored
for each bucket. Especially edges of the original graph would be present in all buckets and necessary
for nearly all parameters. For these edges we augment our bucket approach even further. We add an
additional offset to every node that points into a second edge array, the global edge array. This offset
we use exactly as a normal adjacency array for the second array. This results in arbitrary edge ids. A
single id could belong to the indirectly accessed edges or the edge array that we can access without
the use of a further level of indirection. To circumvent this problem, we use the sign bit of the edge
ids. An edge-id with a negative sign will belong to the bucket edges and an edge-id with a positive
sign will belong to the global edge array. This additional edge array saves a lot of main memory.
Since more than half of the edges belong to all buckets, we invest 4 ∗ n bytes for the extra offset in
every node to save 4 ∗ |Buckets| · m/2 bytes of unnecessary edge ids in the edge id arrays. In the
appendix we present a graphical illustration of our bucketing approach for a sample graph.



Chapter 5

Experiments

Test Instances. We present experiments performed on road networks from the year 2006 provided
by the PTV AG. The German road network consists of 4 692 751 nodes and 21 612 382 edges. The
European road network consists of 29 764 455 nodes and 135 315 556 edges. For some preliminary
experiments we also used some of the smaller countries of Europe.

Environment. Experiments have been done on one core of a single AMD Opteron Processor 270
clocked at 2.0 GHz with 8 GB main memory and 2×1 MB L2 cache. Only the contraction of the Eu-
ropean road network has been done on one core of an Intel Xeon 5345 processor clocked at 2.33 GHz
with 16 GB main memory and 2×4 MB L2 cache. We run SuSE Linux 11.1 (kernel 2.6.27) and use
the GNU C++ compiler 4.3.2 with optimization level 3.

In our experiments we will first focus on the contraction times and query times of the completely
contracted hierarchies. Then we will go on to discuss the CALT version of the hierarchy.

Methodology. For our experiments we use a number of 1 000 queries for every parameter value
p of the respective parameter interval. If we do not specify a parameter interval explicitly, we use
the parameter interval [0, 1 024]. For these queries we choose a source and target pair uniformly
at random. We will present preprocessing times in the format [hh : mm.ss]. We may split the
preprocessing times in compute and I/O-time. For the CALT algorithm we will present average
preprocessing times on a per top-level-basis. Query times will be given in milliseconds [ms] and
the respective speedup as a comparison to a standard Dijkstra algorithm. Space consumption will be
given absolutely in [B/node]. If not specified we use one bucket for every top level interval of our
hierarchy. For split methods we distinguish between the Half split and the Variable split method. We
may use G and E as an abbreviation for the German and the European road network respectively. If
we use a core approach, we give the number of nodes in the core and indicate if the core is Contracted
or Uncontracted. For the landmark selection we distinguish between the Avoid and the Max-cover
algorithm.

5.1 Experimental Preliminaries
Weight functions. For our experiments we used a linear combination of the travel time and the
approximated energy cost for traversing a road. We synthesized a cost function through the approx-
imated mechanical work for a standard car under ideal conditions. To generate the energy costs of a
road we utilize a combination of the standard formula for air resistance Fw(v) := A · cw · ρ/2 · v2 and
the roll resistance Fr = d/R · FN , where A denotes the projected plane in square meters, cw the drag

47
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(b) Illustration of the relation between the travel times and
the costs generated by C̃(v, l) for the different traveling
speeds.

Figure 5.1: The two different cost functions

coefficient, ρ the air density, v the average traveling speed of the road, d/R the roll resistance coeffi-
cient and FN the weight of the car in Newton. We use A = 2.67m2, FN = 1 500kg and d/R = 0.015
as well as cw = 0.3. These values are approximated to represent a common car as the Audi A3. For ρ
we use the air density for 21 degrees Celsius ρ = 1.2kg/m3.

We can now define a cost function C(v, l) = l · c · (Fw(v) + Fr)/η, with l denoting the length of
the road, v the average traveling speed, c the cost of energy and η the efficiency of the combustion
engine and drive train. We use c = 0.041e/MJ, which corresponds to a price of about 1.42e/l and
η = 0.25.

