

Advanced Route Planning and Related Topics

G.V. Batz, M. Kobitzsch, D. Luxen, *P. Sanders*, D. Schieferdecker http://algo2.iti.kit.edu/routeplanning.php

Agenda of this Talk

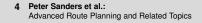
- Time-dependent Routing
- Energy-efficient Routing
- Alternative Paths
- Future Route-Planning

- I -Time-dependent Routing

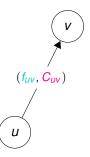
3 Peter Sanders et al.: Advanced Route Planning and Related Topics

Time-dependent Minimum Cost Routing

Edge weights are pairs (f, C)


- Travel time function f: point in time $\mapsto \Delta$ travel time
- Cost function C : point in time \mapsto cost

Kinds of user queries:


- optimal route for fixed departure time τ_0
- cost profile for departure time interval [a, b]

Special case FIFO earliest arrival routing

f has FIFO-property and C := f

FIFO Earliest Arrival vs. Mininimum Cost

FIFO earliest arrival Routing

- waiting does not help
- optimal route has optimal prefixes
- solved efficiently by [TCH09] [ATCH10] [SHARC08] [CALT08] [SHARC10]

Special case of Minimum Cost routing: C := f + c

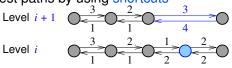
- waiting does not help nice
- suboptimal prefixes of optimal routes not nice
- Solved unefficiently by bicriteria pareto search
- \Rightarrow Difficult enough!

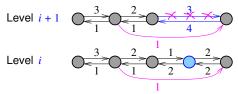
Application: optimize travel time $+ p \cdot distance$

FIFO Earliest Arrival Routing with Contraction Hierarchies

German road network: $\approx 4.7\,M$ nodes and $\approx 10.8\,M$ edges

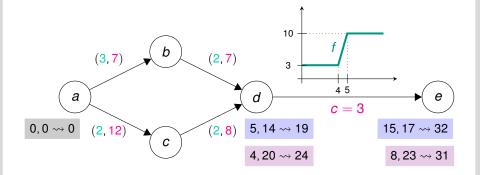
	ε	space	EA query		profile query		error [%]	
method	[%]	ovh. [B/n]	[ms]	SPD	[ms]	"SPD"	MAX	AVG
TCH	-	898	0.85	1 252	1114.96	11.75	0.00	0.00
ATCH	1.0	144	1.15	922	33.27	31.88	0.00	0.00
ATCH	2.5	112	1.24	854	36.56	27.65	0.00	0.00
ATCH	~	22	1.47	720	77.66	13.66	0.00	0.00
CALT	-	50		280	-	-	0.00	0.00
SHARC	-	150		60		0.02	0.00	0.00
SHARC+ALT	-	219		238	-	-	0.00	0.00
inexact TCH	1.0	118	0.72	1 467	2.96	358.13	1.03	0.27
inexact TCH	2.5	76	0.74	1 429	2.09	506.39	2.44	0.79
approximate CALT	-	50		804		-	13.84	
heuristic sharc	-	137		2164		1.04	0.61	
space-eff. SHARC	-	68		1 1 7 7		-	0.61	
space-eff. SHARC	-	14		491		-	0.61	


6 Peter Sanders et al.: Advanced Route Planning and Related Topics


FIFO Earliest Arrival Routing with Contraction Hierarchies

- Order nodes by importance
- Obtain the next higher level by contracting the next node
- Preserve shortest paths by using shortcuts

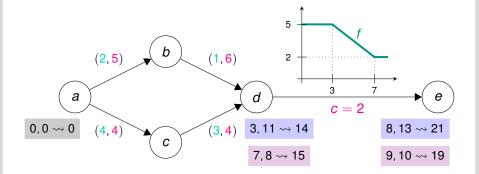
But shortcuts are not always needed:


Difficult if optimal routes can have suboptimal prefixes

7 Peter Sanders et al.:

Advanced Route Planning and Related Topics

Suboptimal Prefix of Optimal Route – Example 1

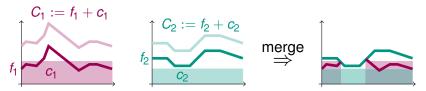


When a little loss in time eats up a great gain in distance.

8 Peter Sanders et al.: Advanced Route Planning and Related Topics

Suboptimal Prefix of Optimal Route – Example 2

When an an advatage in time can not compensate a smaller distance.

