
Bachelor thesis

Distributed Kernelization for
Independent Sets

Tom George

Date: 29.11.2018

Supervisors: Prof. Dr. Peter Sanders
M.Sc. Demian Hespe
M.Sc. Sebastian Lamm

Institute of Theoretical Informatics, Algorithmics
Department of Informatics

Karlsruhe Institute of Technology

Abstract

Graphs are mathematical structures used to model networks. Entities in the network are
associated with vertices in a graph. Relationships between entities are described by edges
connecting vertices. A lot of different problems from various domains can be transformed
to problems on graphs. They can then be solved using graph theory. In this thesis we tackle
the NP-hard maximum independent set problem.
An independent set is a set of vertices such that pairwise vertices in it are not connected by
an edge. The maximum independent set for a graph looks for the largest cardinality inde-
pendent set. It is used to solve problems from various domains, like biology or computer
vision.
Kernelization is a technique to reduce the complexity of a problem by computing a kernel
on it. A kernel is exact if solving the problem on the original instance yields the same result
as solving it on the kernel. Exact algorithms for the maximum independent set problem
use the branch-and-reduce paradigm. They shrink the problem instance by computing its
kernel and branch on vertices, if the kernel is minimal. Successive branching and reducing
eventually leads to a base case and the independent set size can be determined. Branching-
and-reducing an instance can be represented as a rooted tree, where a leaf is the base case.
There exists one path from leaf to root, that results in a independent set with the maximum
cardinality.
Related is the maximal independent set problem. A maximal independent set for a graph is
an independent set, whose cardinality can not be increased by adding further vertices to it.
Due to the complexity of the maximum independent set problem it is intractable for most
instances. The computation of a maximal independent set can be used as an approximation
for the maximum independent set. Different approaches have been developed to improve
that approximation. A technique called local search transforms a maximal independent set
into a different maximal independent set with larger cardinality.
Growing problem instances add another problem: They might be too big to fit onto one
machine. Parallelism and distributed computing can be used to tackle this problem.
In this thesis we propose a distributed algorithm using exact kernelization before computing
a high quality maximal independent set. Our kernelization removes degree one and two
vertices to compute a kernel. We prove the exactness of the kernelization and evaluate
the impact on the quality of the maximal independent set. Our results indicate that it
is a promising technique increasing the cardinality of the maximal independent sets up
to 12 percent. We achieve relative speedup up to 30 for the kernelization and maximal
independent set algorithm on 64 processor elements.

Zusammenfassung

Graphen sind mathematische Strukturen zur Modellierung von Netzwerken. Objekte in
Netzwerken werden mit Knoten in einem Graph assoziiert. Beziehungen zwischen Objek-
ten im Netzwerk werden durch Kanten zwischen den Knoten beschrieben. Viele Probleme
aus diversen Domänen lassen sich auf Probleme auf Graphen transformieren. Graphenthe-
orie kann dann benutzt werden, um diese zu lösen. In dieser Arbeit behandeln wird das
NP-harte Problem der größten unabhängigen Menge.
Eine unabhängige Menge ist eine Menge von Knoten, sodass paarweise Elemente daraus
nicht mit einer Kante verbunden sind. Die größte unabhängige Menge für einen Graphen ist
die unabhängige Menge mit der größten Mächtigkeit. Das Problem löst diverse Probleme
unterschiedlicher Domänen, beispielsweise in der Biologie oder Computer Vision.
Kernfindung ist eine Technik zur Komplexitätsreduktion einer Probleminstanz. Dazu wird
der Kern der Probleminstanz berechnet. Ein Kern ist exakt, falls die Lösung des Problem
auf Kern und ursprünglicher Probleminstanz dasselbe Resultat ergeben. Exakte Algorith-
men zur Berechnung der größten unabhängigen Menge benutzen das branch-and-reduce
Paradigma. Sie verkleinern die Probleminstanz durch Kernfindung und verzweigen an
Knoten wenn der Kern minimal ist. Wiederholtes Verkleinern und Verzweigen führt zu
einem Basisfall, der es ermöglicht die Mächtigkeit der unabhängigen Menge zu ermitteln.
Das Verzweigen-und-Verkleinern der Probleminstanz kann als gewurzelter Baum repräsen-
tiert werden. Ein Blatt repräsentiert den Basisfall. Es existiert ein Pfad von Blatt zu Wurzel,
der in einer unabhängigen Menge mit größter Mächtigkeit resultiert.
Verwandt ist das Problem der maximalen unabhängigen Menge. Die Mächtigkeit einer
maximalen unabhängigen Menge kann nicht durch das Hinzufügen weiterer Knoten ver-
größert werden. Aufgrund der Komplexität des größte unabhängige Menge Problem ist
dieses unlösbar auf den meisten Instanzen. Die Berechnung einer maximalen unabhängi-
gen Menge kann als Approximation für die größte unabhängige Menge verwendet werden.
Verschiedene Ansätze verbessern diese Approximation. Eine Technik namens lokale Suche
transformiert eine maximal unabhängige Menge in eine andere maximal unabhängige Menge
mit größer Mächtigkeit.
Wachsende Probleminstanzen erzeugen ein neues Problem: Sie passen eventuell nicht in
den Speicher einer Maschine. Parallelismus und verteiltes Rechnen kann zur Lösung dieses
Problems verwendet werden.
In dieser Thesis stellen wir einen verteilten Algorithmus vor, der exakte Kernfindung be-
nutzt um hochqualitative, maximale unabhängige Mengen zu berechnen. Unsere Kernfind-
ung entfernt Knoten mit Grad eins und zwei, um einen Kern zu finden. Wir zeigen, dass un-
sere Kernfindung exakt ist und evaluieren ihren Einfluss auf die Qualität unserer maximalen
unabhängigen Menge. Unsere Ergebnisse zeigen, dass Kernfindung eine vielversprechende
Technik ist, welche die Größe der maximalen unabhängigen Menge um bis zu 10 % erhöht.
Wir erreichen relativen Speedup von bis zu 30 für die Kernfindung und den Algorithmus
zur Berechnung der maximalen unabhängigen Menge auf 64 Prozessorelementen.

Acknowledgments

I’d like to thank my supervisors Demian Hespe and Sebastian Lamm for their guidance
during my thesis. Also I’d like to thank Prof. Sanders for the opportunity to work on this
thesis. Last, I’d like to thank my friends and family for their love and support.

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernommenen
Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technolo-
gie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet
habe.

Ort, den Datum

Contents

Abstract iii

Zusammenfassung v

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 2
1.3 Structure of Thesis . 2

2 Fundamentals and Related Work 3
2.1 Basic Definitions . 3

2.1.1 Related Problems . 4
2.2 Distributed Memory and Graphs . 4

2.2.1 Degree two paths spreading multiple PEs 5
2.2.2 Graph Partitioning . 6

2.3 Related Work . 6
2.3.1 Exact Algorithms . 7
2.3.2 Approximation for Maximum Independent Set 7
2.3.3 Parallel Algorithms for Maximal Independent Set 8

3 Reduction Rules 9

4 The Algorithm 15
4.1 Computing the Kernel . 15

4.1.1 Local Work . 15
4.1.2 Communication Between PEs . 19
4.1.3 Putting it All Together . 24

4.2 Computing the maximal independent set 25
4.3 Implementation Details . 27

5 Experimental Evaluation 29
5.1 Experimental setup . 29
5.2 Running Time and Scalability . 30
5.3 Impact of Partitioning . 34
5.4 The Effect of Kernelization . 35

ix

6 Discussion 39
6.1 Conclusion . 39
6.2 Future Work . 39

A Results of Experiments 41

Bibliography 43

1 Introduction

1.1 Motivation

The maximum independent set problem is a well studied NP-hard problem [19]. For a
given graph the maximum independent set problem looks for the largest cardinality subset
of vertices such that elements are pairwise non-adjacent.

A related problem is the maximal independent set (MIS) problem, which looks for an
independent set whose cardinality can not be enhanced by adding further vertices to it. The
maximal independent set problem can be solved in polynomial time.

Its applications cover biology [10], coding theory [11], computer vision [14], route plan-
ing [27] and analysis of social networks [31]. To give a concrete example we look at the
protein docking problem. For two proteins it finds out whether they interact to form a sta-
ble complex and if so how. Graph theory is used to solve this problem [18]. The proteins
can be represented as a set of potential hydrogen bond donors and acceptors. A clique-
detection (equivalent to the independent set problem) algorithm is used to find maximally
complementary sets of donor/ acceptor pairs.

Due to the complexity of the maximum independent set problem, most real world and
synthetic instances are intractable. For almost all of them we can only manage to find
comparably large independent sets with close to maximum cardinality.

Extensive study has been invested to deal with the complexity of the problem. A promising
technique is called kernelization. Kernelization looks to reduce the size of the problem
instance while maintaining optimality. The initial graph is shrinked by removing vertices
with a set of reduction rules. These reduction rules exploit properties of vertices to decide
whether or not they are part of the solution. A kernel is the result of exhaustively application
of the reduction rules. For a vertex in the kernel it is not trivial to decide whether or not it
belongs to the solution. We can say that the kernel contains the part of the problem instance
that makes it hard, thus a small kernel is desirable.

To fully utilize modern CPUs and their multiple cores, face the challenge of growing real
world instances and improve upon existing (sequential) results we combine kernelization
and parallelization to find high quality independent sets. A distributed version further pro-
vides an opportunity to deal with instances that do not fit onto one machine.