Since the only parameter of the roads is the average traveling speed we would result end up fa-
voring the roads with minimal average traveling speed. This effect would be even greater since the
speed is a quadratic parameter. Preliminary experiments with a standard car showed that the optimal
traveling speed was at around 50km/h. We adapt our cost function to this by defining a new cost
function C̃(v, l) as follows:

C̃(v, l) =

{
C(50 +

√
50− v, l) if v < 50

C(v, l) otherwise

}
Finally we adapt our cost function C̃(v, l) for inner city roads. Inner city traveling introduces a lot

of stop-and-go situations through traffic lights, right-of-way rules or drivers backing up into a parking
space. Therefore, it seemed reasonable to use higher cost for an inner city road compared to the cost
of an outer city road. We compensate for this by multiplying C̃(v, l) by a factor of 1.5 on inner city
roads.

In Figure 5.1(a) we can see how the travel time of an edge compares to the cost of an edge as
provided by C(v, l) for the different average speeds. In comparison Figure 5.1(b) shows the relations
between the travel time and the cost provided by C̃(v, l). The C̃(v, l) is more realistic since we will
not favor the slowest possible route. Still, our experiments showed that our algorithm can even process
cost functions that will favor the slowest possible route.

Parameter Interval. As we described in Section 4.2.3 we use a parameter-increasing witness path
search in our contraction process. The algorithm’s correctness relies on the ability to select the next
parameter value. To achieve this we utilize integer values for our traveling time and energy cost
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values. This not only allows us to use Algorithm 3 but also gives us calculations that do not rely
on floating point accuracy. Our experiments showed that we only need relatively small parameter
values for a relatively large variety of possible routes. Preliminary experiments revealed that a for our
cost function only parameters p ∈ [0, 0.1] proved promising. For a parameter of 0.1 we will already
allow routes of 65% longer traveling time on average compared to the optimal traveling time. To still
allow a fine granular selection for integer parameters we scale the time values by a factor of 100. In
addition we divide the cost values by 100, which results in an effective scale of 10 000 and allows
1 000 parameters in the interesting interval. Since we already use an approximation for our cost term,
we can perform this division. The values would only suggest accuracy that we cannot provide with
our cost function.

In Figure 5.3(a) we illustrate the average relations for travel time and energy cost values over all
parameters. As can be seen the strongest variation takes place for p ≤ 600. Figure 5.3(a) illustrates a
graphical overview of the changes in the cost and time component for all processed parameter values.
At p = 1 000 we are on average only 1% off the optimal energy cost value. Also, the relative improval
over all parameter values gets too small compared to the lengthening of the traveling time. Therefore,
the parameter interval is sufficient for our calculations. Unless otherwise stated, we use an interval
size of 1 024 to generate equal-sized intervals for the half-split method.

To illustrate the robustness of our algorithm we will also present some results on parameter inter-
vals of the size of 24, 512 and 2 048.

The step size of our algorithm is one important tuning parameter. Figure 5.3(b) illustrates the
number of different routes we get with three different step sizes. As the figure shows we only omit a
low number of paths if we lower the resolution of the parameter interval. But our experiments also
revealed that we need an only 2% longer preprocessing time but get 10% more possible routes. Com-
pared to Pareto-SHARC that has to limit the number of possible labels to around 5 with heuristics,
we manage to generate a more diverse number of routes while still maintaining very reasonable pre-
processing times. Despite those results we expect a higher speedup if we increase the step size very
drastically.

5.2 Bucketing
Due to the restriction of edges to the smallest parameter interval for which they are necessary we
have to scan a lot of unnecessary edges. To prevent this we have introduced a bucketing structure in
Section 4.5.4. The number of edges stored for every node is high enough to gain advantage from a
bucketing structure. Figure 5.2(a) illustrates the positive effects and the drawbacks of the bucketing
approach for a hierarchy contracted for all parameters at once. In Figure 5.2(b) we depict the same
situation for a hierarchy contracted with our splitting approach. As the figure shows, we even get a
minor increase in query times for some part of the parameter interval with the low number of two
buckets. This is a result of the additional level of indirection that we add to the graph. The positive
effect comes into effect if we add more buckets. For the number of four buckets we already exceed the
query times of the no-bucket version on the whole parameter interval. For a number of eight buckets
we manage to reduce the query times by nearly 50%. A further increase in the number of buckets
yields only a small improvement in query times. For the split contraction we can see the same effect.
We also get the reduction of the query time for a high number of buckets of around 50%. Especially
in the upper half of the parameter interval we see a good improvement, even for a low number of
buckets.