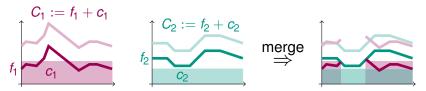

9 Peter Sanders et al.: Advanced Route Planning and Related Topics

Shortcuts – Difficult with Suboptimal Prefixes

- **1. Less shortcuts can be omitted** — condition harder to fulfill: $\forall \tau : f_1(\tau) \le f_2(\tau) \land c_1 \le c_2$
- 2. Merging shortcuts removes less information — some subotimal prefix information must be kept
- 3. Finding a witness pareto profile set is really expensive — pareto profile search takes much time

We hope to overcome by careful use of (conservative) heuristics

10 Peter Sanders et al.: Advanced Route Planning and Related Topics


Department of Informatics Institute for Theoretical Informatics, Algorithms II

Shortcuts – Difficult with Suboptimal Prefixes

- **1. Less shortcuts can be omitted** — condition harder to fulfill: $\forall \tau : f_1(\tau) \le f_2(\tau) \land c_1 \le c_2$
- 2. Merging shortcuts removes less information — some subotimal prefix information must be kept
- 3. Finding a witness pareto profile set is really expensive — pareto profile search takes much time

We hope to overcome by careful use of (conservative) heuristics

10 Peter Sanders et al.: Advanced Route Planning and Related Topics

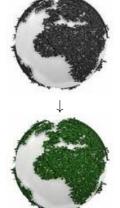
Department of Informatics Institute for Theoretical Informatics, Algorithms II

- II -Energy Efficient Routing

11 Peter Sanders et al.: Advanced Route Planning and Related Topics

due to multiple input parameters complicated problem

- type of vehicle
- road characteristics
- driver behaviour
- physical laws



so why even care about energy efficient routing?

- to save money on gas?
- to save the world?

$\ldots very$ hard problem for something that is not going to happen

ightarrow still interesting algorithmic problems to consider



so why even care about energy efficient routing?

- to save money on gas?
- to save the world?

 $\ldots very$ hard problem for something that is not going to happen

 \rightarrow still interesting algorithmic problems to consider

Resulting subproblems

- fast GPS matching
- classification of road characteristics, e.g.
 - elevation profiles
 - detection of traffic lights
 - • •
- simplification of energy consumption models
- automatic driver classification
- adaptable route planning algorithms (e.g. FlexCH)

- use categorization to tackle large parameter space
 - roads (surface, slope, ...)
 - intersections (right of way, traffic lights, ...)
 - drivers (aggressive, careful, ...)
 - vehicle
- utilize detailed GPS-traces
- result: large scale energy consumption model

		В	
	stamp	latitude	long
	econds	degree	degree
	1296660337	49.0902	8.420
-	1296660338	49.0902	8.4262
5	1296660339	49.0902	8.42604
6	1296660340	49.0902	8.4259
7	1296660341	49.0902	8.42578
8	1296660342	49.0902	8.42563
9	1296660343	49.0902	8.42547
10	1296660344	49.0903	8.4253
11	1296660345	49.0902	8.42511
12	1296660346	49.0903	8.42494
13	1296660347	49.0903	8.42477
14	1296660348	49.0903	8.42458
15	1296660349	49.0903	8.4244
16	1296660350	49.0903	8.42423
.7	1296660351	49.0904	8.42405
3	1296660352	49.0904	8.42387
	1296660353	49.0904	8.423
	1296660354	49.0904	8.42
	296660355	49.0905	8
	660356	49.0905	
		10.000	

Acceptance of energy efficiency is crucial

- hourly wages model
- consider combination of energy savings and time spent
- offer as alternative
- usage in electric vehicle range prediction
- Iet user tune parameters for his best choice ...
 - ... or even tune automatically

- III -Alternative Paths

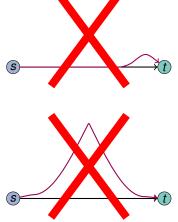
17 Peter Sanders et al.: Advanced Route Planning and Related Topics

Department of Informatics Institute for Theoretical Informatics, Algorithms II

Alternative Paths

Just the optimal route might not be enough \bigcirc \Rightarrow providing meaningful alternatives

- only slightly longer
- sufficiently disjoint
- locally optimal

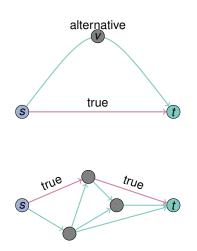


Alternative Paths

Karlsruhe Institute of Technolo

Just the optimal route might not be enough \bigcirc providing meaningful alternatives