1

1 Introduction

1.2 Contribution

We propose a distributed algorithm that computes a MIS. As preprocessing step we perform
exact kernelization. Our kernel is computed by reducing degree one and two vertices.
These reduction rules were original proposed by Chang et al. [12]. Afterwards we execute
a state-of-the-art parallel MIS algorithm on the kernel.
Our algorithm is designed to exhaustively perform local work, minimize the rounds of
communication and communication overhead.

1.3 Structure of Thesis

In chapter 2 we take a look at the mathematical fundamentals. Also, we shortly survey
related work. Chapter 3 describes the reduction rules we use to compute a kernel. We
cover the degree one and degree two path reduction. Chapter 4 explains the details of
our distributed algorithm. We first describe the kernelization and afterwards the maximal
independent set algorithm. Chapter 5 is devoted to the experimental evaluation of our
algorithm. In this chapter we examine the speed and scalability of our algorithm as well as
the quality of our result. We conclude this thesis with chapter 6, which reviews our result
and gives an outlook on further work.

2

2 Fundamentals and Related Work

In this chapter we take a look at the required preliminaries and precisely formulate our
problem. We further define our computation model and how we deal with graphs in a
parallel manner. Closing the chapter we shortly survey related work.

2.1 Basic Definitions

A graph G = (V,E) consists of sets V vertices and E ⊆ V × V edges. Vertices v, w ∈ V
are called adjacent, if there is an edge between v and w and thus (v, w), (w, v) ∈ E.
We therefore use unordered pairs {u, v} to represent an edge. For a given G, I is called
independent set if I ⊂ V and ∀i1, i2 ∈ I : {i1, i2} ̸∈ E.
An independent set I for graph G is called maximal if there is no independent set I ′ of G
with |I ′| > |I| and I ′ ⊃ I . It is called maximum, if it has maximal cardinality among all
independent sets for G.
There might be more than one maximum independent set for a graph G. The cardinality of
a maximum independent set for G is called independence number α(G).
For v ∈ V , we define the neighborhood of v as N (v) = {w ∈ V : {v, w} ∈ E}.
Furthermore N [v] := N (v) ∪ v is called the closed neighborhood of v. The cardinality of
the neighborhood for a vertex v, or the number of its edges, d(v) := |N (v)| is called the
degree of v.
A path P is a sequence of distinct vertices (p1, . . . , pn) with pi and pi+1 adjacent for i ∈
{1, . . . , |P | − 1}. Also, if p1 and p|P | are adjacent and |P | > 2 we call P a cycle. We call
a path (or cycle) P degree two path (degree two cycle) if ∀i ∈ {1, . . . , |P |} : d(pi) = 2.
For a degree two path (or cycle) P we define

T (P) := {u ∈ V : d(u) ̸= 2 ∧ ({u, p1} ∈ E ∨ {u, p|P |} ∈ E)}

as termination of P . The following equivalence exists: P is a degree two cycle⇔ T = ∅.
Further, we define for a degree two path P , E(P) := {p1, p|P |} as endpoints of P . The
concept of endpoints does not make sense when looking at a degree two cycle C, so we
define E(C) = ∅. A simple degree two path and its termination as well as endpoints are
shown in Figure 2.1.
Our reduction rules remove vertices and insert new edges. For a graph G = (V,E) and
a subset V ′ of V we define G[V ′] = (V ′, E ′) with E ′ = E ∩ (V ′ × V ′) as the induced

3

2 Fundamentals and Related Work

b

b

b

b

bT

E

Figure 2.1: Simple degree two path with length three. Termination T and endpoints E are marked.
Vertices with degree greater than two are represented with two outgoing edges throughout the thesis.

subgraph of V ′. Moreover, we define an operation on graphs, called edge insertion, as

G⊕ {v, w} := (V,E ∪ {{v, w}})

2.1.1 Related Problems

Closely related to the maximum independent set problem are the minimum vertex cover
and the maximum clique problem. A vertex cover VC is a subset of vertices, such that
every edge of the graph has an endpoint in VC . The minimum vertex cover problem looks
for the smallest cardinality vertex cover. A clique is a subset C of V , such that distinct
pairwise elements from C are adjacent. The maximum clique problem looks for the largest
cardinality clique.
The minimum vertex cover and maximum independent set problem are equivalent and they
are related in the following way. For a maximum independent set I in G, S = V \I is a
minimum vertex cover in G.
We can also transform the maximum clique problem into the maximum independent set
problem. A maximum clique in the complementary graph G = (V,E) where E =
{{u, v} : u, v ∈ V ∧ {u, v} ̸∈ E ∧ u ̸= v} is a maximum independent set in G.

2.2 Distributed Memory and Graphs

Network

PE 0 . . . PE p

Figure 2.2: Distributed memory com-
putation model

Our algorithm is a parallel, distributed memory im-
plementation. We use a fixed number p of process-
ing elements (PEs) to perform our algorithm. The
algorithm is executed p times. Each PE has its own
memory. There is no shared memory. Communica-
tion is achieved over a network connecting the dif-
ferent PEs. To identify PEs among each other we use
an id called rank. Figure 2.2 shows a visualization
of our computation model.
Each PE holds a part of the graph data. We have to
find a way to distribute the graph. For now we use

4

2.2 Distributed Memory and Graphs

b b b b b

b b b b b

(a)

b

bc bc bc+ + +

bc bc bc bc

(b)

b b

bc bc bc bc+ + + +

bc bc bc

(c)

Figure 2.3: A graph with ten vertices is distributed across two PEs. Figure 2.3a shows the graph in
its entirety. Throughout this thesis we are going to illustrate PEs with ellipses. Vertices within that
ellipse are local vertices to the PE. Figures 2.3b and 2.3c show relevant vertices for the orange and
blue PE respectively. Ghost vertices are marked with a plus, while local vertices are bold. Further a
interface vertex is marked red.

this simple approach: a graph G is distributed among p PEs such that every PE holds k = n
p

vertices. The first PE gets the first k vertices, the second the next k and so forth. If |V |
is not divisible by p we have to divide the remainder. The k vertices assigned to a PE are
called local vertices. For the PE with rank i the set V i

local consists of these vertices. Its
incident edges are defined as Ei = {{u, v} ∈ E : u ∈ V i

local}. The set V i
ghost := {v ∈

V \V i
local : {u, v} ∈ Ei} contains the vertices that are adjacent to local vertices of PE i and

are local vertices stored by another PE. These vertices are called ghost vertices. A final
set V i

interface := {v ∈ V i
local : {u, v} ∈ Ei ∧ u ∈ V i

ghost} consists of the local vertices that
are adjacent to ghost vertices. The elements of it are called interface vertices. Overall, the
vertices V i of the graph that are relevant for PE i are a subset of V . They consist of local
and ghost vertices and are defined as V i := V i

local ∪ V i
ghost.

To facilitate talking about distributed graphs, we further define a function PE : V → N0,
that maps v ∈ V to the PE having v as a local vertex and indicator functions for the defined
sets:

IsGhost : (N0, V)→ {0, 1} IsGhost(i, v) :=

{
1 if v ∈ V i

ghost
0 if v ̸∈ V i

ghost

IsInterface : (N0, V)→ {0, 1} IsInterface(i, v) :=

{
1 if v ∈ V i

interface
0 if v ̸∈ V i

interface

IsLocal : (N0, V)→ {0, 1} IsLocal(i, v) :=

{
1 if v ∈ V i

local
0 if v ̸∈ V i

local

An example of a distributed graph is given in Figure 2.3.

2.2.1 Degree two paths spreading multiple PEs

We call an edge E = {u, v} cut edge if PE(u) ̸= PE(v). A path P is called distributed, if
between two vertices on it exists a cut edge. Otherwise it is called local. We define NCE(P)
as the number of cut edges in P .

5

2 Fundamentals and Related Work

If P is distributed, it is partitioned into subsequences, that reside on different PEs. To
formalize this we write P as a concatenation of subsequences

P = P̂ 1 · P̂ 2 · . . . · P̂ n

We call P̂ k path segment of P . Path P is partitioned into NCE(P) + 1 path segments.
Between successive path segments there exists a cut edge. A path segment either has one
or two cut edges.
Figure 2.4a shows an example of a distributed degree two path.

b b b b b b b b b b b
P̂ 1 P̂ 2 P̂ 3 P̂ 4

(a)

b b b

b b b

bc

bc bc

bc bc

bc

+

+ +

+ +

+

bc

bc bc

bc

bc
(b)

Figure 2.4: (a) Shows the global degree two path with nine vertices distributed over four different
PEs. (b) The relevant vertices for each PE. Interface vertices of the path are red while ghost vertices
are marked with a plus. The NCE of the path is three.

2.2.2 Graph Partitioning

A graph partition G is the division of V into k roughly equal sized disjoint subsets, such that
a cost function is optimized. Further each v ∈ V needs to be in one subset and therefore:∪

k

Vk = V

A common example is a partitioning that minimizes the number of cut edges for G.

2.3 Related Work

This section covers related work. We take a look at exact algorithms, heuristic approaches
and parallel algorithms for the maximum independent set problem.

6

2.3 Related Work

2.3.1 Exact Algorithms

A trivial exact algorithm runs in O(p(x)2n) (where p(x) is some polynomial) by simply
checking all 2n possible subsets for independence. More sophisticated algorithms use the
branch-and-reduce paradigm to achieve faster running times [3, 36]. The problem instance
is made smaller by applying a set of rules (reducing), before eventually no more rules
can be applied and a branch is performed creating two problem instances. Branching is
repeatedly done until a base case is reached.