The effect of the increased space consumption can be lowered severely by the separation into
the bucket edges and the directly accessed edges. Especially for a parameter interval contracted as
a whole the percentage of edges that belong to all buckets is incredibly high. Since we need a high
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Figure 5.2: Illustration of query times for different number of buckets with equally-sized bucket
intervals for the German road network.
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Figure 5.3: Parameter Interval Illustrations

amount of buckets to get the positive effect in full, we would end up storing to much data in all
buckets for the method to stay reasonable. The separation of edges into the bucket edges and the
directly accessed edges instead has proven to be very space-efficient. For the gradual parameter split
the bucketing method becomes even more valuable. Due to the number of different node orders the
number of edges valid for only a small number of parameter values p is considerably larger.

Note that the bucketing itself has some drawbacks. The added level of indirection reduces the
possible speedup of approach severely. If we used our algorithm to calculate a separate hierarchy for
every single bucket, we would reduce the query times by about 40% at the cost of larger memory con-
sumption and longer preprocessing time. This would lead to a very large amount of space overhead,
which we hope to avoid. In the following we will show that we can get decent query times even with
a single hierarchy.
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5.3 Completely Contracted Hierarchies
As already mentioned, our preliminary experiments revealed that the contraction process would take
too long for a complete hierarchy for all parameters. In Table 5.1 we present a number of different
size graphs with complete contractions without splitting. As the table shows, the preprocessing times
will rise super-linearly in the size of the graph. When the size of the input graph exceeds a certain
size the preprocessing times will suffer from a combinatorical explosion as we get in the Pareto-
approaches. We observed that the number of edges will get too large on higher levels for a complete
contraction over the whole parameter interval. As Table 5.1 shows, the contraction time rises extremly
fast between Portugal and Italy. The difference from Italy to Germany is even more drastic. A 24%
increase in the number of nodes yields a 500% increase of preprocessing time. As Geisberger et al.
discussed the Contraction Hierarchy method is very sensible in terms of node ordering [GSSD08].
The node order is designed to keep the number of edges in the top level intervals small while also
providing fast queries. If we allow flexibility, the optimal node orders for different parameters will
be very diverse. Geisberger showed this behaviour in [Gei08]. As a result of this we get a very
suboptimal node order for a complete contraction over all parameters, since we have to account for a
lot of different needs. This leads to a more dense series of overlay graphs. This effect accumulates
throughout the contraction process to finally result in extremely long preprocessing times.

Table 5.1: Preprocessing and query performances for different graphs of different node numbers.
nodes param preproc space query speed nodes edges

graph [hh:mm] [B/node] [ms] up settled relaxed
Switzerland 693 122 1 024 0:05 90 0.7 270 262 1 841
Portugal 1 244 546 1 024 0:14 91 1.0 350 337 2 454
Italy 3 757 721 1 024 2:14 97 2.2 529 445 4 183
Germany 4 692 751 1 024 9:52 99 7.8 260 823 9 731

5.4 Gradual Parameter Splitting
Our experiments showed that we cannot rely on a single complete contraction for our whole parameter
interval. To circumvent this we proposed the method of gradual parameter interval splitting. In
Section 4.3.1 we discussed two possible splitting criteria. In Table 5.3 we illustrate amongst other
things a contraction for the parameter interval [0, 24] for the European road network, which roughly
represents an increase of 2.5% in travel time. A comparision of the contraction for the interval [0, 24],
to the contraction of the complete interval Table 5.3 reveals that we would require a factor of five
longer preprocessing times when using our algorithm for a number of 43 parallel hierarchies. This
time may be reduced if we use longer intervals, as long as we do not make the intervals too large.

If we even choose to rely on a number of parallel Contraction Hierarchies, we would need 1024
parallel Contraction Hierarchies. We performed a number of distinct contractions for fixed parameters
and in advance evaluated cost functions with a single-criteria CH.

We computed the single-criteria Contraction Hierarchies for the parameters p = 0, p = 1000
and for p = 300, which has shown to be one of the most difficult parameters from Figure 5.5(a).
The results can be found in Table 5.2. The results showed a large variation between the different
parameter values. The preprocessing time varied by about 100% and the query time even by 270%.
Only the space consumption appeared to be quite constant with a variation of less than 3% and around
22 B/node.
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Table 5.2: Single-criteria Contraction Hierarchy performance for our preevaluated weight function on
the German road network

method parameter preproc space query
[s] [B/node] [ms]

aggressive 0 335 20.3 0.179
economical 0 112 21.9 0.249
aggressive 300 616 20.9 0.734