- only slightly longer
- sufficiently disjoint
- locally optimal


19 Peter Sanders et al.: Advanced Route Planning and Related Topics

Department of Informatics Institute for Theoretical Informatics, Algorithms II

Alternative Paths

Several previous approaches exist:

- Via Nodes Alternatives (Abraham et al. SEA2010)
- Alternative Graphs (Bader et al. TAPAS 2011)

Karlsruhe Institute of Technology

Alternative Paths

Via Nodes Alternatives

Improve results:

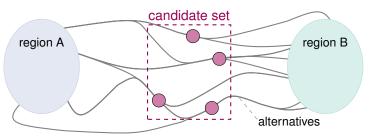
CH with relaxed shortcuts yields more good candidates

Hasten queries:

- CHASE instead of CH (full Arcflags feasible due to PHAST)
- Store via candidates for all region pairs
 - \rightarrow small candidate set sufficient for each pair
 - \rightarrow fast lookup of alternative paths

20 Peter Sanders et al.: Advanced Route Planning and Related Topics

Alternative Paths


Via Nodes Alternatives

Improve results:

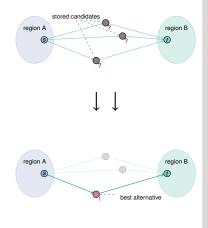
CH with relaxed shortcuts yields more good candidates

Hasten queries:

- CHASE instead of CH (full Arcflags feasible due to PHAST)
- Store via candidates for all region pairs
 - \rightarrow small candidate set sufficient for each pair
 - $\rightarrow~$ fast lookup of alternative paths

21 Peter Sanders et al.: Advanced Route Planning and Related Topics

Department of Informatics Institute for Theoretical Informatics, Algorithms II


Alternative Paths

Procedure

Preprocessing:

- Partition graph
- Compute via nodes between all boundary nodes of each region pair

- Lookup via candidates
- Evaluate alternatives
- Report best one

Alternative Paths

Procedure

Preprocessing:

- Partition graph
- Compute via nodes between all boundary nodes of each region pair

- Lookup via candidates
- Evaluate alternatives
- Report best one

Alternative Paths

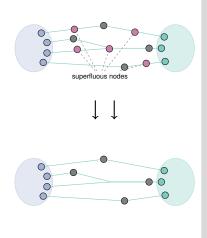
Procedure

Preprocessing:

- Partition graph
- Compute via nodes between all boundary nodes of each region pair

- Lookup via candidates
- Evaluate alternatives
- Report best one

22 Peter Sanders et al.: Advanced Route Planning and Related Topics


Department of Informatics Institute for Theoretical Informatics, Algorithms II

Alternative Paths

Preprocessing:

- Many-to-Many queries
- Minimize Via Nodes Set
- Online Computation

- CHASE w. compressed ArcFlags
- Precomputed Via Nodes Labels

- IV -Future Route-Planning

23 Peter Sanders et al.: Advanced Route Planning and Related Topics

Car Routing

- Energy consumption
- Other modelling aspects (traffic lights, turn costs,...)
- Take traffic situation into account
- Extrapolate into the future, e.g., secondary traffic jams

Multimodal Routing

★ ឝ ★

- difficult
- language constrained paths may not be the answer
- consider useful special cases?
 - route alternatives at park-and-ride subway stations ignoring concrete departure times
 - public transportation around a single flight connection
 - • •

Pedestrian and Bicycle Routing

- Models again, danger, fun,...
- Elevation becomes important
- geometric routing on squares etc?
- "online"-routing, e.g., two blocks north five blocks west grasping opportunities for crossing streets

Routing-Intensive Applications

- Multiday trip planning, plan breaks, or multiple ferries (great advertising opportunities?), scenery and sights? Integrate social networking, photos, etc.
- Ride-sharing
- Call-busses
- Real-estate
 - sort offers regarding distances to work, schools, shopping, etc.
 - Show iso-driving-distance maps

Social Networking goes Geographic?

- Integrate with ride sharing
- Crowdsourcing works for OpenStreetMap
- Cooperate with them?
- Use GPS-Traces real-time

Thank you for Your Attention!

Time for Questions

29 Peter Sanders et al.: Advanced Route Planning and Related Topics