Lots of studies have been invested to improve the base of exact algorithms over the years.
One of the first results was proposed by Tarjan and Trojanowski [35], who proved com-
plexity O(2

1
3
n). The currently best known exact algorithm was proposed by Xiao and

Nagamochi [36] and has a time complexity of O(1.1996n). It was analyzed using a tech-
nique named measure and conquer [16], which uses advanced measure to tighten the worst
case complexity bound.

Akiba and Iwata [3] developed an exact branch-and-reduce algorithm for Vertex Cover
using a variety of reduction rules and showed their practicality. Their result indicates that
kernelization is a useful technique for developing fast algorithms.

2.3.2 Approximation for Maximum Independent Set

Due to the hardness of the maximum independent set problem other approaches have been
developed to calculate high quality maximal independent sets. One heuristic technique is
called local search [32, 22, 6, 13]. Local search iteratively improves a result using simple
operations like vertex insertion, deletion or swap. A technique called plateau search only
allows operations that do not change the value of an objective function.

Andrade et al. [32] proposed an algorithm (ARW) with linear time complexity to determine
whether a solution can be improved performing (1,2)-swaps. A (1,2)-swap replaces one
vertex in the solution with two others. By iteratively applying this algorithm to an initial
solution and the use of suitable data structures, they achieved linear time complexity for
their iterated local search algorithm.

Dahlum et al. [13] developed an algorithm combining kernalization and local search. They
compute an exact kernel by applying reduction rules in an online fashion. Additionally they
show that cutting a part of high degree vertices accelerates local search while maintaining
high quality solutions.

Chang et al. [12] proposed algorithms with linear and near-linear time complexity. Their
linear time algorithm uses exact reductions to remove degree one and two vertices from
the graph. The near-linear time algorithm additionally applies the dominance rule [16]. By
applying the dominance rule u ∈ V can be reduced, if an adjacent vertex v exists, such that
every neighbor from v other than u is also connected to u. They showed that ARW can be
accelerated by finding a large initial solution using their algorithm. The initial solution is

7

2 Fundamentals and Related Work

found by iteratively applying exact reduction rules and cutting high degree vertices when
no more reductions can be applied.

2.3.3 Parallel Algorithms for Maximal Independent Set

Maximal independent set algorithms have been proposed for shared [20, 26, 21, 4, 7] as
well as distributed memory [25, 15, 24, 34].
One of the most famous parallel algorithm for maximal independent set was proposed by
Luby [29]. His algorithm assigns random values to vertices and includes the local minima
v into the solution while removing N [v] from the graph G. In each iteration an indepen-
dent set is removed from G. The algorithm terminates when all vertices are removed, the
solution is the union of the removed independent sets.
Blelloch et al. [7] showed that the dependency for a greedy MIS algorithm has polyloga-
rithmic height for random graphs with high probability. They proposed a parallel algorithm
mimicking the sequential greedy algorithm. Their algorithm provides a trade-off between
parallelism and work by processing a prefix of the vertices in parallel.
Hespe et al. [23] proposed a parallel shared memory algorithm accelerating kernelization.
They use a variety of reduction rules. Graph partitioning and parallel maximum bipartite
matching are used to apply these in parallel. Furthermore they use a technique called de-
pendency checking to speed up the check if a reduction rule is applicable in the later stages
of the algorithm. They use reduction tracking to stop reducing once it becomes inefficient.
Their result showed that a fast kernelization is a key ingredient for fast independent set
algorithms.

8

3 Reduction Rules

The reduction rules defined in this section and their proofs are proposed in Chang et al. [12].
To extract a kernel we need to remove vertices from the graph to shrink its size and either
include or exclude them from the independent set. We can do that under certain circum-
stances without jeopardizing the correctness of our result. In this thesis we apply reduction
rules on degree one and two vertices. We present the reduction rules in this chapter.
For a given degree one vertex v ∈ V there exists a maximum independent set that includes
v and excludes its neighbor.

Theorem 1 (Degree one reduction). Given a graph G = (V,E), v, w ∈ V , d(v) = 1 and
{v, w} ∈ E. Then

α(G) = α(G[V \{w}])

Proof. To show this we construct a maximum independent set that excludes w.
Consider a maximum independent set I that includes w. Since I includes w it excludes
v. So by exchanging v and w we end up with a different maximum independent set that
excludes w.

With the degree one reduction the following lemma can be proven:

Lemma 1. For a path P , |P | > 2, d(p1) = d(p|P |) = 1, d(pi) = 2 for 1 < i < |P |
exhaustive application of degree one reduction leads to ⌈ |P |

2
⌉ vertices becoming degree

zero. We call such path a chain.

Proof. The Lemma holds for chains of length two and three. Now P is a chain of length >
3. Degree one reduction of p1 leads to the removal of p2. Vertex p1 becomes degree zero.
Chain P becomes a chain P ′ with |P ′| = |P | − 2. With the induction hypothesis this leads
to ⌈ |P

′|
2
⌉+ 1 = ⌈ |P |−2

2
⌉+ 1 = ⌈ |P |

2
⌉ vertices becoming degree zero.

Lemma 2. Consider a path P , |P | > 2, d(p1) = 1, d(p|P |) ̸= 1, d(pi) = 2 for 1 < i < |P |.
We call such a path one sided chain. Exhaustive application of the degree one reduction
leads to decrementing d(p|P |) if |P | is odd and the removal of p|P | if |P | is even. It leads to
⌊ |P |

2
⌋ vertices becoming degree zero.

Proof. The base cases are one sided chains P with length two and three. The lemma holds
for both cases. A one sided chain with length two degree one reduces p1, therefore removes

9

3 Reduction Rules

p2. If it has length three, degree one reduction of p1 removes p2 and its edges. Since its
adjacent to p3, d(p3) is reduced.
For |P | > 2 the degree one reduction of p1 transforms the remainder of P into a onesided
chain P ′ with length |P ′| = |P | − 2. Vertex p1 becomes degree zero. A degree one
reduction does not change the length of the emerging one sided chain is odd or even. With
the induction hypothesis the first part of the lemma holds. For the number of vertices
turning degree zero holds: 1 + ⌊ |P

′|
2
⌋ = 1 + ⌊ |P |−2

2
⌋ = ⌊ |P |

2
⌋.

bcb b

bc bcb b

(a) Degree one reduction on
chains

bcb b

bc bcb b t

t

(b) Degree one reduction on
one sided chains

Figure 3.1: Visualization for
Lemma 1 (a) and Lemma 2
(b)

A visualization for the lemmas is shown in Figure 3.1. While
the black vertices are part of the independent set the white
vertices and dashed edges have been removed by the degree
one reduction.
To further shrink the size of our kernel graph we use reduction
rules applicable to degree two paths and cycles. The follow-
ing theorem applies to degree two cycles:

Theorem 2 (Degree Two Cycle Reduction). Let C be a de-
gree two cycle in G. Then

α(G) = α(G[V \C]) +

⌊
|C|
2

⌋
Proof. A degree two cycle C is a connected component of
graph G, thus α(G) = α(G\C) + α(C).
For |C| = 3 an arbitrary v ∈ C is inserted into I . The removal of N [v] removes C
entirely. For |C| = 4, a degree zero vertex remains which is included into I . If |C| > 4 the
remainder with length |C − 3| forms a chain. With Lemma 1 follows

α(C) = 1 +

⌈
|C| − 3

2

⌉
=

⌈
|C| − 1

2

⌉
=

⌊
|C|
2

⌋

Figure 3.2 shows a visualization for the proof.
We now take a look at degree two paths. The following theorem classifies them based on
the relationship of termination vertices and shows how to reduce them. A visualization for
these reduction rules is displayed in Figure 3.3.

Theorem 3 (Degree Two Path Reduction). Given a graph G and a degree two path P .
Following cases hold

(a) T (P) = {v}
α(G) = α(G[V \{v}])

10

b

b

b ⇒ b

bc

bc

b
b

b
b ⇒ b b

bc

bc

b
b b

bb ⇒ b
b

b

bc

bc

Figure 3.2: Basic cases of degree two cycles.

Proof. Consider an independent set I that includes v. We add vertices from P .
Since v ∈ I ,N [v] is removed from the graph. For |P | = 2 no further vertices can be
included. In case |P | = 3 one vertex in P becomes degree zero and can be added to
I . Is |P | > 3 the remainder of the path forms a chain of length |P | − 2 (two vertices
of P are inN (v)). With Lemma 1 we see that ⌈ |P |−2

2
⌉ = ⌈ |P |

2
⌉− 1 of it can be added

to I .
We show that an independent set I ′ that excludes v has at least the same size as I .
Since v ̸∈ I ′ we can remove it from the graph. Path P becomes a chain of length
|P |. We can apply Lemma 1 to see that ⌈ |P |

2
⌉ vertices from P can be added to I ′.

We see that I contains v and ⌈ |P |
2
⌉− 1 vertices from the path where I ′ contains ⌈ |P |

2
⌉

from the path and therefore |I| = |I ′|.

(b) |P | is odd, T = {u, v} and u, v adjacent

α(G) = α(G[V \{u, v}])

Proof. Let I be independent set and without loss of generality u ∈ I . Again we
add vertices from P . Since u ∈ I we remove N [u] from the graph. For |P | = 1
there is no remaining path. If |P | > 1 the remainder forms a chain with length
|P | − 1 since one endpoint of P is in N (u). With Lemma 1 we see that we can add

⌈ |P |−1
2
⌉ |P | odd

= |P |−1
2

vertices from P to I .
Now we construct an independent set I ′ that excludes u and v. We therefore remove
{u, v} from the graph. Path P becomes a chain of length |P |. With Lemma 1 we see

that we can include ⌈ |P |
2
⌉ |P | odd

= |P |+1
2

vertices into I ′.