economical 300 225 22.1 0.919
aggressive 1 000 589 21.1 0.693

economical 1 000 228 22.2 0.927

About the same results can be seen in Figure 5.5(a) for the query times of our multi-criteria
Contraction Hierarchy. Still, one cannot compare the results of a single-criteria CH directly to our
multi-criteria CH. Not only the strong dependency in terms of the edge weight function hinders any
comparison, but also the additional factors we get from edge weight evaluation. Also, we need to
store the necessity interval as well as two edge weight terms for every edge as well as additional data
for our bucketing approach resulting in more cache faults. In addition to these effects, the bucketing
method requires an additional level of indirection. If we chose to compare our algorithm to the single-
criteria CH, we need a factor of 8.4 more space. We could therefore drastically reduce the needed
space in comparison to the 1 024 parallel contraction hierarchies we would need for the same results.
This even reduces the space overhead if we only compute a single-criteria contraction hierarchy for
every one of our top level intervals. In terms of preprocessing time we also manage to reduce the
time in comparison to 1 024 different parallel Contraction Hierarchies. Still, our results are not as
good as for the space consumption. We could manage to calculate a number of 21 parallel single-
criteria CH with the economical method [GSSD08] in the time it takes to preprocess a core of the size
5 000 with our algorithm, or even 42 parallel contraction hierarchies in the time it takes to completely
contract our graph. In terms of query times our best results with a completely contracted core of
10 000 nodes even outperforms the results of the single-criteria contraction hierarchy without CALT,
which needs 0.82 ms on average. Note that we only approximated this value assuming a similar curve
as in Figure 5.5(a).

In Table 5.3 we give an overview of the results we get with completely contracted hierarchies. We
use one bucket for every top level interval of the hierarchy.

Table 5.3: Preprocessing and query performance for different graphs without the usage of the CALT
algorithm

param/ preproc [hh:mm] # space query speed nodes edges
graph split compute I/O split [B/node] [ms] up settled relaxed scanned
Ger 1 024/V 2:38 34 14 193 3.8 565 673 6 320 10 594
Ger 1 024/H 2:35 27 11 171 4.1 759 676 6 379 11 527
Eur 1 024/V 23:47 2:18 13 164 6.1 2 355 769 8 419 20 384
Eur 1 024/H 24:09 2:02 11 151 6.1 2 379 771 8 385 21 113

As Table 5.3 shows, and as could already be seen in the Figures 5.2, the split approach manages
to reduce the query times compared to the complete contraction. We also reduce the contraction time
to about 25% of the time needed to contract the complete parameter interval at once. The variable
and the half-split method perform about the same in terms of preprocessing time, while the variable-
split method yields slightly better query times. Due to the higher number of splits performed by the
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variable-split method the memory consumption may turn out slightly higher. If memory is not the
deciding factor, we favor the variable-split method. In other cases the half-split method might be the
method of choice. The noticeable difference in the query times is more a result of the scanned edges.
The variable-split method seems to keep the number of edges smaller and therefore seems to result in
better speed-ups. For the European road network the both methods do not seem to differ very much.

5.5 CALT for multi-criteria Contraction Hierarchies
Even though we managed to perform the contraction of even continental-sized networks in reasonable
time, the query times so far are much higher compared to single-criteria speed-up techniques. In the
following we present the benefits the CALT algorithm introduces in terms of query times. We will
present experiments for CALT on contracted and uncontracted cores. We will also discuss the amount
of data that we need for using the techniques.

Preprocessing. The CALT algorithm proved to be a viable method to generate even better speed-
ups than just with contraction. The required preprocessing times for the CALT algorithm are very
small compared to the contraction part of our hierarchy. This is a result of performing the speedup-
technique only on the core of our hierarchy. This graph, even though it is a much denser graph,
only consists of a very small amount of nodes. This allows a fast preprocessing time for the ALT
algorithm. Furthermore, we expect already a small number of landmarks to provide very good lower
bounds, since we have to cover only a small set of nodes. In addition to the small graph, our method
to use only two weight terms to preprocess a single core per top level interval helps to drastically
reduce the preprocessing times. Instead of 1 024 different cores, we only need to compute one core
with two weight functions for every top level interval. This results in an amount of 22 to 32 landmark
calculations. Therefore, we get preprocessing times 30 times faster than the preprocessing for 1 024
landmarks. An overview of preprocessing times for different core methods and landmarks can be
found in Table 5.4.

