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The Retrieval Problem
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Perfect Hash Function (PHF)
Map each key s P S to unique integer i P ID

Retrieval data structure
Associate value v P V to each s P S

Classical implementation: hash table
Store key/ID or key/value pairs

Optimization: do not store S
Undefined behavior for s R S

Applications
Look-up in dictionaries of in-memory DBMSs (like the SAP HANA database [1])

Many more. . . (see Botelho et al. [2])

pS Ñ Vq � t . . .
flag ÞÑ “noun, verb”,
flare ÞÑ “n, v”,
flask ÞÑ “n”,
flash ÞÑ “n, v”, . . . u

p� Ñ Vq optimization



Known Methods
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Perfect Hash Functions
Practical implementations exist: BPZ [3], CHD [4], etc.
Store only constant, sometimes optimal number of extra bits
Retrieval: use a PHF to index an array of values

Direct Retrieval Data Structures
CHM [5], etc.

Prior work Our solution

Construction complicated simpler
inherently sequential easily parallelizable
ñ slow ñ faster

Dynamic operations no (rebuild) yes
Cache misses per query ¥ 2 1� ε



Fingerprint Retrieval (FiRe)
Overview
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fingerprints v1 v2 � � � va

a cells

A bucket

bucket � hash1pkeyq P t1, . . . , mu, fingerprint � hash2pkeyq P t1, . . . , ku
Recursively overflow to next level on fingerprint collision/full bucket
Fingerprints implemented as bit vector for simplicity and speed



Fingerprint Retrieval (FiRe)
Asymptotics
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r-bit values

Expected linear construction time
L FiRe levels, Opnq for each level
Even for L Ñ8: geometric series, as only a constant fraction of the
elements overflow

Constant worst-case query time, since L is constant



Fingerprint Retrieval (FiRe)
Formulae
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a cells per bucket
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Let a1 be the expected number of elements in a bucket

Space overhead per element s � r�pa�a1q�sizepfingerprintsq
a1

bits

Cache misses per query l � b
a1

Calculation of a1: see our paper



Fingerprint Retrieval (FiRe)
Space/Time Trade-Off
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Space overhead s and expected number of cache misses l depend on
a: #cells per bucket
b: average #elements per bucket (� n

m )
k: #possible fingerprint values
r: size of each value

How to choose parameters?
a and k such that a bucket
fits into a cache line
Depending on desired
trade-off
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l -- cache misses

r = 32 bits

opt. encoding a=14,  k=149
bit vector a=15,  k=  32
bit vector a=14,  k=  64
bit vector a=13,  k=  96
bit vector a=12,  k=128



Fingerprint Retrieval (FiRe)
Dynamization
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Updates and deletions
(easy)

Update associated
value in place
Ignore deletions

� � �

static part

pS Ñ Vq � t . . .
flag ÞÑ “noun, verb”,
flare ÞÑ “n, v”,
flask ÞÑ “n”,
flash ÞÑ “n, v”, . . . u

dynamic part

queries updates

∆

Insertions
Needs a dynamic part with keys + some book-keeping information
Answer queries with the static part (FiRe)
Idea:

Overflow new and old element if fingerprints collide
“Block” fingerprint for future inserts
Rebuild when some stability criterion is violated



Fingerprint Perfect Hashing (FiPHa)
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Fingerprint-Based Perfect Hashing (FiPHa)
Special case with large buckets of “empty” values
Associated ID is calculated as rankbucketpvq � a � rankfingerprintpvq
Very space efficient (2.79 bits overhead with 2.78 cache misses)



Experimental Results
Settings
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Configurations of a, b, k such that
l � 1.05 cache misses: FiRe5
l � 1.25 cache misses: FiRe25
l � 1.50 cache misses: FiRe50
Retrieval data structure with FiPHa as PHF (3.78 cache misses)

Base lines
BPZ, CHD-0.5/0.99 from the C Minimal Perfect Hashing Library [6]
CHM-2/3 from our implementation

Datasets
Keys: 100 million unique random 32-bit integers
Values: integers of size r � 8 bits



Experimental Results
Build Times
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4–17 times faster sequential construction for FiRe
FiPHa slower, but faster than competitors



Experimental Results
Space Overhead
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FiRe50 has comparable overhead to most competitors
FiPHa almost on par with best competitor (CHD-0.99)



Experimental Results
Query Times
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FiRe has the best query times due to low number of cache misses
FiPHa comparable to CHD-0.99, but has much faster construction



Summary and Future Work
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Fingerprint Retrieval (FiRe) and Perfect Hashing (FiPHa)
Simple concept, easy implementation
Fast evaluation due to low number of cache-misses
Extremely fast construction, even with sequential implementation
Small space overhead
Highly configurable trade-off
Support for updates, insertions, and deletions

Future Work
Find more compact, yet practical representation of fingerprints
Adapt idea of cuckoo-hashing to fingerprinting
Improve trade-off with different settings for each level
Adapt fingerprinting idea to other data structures
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Thank you
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