This results in I containing u and |P |−1
2

from the path while I ′ contains |P |+1
2

vertices
from the path. Therefore they have the same cardinality.

11

3 Reduction Rules

b

b b

b b

b b

b b

b

b

b

b

b

b b

b

b b

b

b b

b

b b

b

b

b b

b b

bc

b b

b

bc bc b

b

b

bc

bc

b b

bc

bc bc

bc

b b

bc

bc bc

bc

⇓ ⇓ ⇓ ⇓ ⇓

(a) (b) (c) (d) (e)

v u v u v

w

u v u v

Figure 3.3: Visualization for the degree two reduction rules

(c) |P | > 1 is odd, T = {u, v} and u, v not adjacent. With w ∈ E(P) such that
{u,w} ̸∈ E

α(G) = α(G[V \(P\{w})]⊕ {u,w}) + |P | − 1

2

Proof. We show that there exists a maximum independent set that excludes w or u.
Without loss of generality w = p1.
Consider a maximum independent set I with u,w ∈ I . Since u,w ∈ I , N [u] ∩
N [v] ̸∈ I and can be removed from the graph. The remaining path has length |P |−3

2
.

Because I is maximum Lemma 1 states that it contains |P |−3
2

vertices from it aswell.
Let I ′ = I\({u} ∪ P) ∪ {w} (includes w) and I ′′ = I\P (includes u). For their
cardinality holds |I ′| = |I| − 1− |P |−3

2
= |I| − |P |−1

2
= |I ′′|.

Since I ′ includes w we can remove N [w] from the graph. The remaining path has

length |P | − 2. It forms a one sided chain. Reducing it produces ⌊ |P |−2
2
⌋ |P | odd

= |P |−1
2

degree zero vertices that can be added to I ′. Further u is removed because the one
sided chain has odd length (Lemma 2). Now I ′ has same cardinality as I and is
therefore maximum.
Next, we extend I ′′ to be maximum. We removeN [u] from the graph. The remaining
path has length |P | − 1. It again forms a one sided chain. We apply Lemma 2,

⌊ |P |−1
2
⌋ |P | odd

= |P |−1
2

vertices become degree zero and can be added to I ′′. Since |P | is
odd, the one sided chain is even. It does not remove the termination vertex v. Instead
it removes w (v and w adjacent). The independent set I ′′ has same cardinality as I
and is therefore maximum.

12

We saw that a maximum independent set exists that includes either u or w. Such
a maximum independent set definitely contains |P |−1

2
vertices from the path. We

therefore can remove P\{w} from the graph. To assure we end up with a maximum
independent set that excludes either u or w we insert the edge (u,w).

(d) |P | is even and T = {u, v} ∈ E

α(G) = α(G[V \P]) +
|P |
2

Proof. Since u, v ∈ T (P) adjacent, a maximum independent set I never includes
both. If u, v ̸∈ I then |P |

2
vertices from P are in I (I maximum and Lemma 1).

Otherwise without loss of generality u ∈ I . Then N [u] is removed from graph. The

remaining path has length |P |−1 and is a chain. Lemma 1 says that ⌈ |P |−1
2
⌉ |P | even

= |P |
2

can be included. In both cases the same number of vertices get included into a
maximum independent set. The path can therefore be removed from the graph.

(e) |P | is even and T = {u, v} ̸∈ E

α(G) = α(G[V \P]⊕ {u, v}) + |P |
2

Proof. We prove this similiar to the (c) case by showing that there is a maximum
independent set that excludes one element from the termination and includes the
other.
Consider a maximum independent set I and T (P) ⊂ I . The removal ofN [u]∪N [v]
shortens the length of P by two and makes P a chain. Once again Lemma 1, says
that ⌈ |P |−2

2
⌉ = |P |−2

2
= |P |

2
− 1 are included into I aswell.

Next, consider (without loss of generality) I ′ = I\({v} ∪ P). Because it does not
include v and the vertices from the path |I ′| = |I| − |P |

2
. We remove N [u]. Path P

now has length |P | − 1. It forms a one sided chain of length |P |. With Lemma 2

we see that ⌊ |P |
2
⌋ |P | even

= |P |
2

become degree zero and can be included into I ′. Further
since the one sided chain has even length v is removed and not in I ′.
Adding |P |

2
vertices from the path to I ′ makes it maximum, because it has the same

cardinality as I .
Similiar to (c), there exists a maximum independent set that excludes one of the
termination vertices of the path and adds |P |

2
vertices from it. We can remove P from

the graph and insert the edge (u, v).

13

3 Reduction Rules

14

4 The Algorithm

In this chapter we describe our distributed algorithm. The algorithm exhaustively applies
degree one and degree two path reductions until the kernel graph is determined. Afterwards
we compute a MIS on it. Pseudocode is given in Algorithm 1.
At first, we describe the process of the kernelization and afterwards the MIS algorithm.

Algorithm 1: Top-level algorithm
Input : unidirected graph G
Output: Independence number α of G

1 (K,α)←ComputeKernel(G)
2 α′ ←ComputeMIS(K)
3 return α + α′

4.1 Computing the Kernel

b

b

b

b
u v

Figure 4.1: Degree one
reduction of v leads to
degree two reduction of
vertex u

Like most parallel algorithms our algorithm consists of a local
computation part performed on each PE and a communication
phase in which ghost vertices are updated. Simply applying reduc-
tions locally without communicating does not necessarily com-
pute a minimal kernel. That is because reductions may affect ghost
vertices and eventually allow further reduction of vertices on an-
other PE. The very simple example in Figure 4.1 shows such a
case.
We first describe the local part of the kernelization. Afterwards we
explain the communication phase. Unless otherwise mentioned
we describe our algorithm from the viewpoint of PE i.

4.1.1 Local Work

When initialized, our algorithm constructs three stacks Vo, V1 and V2. Each of them holds
the degree zero, one and two vertices respectively. We only push local vertices onto these
stacks.

15

4 The Algorithm

Degree zero vertices are by definition part of the maximum independent set. Due to them
being local there is also no need for communication. For degree one and two vertices there
is a little more work to do. The following subsections cover the details of their reduction.

Degree One Reduction

To degree one reduce a vertex v we locate its single neighbor w. The neighbor is removed.
We decrease the degree of adjacent vertices of w and push them onto one of the stacks if
necessary.

The operation is local if w is a local vertex and not an interface vertex. Otherwise we have
to communicate with other PEs that are affected by the removal of the vertex. In this case
a message containing the id of w is inserted into a buffer and is later communicated.

Pseudocode is given in Algorithm 2.

Algorithm 2: Reduction of degree one vertices
1 Procedure DegreeOneReduction()
2 M ← ∅
3 foreach v ∈ V1 do
4 if d(v) ̸= 1 then
5 continue

6 w ← adjacent vertex to v
7 RemoveVertexAndAdjacentEdges (w)
8 V1 ← V1\v

9 Procedure RemoveVertexAndAdjacentEdges(v)
10 if IsGhost(v) then

// first element in a n-tupel is receiver id
11 MRem ←MRem ∪ (PE(v), v)

12 foreach neighbor u of v in G do
13 Decrease d(u)
14 if IsLocal(rank,v) then
15 Push onto one of the stacks if necessary

16 if IsGhost(u) then
17 MRem ←MRem ∪ PE(v), v)

18 G← G\v

16

4.1 Computing the Kernel

Degree Two Path Reductions

When we deal with degree two vertices our goal is to find maximum length degree two
paths and reduce them. When processing the graph in a distributed way the situation may
occur that a path continues on an adjacent PE. Firstly we look at how to deal with local
paths, then we describe our approach on handling distributed paths.
We noticed during implementation that removing the vertices while expanding the path is
faster than doing it during reduction. Thus we interleave the actual path creation with the
reduction. Everytime a vertex is added to a path it is marked as removed. The finding of
a path is not difficult. A degree two vertex v is added to a new path P . We then check its
active neighbors and add them to the path as well if their degree is two. Otherwise it has
degree greater two and is a termination vertex for P . In that case its degree is decremented.
We also keep count of the number of paths that are attached to a vertex and removed, but not
yet reduced. Such a path is called pending. When we find a termination vertex the pending
counter for it is incremented. One important fact is that vertices are not eligible for a degree
one or degree two reduction if they have pending paths. That is because we cannot predict
its degree before the reduction is performed. Therefore a vertex whose pending counter is
greater zero can not be part of a degree two path.
We can reduce a local path instantly by applying the reduction rules presented in the pre-
vious chapter. A reduction of a path decrements the pending counter for the vertices in the
termination. Also, if a termination vertex becomes eligible for degree one or two reduction
it is pushed on the respective stack. Notice that the reinserted endpoint when reducing a
path with the (c) reduction rule, although being degree two, is not pushed onto V2. The
reason is that it forms an odd path again and is therefore removed, reinserted and pushed
on the stack again. Our algorithm does not make progress and never terminates. This leads
to a special case which we discuss in the next paragraph.

The Order of Path Reductions Might Lead to Different Kernels Consider the
following case. Two non-adjacent vertices u, v are the termination vertices of two paths
P, P ′ with |P | odd and |P ′| even. Lets assume that our kernel is minimal besides the
reduction of these two paths. In the beginning we look at the case in which P is reduced
first. The path is reduced by applying (c) reduction rule. Afterwards there is a degree two
path with length one between u and v. After performing the reduction of P ′ by applying
the (e) reduction rule, the kernel is determined. It contains u, v and the reinserted endpoint
w of P . Since w is not pushed onto the stack our algorithm terminates and the kernel is
determined. Next, we look at the case in which P ′ is reduced first. The reduction inserts
an edge between u and v. When P is reduced, reduction rule (b) instead of (c) is applied.
This leads to the removal of u and v. The kernel has three vertices less.
We see that this far our algorithm might miss a possible reduction. To fix this we need to
put termination vertices {u, v} of a path that is reduced with (c) reduction into a set. Before
we apply the (e) reduction rule we check if the termination vertices of the path are in that

17

4 The Algorithm

set. If they are, we remove both termination vertices from the graph.
The algorithm proposed by Chang et. al [12] does not consider this case and therefore
possibly misses some degree two reductions.
Figure 4.2 illustrates this case.