Performance. Table 5.4 we provide a detailed analysis of our experimental results. For the pre-
processing times we split the times into pure processing times and I/O time. This is reasonable, as
we can save most of the time spent on disk access if we implement in memory compression or make
more main memory available. Each of these methods could save the hard drive accesses generated by
our splitting approach that writes out contracted parts of the hierarchy. As for now, the I/O time may
make up a large portion of the preprocessing time of up to 30%. For the CALT algorithm we will give
average values on a per top level basis.

Under these conditions, we obtain query times comparable to some single-criteria algorithms if
we combine the landmark approach with a contracted hierarchy. We can provide query times well
below one millisecond on average for the German road network. For the European road network we
obtain query times of around 1.8 ms. The table also shows the large improvement we get by using
landmarks. A contraction of the graph leads to a lot of very long shortcuts. The landmarks allow
us to omit a large amount of nodes due to the lower bound of the shortest path distance. Even on
an uncontracted core, the benefit from the landmark approach is very large. We get a factor of four
compared to the core approach without landmarks. We even outperform the complete contraction by
a factor of two. Especially on the contracted core the CALT algorithm proved to be very useful. If we
compare the results for a contracted core with the results in Table 5.4, we can see a reduction by 80%
percent in terms of query time for the CALT algorithm. This comes at the cost of only a few minutes
extra preprocessing time. We can see that the slightly better landmarks of the max-cover approach
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do not reduce the query times significantly. Also, the number of 64 landmarks instead of 32 does not
significantly reduce the query times for a small core. On the larger cores, a number of 64 landmarks
can yield an improvement of about 3%. Compared to the long computing times for the contraction,
the extra preprocessing time 64 landmarks increases the preprocessing time only by 2.1%. Therefore
even the small speedup of 3% justifies the larger number of landmarks. We therefore recommend a
number of 64 avoid landmarks for larger cores of about 5 000 nodes and 32 avoid landmarks for the
smaller cores. For our algorithm we use an active set of four landmarks. We choose two landmarks
each for the lower and upper bound landmark sets. As landmarks we choose the two landmarks that
give us the largest potential values for the source and target proxy respectively. Since the source and
the target may not belong to the core, we have to select proxy nodes to compute lower bounds. The
selection of the nodes with the smallest distance to the source seems only natural, as they provide a
good approximation for the distance to the actual source and target.

An obvious property of our data is that we provide the best query times for p = 0. This meets our
expectations, as the single-criteria contraction hierarchy also performs best on the travel-time metric
and results in considerable longer query times and preprocessing times for other metrics.

Our algorithm scales well with the size of the parameter interval. Doubling the size of the parame-
ter interval only increases the preprocessing time by 25% and the space by less than 5% without really
affecting the query time. We also did some experiments on the European road network with settings
that worked well for the German road network. We could not perform a thorough investigation, as the
preprocessing times were too long. Still, we managed to provide very good speed-ups of up to 8 000.
These better speed-ups are expected for larger graphs, as we also observe the same behavior for the
single-criteria CH. The space consumption for the European road network is even better, as it is less
dense in comparison to the difficult German road network.
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Table 5.5: Performance of the time and cost core approach.
graph/core # # landmark # space query speedup settled relaxed

parameter splits method [B/node] [ms]

GH/3 000/U 1 024 12 A/T 16 166 3.0 696 1 198 12 325
GH/3 000/U 1 024 12 A/T 32 170 2.8 747 1 141 11 416
GH/3 000/U 1 024 12 A/T 64 175 2.7 780 1 102 10 855

Comparison of Lower and Upper bounds to Time and Cost weighted cores. In the Tables 5.4
and 5.5 we can see a large discrepancy between the query times for the lower and upper bound
weighted cores and the time and cost weighted cores. Our experiments showed a clear reason for
this difference. The problem with the time and cost approach is that we end up using only one lower
bound to approximate the whole interval instead of two bounds as our preferred approach does. The
lower and upper bound weighted core therefore approximates the lower bounds better. Figure 5.4(a)
shows a small example where the lower and upper bound core are far superior to the time and cost
core. Let us assume the parameter interval to be set to [0, 10]. In this example we would approximate
the distance from u to v with the line 25 + p · 25 for the time and cost core. This only yields an
acceptable lower bound for very small values of p. With the lower bound core we would approximate
with 10−p

10
· 25 + p

10
· (100 · 250) = 25 + p · 32.5. For p = 10 this leads to a lower bound of 275 for the

time and cost core and a lower bound of 350 for the lower and upper bound core. The discrepancy of
75 is relatively small for this simple example. In larger graphs this discrepancy will get even larger.
Since the time and cost core generates less accurate lower bounds as the lower and upper bound cores,
the CALT algorithm has to search a considerably larger graph. This effect can be seen in the larger
query times and larger search space in Table 5.5 compared to Table5.4. Especially in the parts of the
hierarchy that have a large variation of possible routes, the time and cost core are outperformed by
the lower and upper bound core by far, as the lower and upper bound core provides a more suited
approximation on the right end of every parameter interval. This can be seen in Figure 5.4(b). If
we combine Figure 5.4(b) with Figure 5.3(a), we can see that we get more comparable query times
for the two core approaches in the parameter values that provide only a small variation as shown in
Figure 5.3(a). The lower and upper bound core with 32 or 64 avoid landmarks – depending on the
size of the core – are therefore the method of choice for the landmark-based MCCH algorithm. An
interesting side note is that Table 5.4 shows a stronger effect for the switch from 32 to 64 landmarks
for the time and cost core approach. Still, the time and cost core cannot reach the performance of the
lower and upper bound core.

Summary. If we perform no landmark processing, the variable-split method will outperform the
half-split method. In combination with the landmark approach, the half-split method gave the slightly
better query times. It seems that somehow the half-split approach benefits more strongly from the
CALT algorithm. Since the space consumption and preprocessing times are also better, we recom-
mend the half-split method in a combination with a core of at least 10 000 nodes with 64 avoid land-
marks for the best query times. Still, additional experiments showed that for some other cost functions
the variable-split method might be superior to the half-split method. Especially if the effect we depict
in Figure 5.3(a) is even stronger, the variable-split method might outperform the half-split method.
As the most promising result we can present our core method. The core method proves very useful, as
it significantly reduces the preprocessing time. Since we generate a large number of possible routes
in the top levels of the hierarchy and the graph becomes very dense, the preprocessing time for the
topmost levels is considerably large. Therefore, we can save a lot of preprocessing time with the core
approach even if we only use a small core. In combination with the landmark approach we get even
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Figure 5.4: Illustration of differences between the time and cost core compared to the lower and upper
bound core.

better query times than we get with the complete contraction without core. Still, our best results are,
as Table 5.4 presents, with a contracted core and landmarks.

5.6 Pareto-SHARC vs MCCH
Even though the SHARC algorithm only manages to process continental-size road networks heuris-
tically and we perform exact shortest path queries, we perform pretty well in comparison. Our com-
parison to the Pareto-SHARC algorithm bases on the contractions for the European road network for
the parameters intervals [0, 24] and [0, 512]. These contractions roughly represent the elongation in
travel time Pareto-SHARC allows for the the pure ε-heuristic with ε = 0.02 and the combination with
the γ-heuristic with γ = 1.0 and ε = 0.5 respectively. We present an overview of the comparison in
Table 5.6. For the [0, 24] parameter interval our algorithm performs an about as fast precalculation
as the pure ε-heuristic of the Pareto-SHARC algorithm. This is even more impressive, since we use
an updated version of the European road network with three times the number of edges. We cannot
compare the query times directly since Pareto-SHARC actually calculates all possible non-dominated
paths for its tightened domination criteria. But even if we perform our algorithm five times, which
resembles the number of various routes SHARC can provide without resulting in extremely large
preprocessing and query times, we can perform a faster query. For the parameter interval [0, 512] we
can only compare ourselves to the combination of the γ- and the ε-heuristic, since SHARC does not
manage to preprocess continental-size road networks without both heuristics in less than 24 hours if
they set ε to 0.1 or higher. But even compared to the double heuristic, which again limits the number
of available paths to around five, we perform very well. Our preprocessing time takes about the same
time as preprocessing for the Pareto-SHARC algorithm and a number of five subsequent queries takes
only about half the time of a single Pareto-SHARC query. An additional bonus is that we manage
to provide far more than the five different routes provided by the SHARC algorithm. Our approach
offers a far more flexible choice of routes as we manage to provide 45 different routes on average.
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Table 5.6: Comparison of the multi-criteria CH to SHARC on the European road network
MCCH SHARC

parameter core preprocessing query ε γ preprocessing query
[HH:MM] [ms] [HH:MM] [ms]

24 10 000 2:32 1.48 0.02 - 4:10 48.1
512 10 000 9:24 3.50 0.50 - >24:00 -
512 10 000 9:24 3.50 0.50 1.0 7:12 35.0
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Figure 5.5: Comparison of the half-split method and the variable-split method for Germany in a
complete contraction.