P ′

P

b

b b

b

b b b
u

v ⇒ b b

bbb

bc bc

⇒ bc

bc bc

bc

bcbcbc

(a)

u

v

w

P ′

P

b

b b

b

b b b
⇒ b b

b b

b bcbc
⇒ b b

b

bc bc

bcbc

(b)

u

v
P ′

P

S = ∅ S = {{u, v}} S = {{u, v}}

b

b b

b

b b b
⇒ b b

b b

b bcbc
⇒ bc

bc bc

bc

bcbcb

(c)

Figure 4.2: This example shows the need to store the termination vertices after a path reduction
with rule (c). Our algorithm performs reduction of an odd path P and an even path P ′ sharing the
same termination vertices. In (a), P ′ is removed first with the (e) reduction rule. Afterwards P is
reduced with the (b) reduction rule. In (b), P ′ is reduced first with the (c) reduction rule. It reinserts
endpoint w. Afterwards P is reduced. Although another degree two reduction is possible, w is
not pushed on the stack and therefore never reduced. Figure (c) shows the way to handle this. A
reduction with the (c) rule puts the termination vertices in a set. Before a reduction with rule (e)
is performed we check whether the termination vertices are mapped. In that case we do not need
to insert an edge between them, because they are removed by reduction rule (b) that now becomes
possible. Therefore we simply remove the termination vertices of the path aswell.

When we expand a path and add an interface vertex to it, we deal with a distributed path.
We identified a path segment of it. For now we are not yet able to reduce this. To do so we
need to acquire knowledge about the paths properties. We need to know the termination,
endpoints and length. The way we gain these information is described in the next section.

18

4.1 Computing the Kernel

4.1.2 Communication Between PEs

Communication is necessary when a PE can not make further local progress. The receival
of information from other PEs might enable local progress again. Our algorithm sends
different messages between PEs. This section discusses these messages.

We already realized that the removal of a vertex might need to be communicated to other
PEs. For this situation we introduce the vertex removal message.

Removal of Ghost and Interface Vertices

Every time an interface vertex u or ghost vertex v is removed during degree one or degree
two reduction, communication is necessary. Other PEs need to be informed about the
removal to update their part of the graph. Sample situations that require communication
are given in Figure 4.3.

We have to tiebreak the situation where two degree one vertices are connected and reside
on different PEs. In such a case the independence number gets incremented twice, since
each PE performs a local degree one reduction. The reception of a vertex removal message
on PE i for a vertex u indicates that a neighbor of it got into the independent set. If v was
degree one reduced ealier and i is smaller than the rank of the sender, it has to remove u
from the independent independent set. This case is displayed in Figure 4.3d.

ub b

b

(a)

vb b

b

(b)
v

b b

b

(c)

b b
vu

(d)

Figure 4.3: The removal of an interface (Figure a) or ghost vertex (Figure b-d) requires communi-
cation. Figure (c) shows a case that requires two communication rounds to fully update. A special
case is shown in Figure (d). Here we need to tiebreak which vertex gets into the independent set.

Next, we look at how we can reduce distributed degree two paths. We do this with a
technique called label propagation (LP). It is described in the next section.

Label propagation

Our situation is the following: a global path P is distributed into path segments on different
PEs. We need to connect them and determine the length, endpoints and termination of P
in order to reduce it. Length and termination are necessary to decide which rule we need
to apply. In case reduction rule (c) is performed, we also need to know the endpoints of the

19

4 The Algorithm

path. The label propagation process consists of passing a label propagation message along
cut edges of path segments until the properties of the path are determined.
A path segment P̂ i that has one cut edge {u, v} (PE(u) = i) is responsible for starting
the LP process. A LP message consists of information about the path (length, endpoint,
termination) and the cut edge {u, v} and is sent to PE PE(v). We mark cut edge {u, v} as
sent.
When PE j receives a LP message different cases can occur; We are able to extend the
path if the PE has a path segment P̂ j that has a cut edge {u, v}. In that case we mark
cut edge {u, v} of P̂ j as received. We can stop the label propagation if all cut edges of
P̂ j are marked received, since all path properties are known to PE j. Otherwise we need
to propagate the message further along the cut edge that is not marked as received. If no
such P̂ j exists then v is a termination vertex of the path. In the special case, d(v) = 0, u
becomes termination vertex of the path. That case occurs when v was degree one reduced
earlier. Again the properties are known and the path can be reduced.
If LP is only started by path segments that have one cut edge certain paths are never re-
duced. An example is given in Figure 4.4c. Here both termination vertices are not aware
that their neighbors have degree two, because they are ghost vertices. Hence the LP pro-
cess is never started. To catch such cases, path segments with two cut edges need to check
whether the cut edge is incident to a termination vertex. They do so by sending a request
termination message for every cut edge to the incident PE. For cut edge e = {u, v} with
PE(u) = i and PE(v) = j the request termination message sent by PE i is answered by
PE j with a send termination message if d(v) ̸= 2 or v has pending paths. The send termi-
nation message contains the cut edge and whether v is active or not. In the special case in
which v was degree one reduced earlier, it contains the tripel (u, u, 0). Then u becomes a
termination vertex of the path and the LP process is started by PE i.
The algorithm could be further improved at this point. A more sophisticated approach
could use the fact that the removal of vertices is already communicated via vertex removal
messages. If the removal of a vertex affects a path segment with two cut edges, it would
need to extract the information from that message and perform further steps. The advantage
is that send termination messages do not need to be sent for inactive vertices. This would
decrease communication volume and rounds. However such an approach is quite error
prone since a lot of special cases have to be considered. Eventually we switched back to
the easier approach of sending the status of each vertex.
With these two new introduced messages, we can be sure that every distributed degree two
path is found (except for degree two cycles, later more on that). The next chapter is devoted
to the actual reduction of distributed paths.

Reducing Distributed Paths

The LP process terminates if a PE is aware of the properties of a path. That is if for a path
segment P̂ j each cut edge is marked as received. Further, if a cut edge is marked as sent

20

4.1 Computing the Kernel

Algorithm 3: Reduction of degree two vertices
1 Procedure DegreeTwoReduction()
2 MLP ← ∅
3 MReqT ← ∅
4 foreach v ∈ V2 do
5 if d(v) ̸= 2∨ already in a path then
6 continue

7 Extend v to be a maximal degree two path P
8 if P is local path then
9 ReducePath (P)

10 else
11 if P has one cut edge {u, v} then
12 MLP ←MLP ∪ (PE(v), u, v, E(P), T (P), |P |)
13 else
14 foreach cut edge {u, v} of P do
15 MReqT ←MReqT ∪ (PE(v), u, v)

16 V2 ← V2\{v}

b

b
b

b
b

b

b

(a)

b

b
b

b
b

b

b

(b)

b

b
b

b
b

b

b

(c)

Figure 4.4: Distributed degree two paths. Properties of the path in case (a) are known after one
round of label propagation, the magenta PE needs to initiate the reduction. Case (b) requires a
tiebreak since both magenta and olive are aware of the path properties after two rounds of label
propagation. The lower ranked PE needs to initiate the reduction. Case (c) shows the need for
request termination messages, otherwise the path would never be reduced.

21

4 The Algorithm

then two PEs are aware of the path properties and in position to initiate the reduction. Then
the lower ranked PE is responsible for initiating the reduction. These two situations are
illustrated in Figure 4.4a and Figure 4.4b.
To inform a PE about the reduction of a path we introduce the path reduction message. We
need to send between zero and two path reduction messages containing the path properties
to perfom the reduction. There is no need for communication if the termination vertices of
P lie in the PE that is responsible for initiating the reduction. We need to send one message
if we deal with cases (a) from Theorem 3, the termination vertices lie in the same PE or one
termination vertex lies in the PE that is responsible for initiating the reduction. Otherwise
the termination vertices lie in different PEs and we need to send two messages. Figure 4.5
gives an example case for each possible situation.

b

b b b

b b

(a)

b

b

b

b

(b)

b

b

b

b

b

(c)

Figure 4.5: After completing the LP process zero (Figure a), one (Figure b) or two (Figure c)
messages need to be sent to inform relevant PEs about the reduction of a path.

b b

b
b
b

Figure 4.6: We
need to communi-
cate to reinsert the
edge to an endpoint
when reducing this
path.