Chapter 6

Conclusion and Outlook

6.1 Conclusion

In this thesis we present the first algorithm for fast flexible queries on continental-sized road networks.
Although our algorithm is the first to provide such queries, we achieve query times comparable to
single-criteria algorithms. We have managed to engineer the preprocessing to be very time- and
space-efficient. As flexibility grows more important each year, algorithms – like the one we presented
– also gain in importance. We managed to engineer our algorithm in such a way that we can provide
fast queries in a server scenario, where a client performs a sequence of queries. Even though our query
times are slower then the best available single-criteria methods, we provide very fast queries that are
suitable for any server scenario as other parts of a client server communication takes more time than
our query. Most algorithms presented so far use the Pareto-approach to provide flexibility. We have
managed to avoid the problems of Pareto-optimality completely and still provide a set of very diverse
routes. The amount of routes we provide is our main advantage in comparison to other flexible routing
approaches. Also, we manage to provide exact shortest path queries, even for continental-sized road
networks.

6.2 Future Work

There is still a lot of work to be done, though. Our algorithm still needs a lot of tuning. We might
avoid most of the I/O-time by utilizing in-memory compression. This would result in even faster pre-
processing times. Also, our algorithm can be parallelized very easily to perform faster preprocessing
if we perform the contraction process for each split in parallel. This is a straight forward paralleliza-
tion, since the different parts of the split are completely independent. Our parameter interval splitting
could also possibly be tuned to perform better. We could factor in the length of the partial shortcuts
to decide on better splitting points. Also, we could possibly combine some top level interval later if
they seem to be very similar. Since most of the preprocessing time is spent in the top level interval
of the hierarchy, this could save a lot of preprocessing time. We believe it to be possible to compute
all shortest paths between a source and target pair efficiently with our algorithm. We believe this to
be possible in proportional time to the number of different routes between the source and target pair.
Also, it would be interesting to adapt our algorithm to a continuous range of parameter values. This
should be possible in principal, but we believe it to be more of an academic question due to the added
level of complication it requires. It should be possible to add even more flexibility if we allow a linear
combination of more than two weight terms. The principal ideas our algorithm bases on are even valid
in a multi-criteria scenario with more than two weight terms. Still, there remains the question of how

59



60 CHAPTER 6. CONCLUSION AND OUTLOOK

to efficiently compute necessary shortcuts in such a scenario. We also believe that time-dependent
routing should become flexible. This problem presents an even larger challenge, since it is even more
difficult to optimize for a single criterion that is not the travel time but is also time-dependent. In
analogy to our algorithm one might choose the term of time-dependent energy costs. As we calculate
the cost term for our algorithm in dependence of the traveling speed one may factor in the different
average traveling speeds during different times of the day, e.g., slow moving traffic during rush-hour.
Also, a lot of other possible criteria we can factor in our cost term may depend on the time. For
example special toll rates during different times of the day. The main problem is the time-dependency
of the edge weights, and therefore most likely all Pareto-optimal pairs of travel time and the other
weight term need to be computed. But hopefully, road networks are good-natured enough that this
causes no hard problems in practice.
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Appendix A

Datastructures

This appendix illustrates some of the data structures used in the algorithm. The data structures pre-
sented are the static and the dynamic graph as well as the priority queue. We use the priority queue in
the contraction process as well as during the queries. In contrast we only use the dynamic graphduring
the contraction process, since, due to the shortcuts that we have to add in the process, the graph is
subject to a lot of changes. During the query we use the static graph, since we do not have to change
the graph. Finally we describe the file format we use for the multi-criteria Contraction Hierarchies.

A.1 Static Graph

The static graph is a common representation of the two graphs G↑ and G↓ as described in the pre-
liminaries. It bases on the forward star representation [BBK03]. Due to our bucketing structure we
use two adjacency arrays as a representation of our graph. This kind of representation uses a separate
node and edge array. Since we need access to the incoming edges during the backward search of the
Contraction Hierarchies query, we also store backward edges at each nodes. We sort the edge array
using two criterion’s. The first criterion is the source node. Therefore, the outgoing edges of a node
are stored in order. Those resulting edge groups are then sorted into three groups. First the forward,
then the bidirectional and finally the backward edges. We store, in addition to the normal edge, a
sentinel edge at the front and a sentinel node at the end of the respective arrays. Note that the first
edge id of the sentinel node actually point to invalid memory regions. We could prevent this with an
additional sentinel edge at the edge of the edge arrays. But since the first edge of the sentinel edge
will not be accessed in a correct algorithm, we do not insert the additional edge. The sentinel edge
in the edge arrays prevent two things. Firstly we prevent edge underflows during a backward search
edge array scan, secondly we prevent the ambiguous edge id zero.