In case the termination lies on a single PE the reduction is quite si-
miliar as when we reduce a local path. The difference is that it is
not guaranteed that the vertices in the termination are still active. An
earlier degree one or two reduction might removed a termination ver-
tex. This does not matter for cases (a) or (b) from Theorem 3 because
these cases remove the termination vertices anyway. Otherwise, the
path dissolves by repeated degree one reduction. Since it has already
been removed these reductions are not performed. We have to apply
Lemma 1 or Lemma 2 depending on whether both or just one vertex in
the termination has been removed. Lemma 2 states that the degree of
the termination vertex has to be reduced if the one sided chain has odd
length. However this is not necessary since we already removed the

path and decremented the degree of termination vertices. We again have to decrement the
pending counter for active termination vertices and increment the independence number.
Additional communication is necessary in case we reduce a path with reduction (c) where
the endpoint that is reinserted is not local. Such a case in show in Figure 4.6. Notice that
the insertion of edges might lead to the creation of new ghost vertices. Such a case is
displayed in Figure 4.7.
Next we look at the case that the termination vertices of a path lie on different PEs. Each PE

22

4.1 Computing the Kernel

performs the necessary actions to their local vertex. When the (c) reduction is performed
the endpoint w with the lower id is reinserted. This reinsertion can be done without com-
munication if it lies in the same PE as one of the termination vertices. Otherwise, the PE
holding the lower ranked termination vertex sends a message to inform the PE PE(w) about
the reinsertion. The PE holding the termination vertex with the lower rank is responsible
for incrementing the independence number.
Again, the case might occur in which a termination vertex v is already removed. Additional
work is necessary if the path would have been reduced with the (c) or (e) reduction. In some
cases v becomes a ghost vertex on another PE j. The prior removal of v did not inform
PE j if an edge from v to u with PE(u) = j has not already existed. We therefore have to
send a vertex removal message for v to the PE that inserts an edge to v when performing
the reduction. Figure 4.8 shows an example case.
The other cases are covered. When reducing with case (a) there is no other termination ver-
tex. Reduction (b) removes both termination vertices anyway. In case (d) an edge between
the termination vertices already exists, so the removal of v is definitely communicated to
the other PE.

Distributed Cycles

During the label propagation section we said that a path segment with one cut edge starts
the LP process. Further, we described the necessity for request termination messages to
detect cases in which no path segment of a path has one cut edge. We said that request
termination messages are ignored if the relevant vertex is part of path segment aswell.
Considering these circumstances, a degree two path that is spread across multiple PEs is
never found and therefore never reduced. To find them we do the following.
A path segment P̂ i has two cut edges, {u, v}, {w, x} with u,w local. It sets its id to mini-
mum id of u and w. Lets assume u is the vertex with the smaller id. A cycle propagation
message is propagated along the cut edge {u, v}. The message contains the cut edge {u, v},
the length and the id of the path segment. It does not matter on which cut edge we sent the
cycle propagation message in case u = w.
When PE j receives a cycle propagation message concerning path segment P̂ j it only
propagates it further along the other cut edge of P̂ j if the id is greater then the id received
in the message. Eventually the PE that originally sended the cycle propagation message

b b b

b b
⇒

b b

bbc bc

Figure 4.7: The reduction of this path creates a new ghost vertex.

23

4 The Algorithm

v

b

b
b
b

b
⇒ b

bbc

bc bc
⇒

b
b

bc

bc bc

Figure 4.8: The reduction of this distributed path shows the case in which a PE creates a new ghost
that is already deactivated. It shows the necessity to resend a removal message if the reduction of a
path inserts an edge to an already deactivated termination vertex.

receives it with the accumulated length of the cycle. It increases α according to Theorem
2.

4.1.3 Putting it All Together

We spent quite some time discussing the necessary ingredients to distributed kerneliza-
tion. Different message types have been introduced and we talked about their handling.
This section is devoted to the assembly of the presented parts into a working kernelization
algorithm.
Let’s quickly repeat what message types have been introduced. The vertex removal mes-
sage informs a PE about the removal of a vertex. For distributed path finding, we need a
label propagation, request and send termination messages. To inform a PE about the details
for a path reduction we need a path reduction message. In case we need to communicate
when reinserting the endpoint of a distributed path we need the reinsert endpoint message.
Although we did not explicitly mention this, we need an additional message. When we
apply Lemma 2 we might need to decrease the number of pending paths for a vertex. For
this case we introduce the decrease pending path message. With these eight messages we
are able to perform the distributed kernelization.
Our main theme is to exhaustively apply local work. Local work consists of degree one
and degree two reductions. Algorithm 4 shows pseudocode.

Algorithm 4: The local work part of our algorithm
1 Procedure LocalWork()
2 while V1 ̸= ∅ ∨ V2 ̸= ∅ do
3 if V1 ̸= ∅ then
4 DegreeOneReduction()

5 else
6 DegreeTwoReduction()

After a PE can no longer perform local work, it is ready to communicate. If every PE
is ready to communicate, messages are exchanged. We handle one message and check

24

4.2 Computing the maximal independent set

if we are able to perform local work again. We do this until all the received messages are
handled at which point we are ready to communicate again. The algorithm stops if no more
messages are sent. Pseudocode is given in Algorithm 5.

Algorithm 5: COMPUTEKERNEL

Input : Unidirected graph G
Output: Kernel graph K and independence number α

1 α← 0
2 Initialize V0, V1 and V2

3 LocalWork()
4 while atleast one of the PEs has data to send do
5 Send messages
6 M ← received messages
7 foreachm ∈M do
8 HandleMessage (m)
9 LocalWork ()

10 Find distributed cycles
11 return (G,α + |V0|)

We did not provide pseudocode for the ReducePath and HandleMessage method. They
perform the actions described in this chapter and the previous one.

4.2 Computing the maximal independent set

After we aquire the kernel graph, our next goal is to calculate a maximal independent set
on it. We do this by using a randomized approach, similiar to LUBYS algorithm [29].
Algorithm 6 shows the pseudocode.

Each PE processes their local vertices and assigns random numbers to them. The random
number for a vertex v has to be shared to other PEs having v as a ghost vertex. Every
vertex v that is a local minimum will be taken into the independent set and thus v and its
neighborhood are removed from the graph. In case v is an interface vertex, we again have
to inform the PEs that have v as a ghost about its removal. They need to remove N [v]
aswell.

It is not necessary to inform other PEs about the removal of interface vertices in N [v].
Even if on PE i there is a vertex v ∈ V i

ghost that has been previously removed by PE PE(v),
since we initialize the random values for every active vertex with the maximum value and
only receive actual random numbers from active vertices, the correctness of our result is
not threatened by such dangling vertices.

25

4 The Algorithm

Algorithm 6: COMPUTEMIS

Input : Unidirected graph G
Output: Size of maximal independent set for G

1 α← 0
2 M ← ∅
3 rvals← array of size |V | initialized with maximum value
4 while |Vl| ̸= ∅ in parallel do
5 foreach v ∈ Vlocal do
6 rvals[v]← random value between 0 and maximum value
7 if IsInterface(v) then
8 foreach neighbor u of v do
9 if IsGhost(u) then

10 M ←M ∪ (PE(u), v, rvals[v])

11 Send messages in M to their destination
12 Receive buffer R containing messages from other pes
13 Set rvals for the received vertices
14 M ← ∅
15 foreach v ∈ Vl do
16 if rvals[v] is smallest among N (v) then
17 Increment α
18 if IsInterface(v) then
19 foreach neighbor u of v do
20 if IsGhost(u) then
21 M ←M ∪ (PE(u), v)

22 G← G\N (v)

23 Send messages in M to their destination
24 Receive buffer R containing messages from other pes
25 Remove every vertex in R from graph

26 return α

26

4.3 Implementation Details

B0 B1
. . . Bn

P o0 . . . o7 G0 G1
. . . G7

o0 o1 o2 . . . o7

Figure 4.10: A message M contains all the individual messages from other PEs. The messages
from a PE are organized in blocks. A block starts with a preamble containing nine elements. The
first element indicates progress, the next eight elements the offset for the group. A group is all
individual messages of a certain type.

We terminate as soon there are no more local vertices to process and return the independent
set size.

4.3 Implementation Details

Our implementation is written in C++ and uses MPI for the communication between pro-
cesses. We use the BSP communication model and implement it with the MPI Alltoall
operation. Alltoall is a collective operation in which every process sends data to all other
processes. Our experiments show that for most of the unpartitioned instances we tested,
there is at least one cut edge between almost every pair of PEs.

A message M received by a PE contains all the individual messages from other PEs (for
it). Message M is structured in the following way: For each PE a block within M exists,
containing all the individual messages from it. Since there are different message types,
we avoid the necessity of a message identifier by grouping them into groups of the same
type. A preamble contains information about a block. It contains nine elements. The first
element is the progress bit. It contains whether or not at least one message has been sent
by that PE this communication round. The next eight elements contain the offset of the
starting position for each group of messages. After the preamble, the individual messages
grouped by type follow. Figure 4.10 shows an overview. Communication is stopped if all
progress bits are zero.

We use adjacency lists to save edges. For each vertex we store the degree and number
of pending paths. To speed up our algorithm, we mark vertices as deactivated rather than
updating the adjacency lists. A vertex is marked as deactivated when its degree and the
number of pending paths are zero. For each vertex we save pointers to path objects storing
information about the path it is part of. A null pointer is stored if it is not part of a path.

The Alltoall operation requires the message to be stored in continous memory. We therefore
buffer messages and copy them before sending. This gives us the possibility to check if the

27

4 The Algorithm

message still needs to be sent. For example, a label propagtaion message is buffered when
a path segment with two cut edges receives a LP message. When we prepare the send
operation, we can check if we received another LP message concerning that path. In that
case we do not need to send the LP message. This way we can reduce the communication
volume.
We insert edges when reducing a path with the (c) or (e) reduction rule. In both cases a
neighbor of the vertex that gets a new edge is removed. We therefore do not append a new
vertex to the adjacency list but rather take the spot of the removed neighbor. This way we
do not need to reallocate memory. It is important to insert a backward edge for a ghost
vertex if the target of the edge insertion is not a local vertex.
We use the xxHash1 hash algorithm to store std::pair in an unordered set.