Figure A.1 and Figure reffig:bucketing-detail depict a possible search graph and its representation
in the search graph as we already described in Section 4.5.3. For simplicity reasons we limit the
example to only two possible parameter values. Note that if we allow more parameters we can get
edges that are in a subset of the buckets. It is even possible for one edge to belong to a nonconsecutive
set of buckets, e.g., one edge may belong to the buckets one, four, five and nine. We also do not show
the landmark distances. Assuming we can map all nodes correctly without needing extra mappings,
we can store the landmark distances in a number of |Top − Level| arrays of length |core|. If we
combine it with the id of the top level interval, the ambiguous mappings from graph nodes to core ids
becomes unique. This allows for an O(1) access to the landmark distances.
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Figure A.1: Sample graph for two parameter values (0, 1). The graph consists of a hierarchy part and
two top level cores. The nodes of the first core are marked in bold; the nodes of the second core are
colored differently than the other nodes.
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A.2 Dynamic Graph
We extend the basic structure of the static graph to form a dynamic graph. We augment the edge array
for each node to hold possible future edges. By default we choose the edge array for each node to
be able to hold twice the original edges. The actual size may be controlled by a tuning parameter
to control the overhead. Whenever we need to insert an edge into the graph, the dynamic graph will
replace one of the empty slots until the edge array is completely filled. If we have to insert a further
edge, we will double the size of the current edge array again, and we will reallocate the edges of
the node at the end of the edge array. This may lead to a long running operation. Also, this method
introduces a a lot of wasted space, since many holes may be generated in the edge array. To overcome
this shortcoming, we may choose to compact the graph from time to time. Since compaction may
have to move a huge amount of edges this operation should be used very carefully.

A.3 Priority Queue
The current implementation uses an adressable binary heap priority queue implementation provided
by Dominik Schultes. He devided the heap into a data array and an index array. In the data array
the user may store additional user data. In the index array he realizes the actual heap functionality.
An item of the heap itself is just represented by a key, thus increasing the performance of a single
heap operation, since only small elements have to be moved. The heap will not move the user data.
Therefore, the index of an element in the heap has to be known in advance. We store this number
within the node array, thus interweaving the priority queue and the graph. We also have to update this
index into the heap every time we perform a heap operation.

A.4 Multi Criteria Contraciton Hierarchy Fileformat
The multi-criteria contraction hierarchy input and search graphs are stored using so called protocol
buffers. The protocol buffers are a data-structure developed by Google and made available to the
public. Its original purpose is the use as a data interchange format in servers but are also quite useful
in data storage. The goal is to serialize data in and xml like manor but at the same time avoid the
overhead of ascii-files. The file format for a protocol buffer file is specified in plain text format.
The text format then is compiled into source and header files providing all necessary routines for file
access.

The graph format of a mcch graph is divided into multiple parts. First there is a single protocol
header message containing the number of nodes n, the number of top level interval t and the number
of edges e in the graph. This header is then followed by n node messages and e edge messages.
Finally a number of t top level bounds follows.

A node message contains the ID as a mandatory part of the message with ID ∈ [0, n − 1].
Optional the id in the graph as specified by the PTV-AG may be stored as well as a node level for a
contracted node and the id of the country the node belongs to. The node messages may be omitted for
a contracted hierarchy, as node levels are not necessary if the edges are already filtered into upwards
edges for the forward and backward graph.

The edges contain a source and a target that are guaranteed to lie in [0, n− 1]. Optional following
parameters may be specified:

• direction: either eCLOSED, eFORWARD, eBACKWARD or eBIDIRECTIONAL describing
the directions the edge may be traveled in. Note that in a normal multi-criteria contraction
hierarchy no closed edge should be stored.
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• weight: the weight function of the edge split into its linear components starting with the constant
part.

• middle node: if the edge describes a shortcut the middle node can be stored to enable shortcut
extraction.

• necessity interval: the intervals for which parameters a given edge is necessary. This is espe-
cially important, since a lot of edges can be skipped during the search yielding faster speedups.

After the edges we can choose to write the bounds of the splits generated by our splitting approach.
These can be useful, as they provide a good choice for possible buckets.
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