1https://github.com/Cyan4973/xxHash

28

https://github.com/Cyan4973/xxHash

5 Experimental Evaluation

This section describes the experimental evaluation of our algorithm. We evaluate both
running time and quality of the result of our algorithm and compare it to previous results.
It is structured as follows: First we describe our experimental setup. Next we evaluate
running time and scalability of our algorithm. Both parts of our algorithm, the kernelization
and the computation of the MIS, are evaluated. We test strong and weak scaling behavior.
Afterwards, we take a look at the impact of partitioning on our algorithm. Finally, we
evaluate the effect of kernelization.

5.1 Experimental setup

Our program was compiled with gcc 7 with full optimization turned on (-O3) and uses
Openmpi 1.10. We ran our tests on the Forschungshochleistungsrechner II. A node on this
cluster consists of two deca-core Intel Xeon processors E5-2660 v3 (Haswell) with 2.6
GHz clock rate, 10 times 256 KB of level 2 cache and 25 MB level 3 cache. A node has 64
GB of main memory and a 480 GB SSD. It is connected to the other nodes of the cluster
by an InfiniBand 4X EDR interconnect.
We tested both real world and synthetic instances. While a full overview of our experiments
can be found in the appendix, we restrict ourselves to a few representative candidates in this
section. Table 5.1 shows the real world instances used in this section. We obtained these
data sets from the Laboratory for Web Algorithmics (LAW) [9, 8], the Stanford Large
Network Dataset Collection (SNAP) [28], the 9th and 10th Dimacs implementation chal-
lenge [1, 5] and the Koblenz Network Collection (KONECT) [30].
The LINEARTIME algorithm has a running time of at least 0.5 seconds on each of the
instances from Table 5.1. While our test suite also contains smaller instances, we achieve
no speedup on most of them. That is somehow comprehensible, since the overhead of
communication exceeds the running time of a sequential algorithm. Further small instances
do not require the use of parallelism. It makes sense to include them in our test suite
anyway. We can still use them to examine the quality of our solution.
For the generation of synthetic instances, we use the KaGen graph generator [17]. Table
5.2 displays the synthetic instances we use in this section and the parameters used for their
creation. For weak scaling experiments, we use instances with 220 nodes per core. The n
parameter in KaGen determines the number of vertices as a power of two. Since we create
instances for up to 64 PEs, n is in {20, 21, 22, 23, 24, 25, 26}.

29

5 Experimental Evaluation

name type |n| |m| source

enwiki-2013 web 4206785 91939728 [9, 8]
europe road 18029721 22217686 [5]
indochina-2004 web 7414866 150984819 [9, 8]
orkut social 3072441 117185082 [28]
soc-LiveJournal1 social 4847571 42851237 [28]
uk-2002 web 18520486 261787258 [9, 8]
USA road 23947347 28854312 [1]
youtube-u-growth web 3223643 9376594 [30, 2]

Table 5.1: Real world instances

name graph model KaGen parameters

gnm Erdos-Renyi gen = gnm_undirected, m = n+2 (number of edges as
power of two)

rhgd8 random hyperbolic d = 8 (average degree), gamma = 2.8 (power-law ex-
ponent)

rhgd4 random hyperbolic d = 4, gamma = 2.8

rgg random geometric gen = rgg_2d, r = 0.55 ·
√

log 2n

2n
⇒ 0.00132; 0.00095;

0.0007; 0.0005; 0.00036; 0.00026; 0.00019 (radius)

Table 5.2: Synthetic test instances

For the partitioning of our real world instances, we use the KaHIP framework [33]. We use
fast as preconfiguration.

An experiment for an instance consists of ten runs of our algorithm. Half of the runs
perform kernelization before computing a MIS. We keep track of the time to compute a
kernel and the time until our algorithm terminates. Further we are interested in the kernel
size and the size of the MIS. Since our algorithm is random, we use the arithmic mean of
the result from the different runs.

5.2 Running Time and Scalability

We test the scaling behavior of our algorithm on 2i PEs with i ∈ {0, 1, 2, 3, 4, 5, 6}. The
speedup is defined as the execution time of a sequential algorithm divided by the execution
time of a parallel algorithm on i PEs.

We evaluate the speedup of our kernelization compared to the LINEARTIME algorithm by
Chang et al. [12]. Also we examine the relative speedup of our kernelization. Finally, we

30

5.2 Running Time and Scalability

take a look at the relative speedup of our MIS algorithm. For the relative speedup we divide
the running time on one PE through the running time on i PEs.
Let us start with the speedup of the kernelization. Figure 5.1 shows the speedup of the ker-
nelization over LINEARTIME. The figure contains two plots. When ordering the instances
by its speedup, Figure 5.1a contains the top four, while Figure 5.1b contains the bottom
four instances. Likewise, Figure 5.2 shows the relative speedup of the kernelization. Fig-
ure 5.2a shows the speedup of the top four instances, Figure 5.2b shows it for the bottom
four.
We would like to examine why certain instances perform better than others. To do so, we
need some advanced measures for our instances. We look at the density d of a graph. It
is defined as d = 2m

n(n−1)
, with n and m being number of vertices and edges respectively.

Further, we want to know how many ghost vertices exist on a PE on average. For a run
on i PEs, we sum up the number of ghost vertices for every PE and divide it by i. This
gives us the average number of ghosts per PE. Since absolute numbers are not meaningful,
we divide it by n. We call it ’average percentage of n hold as ghost’ g, and determine it
for i ∈ {2, 4, 8, 16, 32, 64} PEs. Interesting are maxima and minima. These measures are
displayed in Table 5.3.

instance d gmax gmin

enwiki-2013 1 · 10−5 0.5 0.11
europe 1 · 10−7 0.0004 0.0002
indochina-2004 5 · 10−6 0.04 0.005
orkut 2 · 10−4 0.66 0.3
soc-Livejournal1 4 · 10−6 0.38 0.09
uk-2002 1.5 · 10−6 0.012 0.0066
USA-road 1 · 10−7 0.04 0.017
youtube-u-growth 2 · 10−6 0.21 0.04

Table 5.3: Advanced measures for our test instances: d is the density of the graph, g is the average
number of ghosts per PE divided by the number of vertices n. The minima and maxima for g on the
number of tested PEs is displayed.

The best speedup is achieved by the europe instance. It has a speedup of 15 on 64 PEs.
Generally, road graphs work pretty well with our algorithm (USA-road is the exception,
later more). Even the instances where LINEARTIME has a running time smaller than 0.5
seconds achieve speedup with our algorithm (between 5.8 and 6.2). The relative speedup
of the kernelization is 30, the relative speedup of the MIS algorithm is 30 aswell (both
achieved on 64 PEs). Noticable is its low density and small number of ghosts.
Second and third best speedup are achieved by web graphs. The uk-2002 instance has
a speedup against LINEARTIME of 12, while for indochina-2014 it is 7.7. Their relative
speedup for kernelization are 14 and 7.8 respectively. The MIS algorith achieves a relative

31

5 Experimental Evaluation

speedup of 12 and 10. Noticable here is the slightly lower density and average number of
ghosts for the uk-2002 instance.

The rest of the section we examine why the other instances do not scale. Two of the
remaining instances are web graphs (enwiki-2013 and youtube-u-growth), two are social
graphs (orkut and soc-Livejournal1) and the last one is the already mentioned road graph
USA-road. All of these instances do not scale well or at all. The maximal speedup achieved
by any of these instances is the relative speedup of the kernelization by enwiki-2013 (5.3).
The worst instance is orkut.

We try to examine whats the problem with these instances. To do that we take a closer look
at orkut. It is pretty dense and has many ghosts on average. Ghost vertices are redundant
information that require communication to update.

One bottleneck of our implementation is the lookup to check, if a vertex is a ghost vertex.
When a PE receives a vertex removal message, it checks whether that vertex is a ghost.
The case might occur in which it receives a vertex remove message that is not yet a ghost
vertex. That is because our algorithm handles vertex removal messages before reduce path
messages. Therefore the check is necessary. If it is not a ghost, it becomes one and is
immediately deactivated. The lookup takes longer the more ghost vertices exist.

This is a major flaw in our implementation. The argument during implementation for
handling removal messages before reduction messages was, that you do not have to perform
the work of the reduction if the vertex is going to be removed this communication round
anyway. Since this requires a lookup and these are expensive on certain instances we should
have went with the other order. A vertex removal message is probably the most frequently
send message. So everytime such a message is handled, we perform a slow lookup in the
map.

The other instances, except USA-road, suffer from the same problem. They do not perform
as bad as orkut, because they do not have as many ghosts. A dense instance is more likely
to have a large number of ghosts.

The MIS algorithm performs a lookup everytime it receives a random number for a ghost
vertex. Therefore, the same problem arises here. Although it is not quite clear how to fix
this. The algorithm needs to perform this lookup to save the receives random value for its
ghost.

We expect that the USA-road instance performs well, because similiar instances achieve
quite good speedup with our algorithm. But it does not. Despite beeing as dense as europe
its speedup is only 2.8. gmin and gmax are a magnitude larger than on the europe instance.
The values are similiar than those from indochina-2004, which has atleast some speedup.

In a BSP modell, poorly distributed workload might cause long idle times on some PEs.
Just looking at the average number of ghosts over all PEs is probably not the best idea.
There might be many PEs with few ghosts and one PE with a large number of ghost. This
PE might slow down all the others, and cause poor performance overall. We expect this
for the USA-road instance. In the next chapter we test partitioned instances and find out,

32

5.2 Running Time and Scalability

0 10 20 30 40 50 60

0
5

10
15

number PEs

ru
nn

in
g

tim
e

ke
rn

el
iz

at
io

n
/ r

un
ni

ng
 ti

m
e

Li
ne

ar
T

im
e

Speedup against LinearTime

●

●

●

●

●

●

●

●

enwiki−2013
europe
indochina−2002
uk−2002

(a)

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

number PEs

ru
nn

in
g

tim
e

ke
rn

el
iz

at
io

n
/ r

un
ni

ng
 ti

m
e

Li
ne

ar
T

im
e

Speedup against LinearTime

orkut
soc−Livejournal1
USA−road
youtube−u−growth

(b)

Figure 5.1: These figures show the speedup against the LinearTime algorithm on real world in-
stances. Figure 5.1a shows those instances on which our algorithm performs reasonable well, Figure
5.1b those on which it performs poor.

whether that is the case for the USA-road instance.

Before we do this, we take a look at the weak scaling of our algorithm on synthetic in-
stances. Figure 5.4 shows the plot for the different synthetic instances. Figure 5.4a shows
the gnm instance, Figure 5.4b the rhgd8 instance, Figure 5.4c the rhgd4 instance and Figure
5.4d the rgg instance.

For the gnm instance the kernelization does nothing. The rhg instance shows that using
kernelization as a preprocessing step leads to a greater running time. For none of these
instances our algorithm scales. Solely the rgg instance shows some scalability. We are able
to calculate a MIS on an instance with 226 vertices in 0.16 seconds (with kernelization)
and 0.14 seconds (without kernelization). An instance with 220 vertices requirest 0.01 and
0.007 seconds.

The reason for the poor performance is the same as for the real world instances. The
average number of ghosts is just too high. It is between 0.11 (on 64 PEs) and 0.64 (on 4
PEs) for gnm, between 0.03 (on 64 PEs) and 0.37 (on 2 PEs) for rhg4 and between 0.04
(on 64 PEs) and 0.45 (on 2 PEs) for rhg8. For rgg this values has magnitude 10−4.

Still, for all instances we manage to find a MIS for graphs with 226 vertices in less than 10
seconds.

33

5 Experimental Evaluation

0 10 20 30 40 50 60

0
5

10
15

20
25

30

number PEs

ru
nn

in
g

tim
e

ke
rn

el
iz

at
io

n
on

 1
 P

E
/ r

un
ni

ng
 ti

m
e

ke
rn

el
iz

at
io

n
on

 x
 P

E
s

Relative speedup of kernelization

●

●

●

●

●

●

●

●

enwiki−2013
europe
indochina−2002
uk−2002

(a)

0 10 20 30 40 50 60

0
1

2
3

4
5

number PEs

ru
nn

in
g

tim
e

ke
rn

el
iz

at
io

n
on

 1
 P

E
/ r

un
ni

ng
 ti

m
e

ke
rn

el
iz

at
io

n
on

 x
 P

E
s

Relative speedup of kernelization

orkut
soc−Livejournal1
USA−road
youtube−u−growth

(b)

Figure 5.2: These figure show the relative speedup of our kernelization algorithm on real world
instances. Again figures on the left show instances on which our algorithm performs good, figures
on the right those on which it performs poor.

5.3 Impact of Partitioning

Since we have a problem with instances that have a large number of ghost vertices, we could
try to reduce this number by partitioning our instances. We evaluate, how the running time
for a partitioned instance compares to the unpartitioned instance. We compare the relative
speedup of the kernelization and the relative speedup of the MIS algorithm of unpartitioned
and partitioned instances. Figure 5.5 shows this for 4 and 64 PEs. Further Table 5.4
summarizes the speedups on different PEs.

Partiioning speeds up most of the instances. On some significant speedup is achieved.

The USA-road instance has partitioned a speedup of 27 over LINEARTIME, 9.6 relative
speedup of kernelization and 7.2 relative speedup of the MIS algorithm. Also the number
of average ghost vertices dropped significantly.

Orkut achieves a speedup of 2.7 over LINEARTIME, 2.4 relative speedup of the kernel-
ization and no speedup for the MIS algorithm. This shows, that even partitioning reduces
ghost vertices (gmin = 0.1, gmax = 0.35 for partioned orkut), on particular dense instances
the number might still be large. So, partitioning definitely improves here but still has its
limitations.

Partitioning might also slow some instances down. It might be possible, that on some
instances the partitioning algorithm increases the amount of distributed paths, because it
tries to minimize the number of cutting edges overall.

34

5.4 The Effect of Kernelization

0 10 20 30 40 50 60

0
5

10
15

20
25

30

number PEs

ru
nn

in
g

tim
e

M
IS

 a
lg

or
ith

m
 o

n
x

P
E

s
/ r

un
ni

ng
 ti

m
e

M
IS

 a
lg

or
ith

m
 o

n
1

P
E

Relative speedup of MIS algorithm

●

●

●

●

●

●

●

● europe
indochina−2002
uk−2002
USA−road

(a)

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

number PEs

ru
nn

in
g

tim
e

M
IS

 a
lg

or
ith

m
 o

n
x

P
E

s
/ r

un
ni

ng
 ti

m
e

M
IS

 a
lg

or
ith

m
 o

n
1

P
E

Relative speedup of MIS algorithm

enwiki−2013
orkut
soc−Livejournal1
youtube−u−growth

(b)

Figure 5.3: Relative speedup of our MIS algorithm on real world instances. Like previously figures
on the left show instances on which our algorithm performs well, figures on the right those on which
it performs poor.

5.4 The Effect of Kernelization

As mentioned earlier our algorithm finds smaller kernels than the LINEARTIME algorithm.
This difference is quite insignificant. Our experiments showed that our kernels are up to
0.04 percent smaller compared to the ones LINEARTIME computes. What is more interest-
ing is the effect of kernelization on the size of the MIS. We therefore compare the size of a
solution from our algorithm that uses kernelization as a preprocessing step with a solution
that does not. Figure 5.6 shows a visualization for our test instances. We can see that ker-
nelization improves the size of the maximal independent set up to 13 percent. This shows
that kernelization is a useful technique to obtain high quality solutions.
The downside is, that kernelization generally slows down our MIS algorithm. Figure 5.7
shows this for 1, 4 and 64 PEs. For 1 PE the slowdown is between 0.2 and 0.81, for 4 PEs
we achieve speedup between 0.11 and 2.2 and for 64 PEs it is between 0.03 and 1.91.

35

5 Experimental Evaluation

0 10 20 30 40 50 60

0
2

4
6

Number of processors

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

gnm

●● ● ● ● ● ●

● Kernelization
MIS with kernelization
MIS without kernelization

(a)

0 10 20 30 40 50 60

0
2

4
6

8
10

Number of processors

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

rhgd8

●

●

●

●

●

●

●

● Kernelization
MIS with kernelization
MIS without kernelization

(b)

0 10 20 30 40 50 60

0
1

2
3

4
5

6

Number of processors

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

rhgd4

●

●

●

●

●

●

●

● Kernelization
MIS with kernelization
MIS without kernelization

(c)

0 10 20 30 40 50 60

0.
05

0.
10

0.
15

0.
20

0.
25

Number of processors

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

rgg

●

●

●
● ●

●

●

● Kernelization
MIS with kernelization
MIS without kernelization

(d)

Figure 5.4: Weak scaling experiments on synthetic instances. Figure (a) shows the gnm instace,
Figure (b) the rhdg8 instance, Figure (c) the rhgd4 instance and Figure (d) the rgg instance.

36

5.4 The Effect of Kernelization

0 10 20 30 40 50

2
4

6
8

10

instances

re
la

tiv
e

sp
ee

du
p

Impact of partitioning

Kernelization on 4 PEs
Kernelization on 64 PEs
MIS on 4 PEs
MIS on 64 PEs

Figure 5.5: Speedup from partitioned over unpartitioned instances for kernelization and MIS al-
gorithm on 4 and 64 PEs.

Kernelization MIS algorithm
i minS maxS % with S > 1 minS maxS % with S > 1

2 0.59 2.71 77 0.75 4.25 72
4 0.68 4.4 60 0.74 5.78 68
8 0.69 6.15 64 0.68 7.5 64
16 0.25 5.94 66 0.75 10.2 68
32 0.14 8.54 74 0.76 12 79
64 0.59 9.6 83 0.76 9.49 87

Table 5.4: This table summarizes the effect of partitioning. Speedup S is the running time on
the partitioned instance over the running time of the unpartitioned instance. We examine it for
kernelization and MIS algorithm without kernelization. The table shows for i PEs the maximum
and minimum relative speedup of kernelization and MIS algorithm aswell as the percentage of
instances which achieve speedup greater one.

37

5 Experimental Evaluation

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Quality improvement of solution when using kernelization

instances

en
la

rg
em

en
t o

f i
nd

ep
en

de
ce

 n
um

be
r

in
 %

Figure 5.6: This plot displays the enlargmente of the maximal independent set when using kernel-
ization as a preprocessing step.

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

2.
0

Slowdown of MIS algorithm when using kernelization

instances

ru
nn

in
g

tim
e

M
IS

 a
lg

or
ith

m
 w

/o
 k

er
ne

l.
/ r

un
ni

ng
 ti

m
e

M
IS

 a
lg

or
ith

m
 w

ith
 k

er
ne

l.

1 PE
4 PE
64 PE

Figure 5.7: This plot shows the slowdown of the MIS algorithm with kernelization compared to
the MIS algorithm without kernelization on 1, 4 and 64 PEs.

38

6 Discussion

6.1 Conclusion

We proposed a distributed algorithm that computes maximal independent sets using ex-
act kernelization as a preprocessing step. Our kernelization removes degree one and two
vertices. We showed, that the exact kernelization achieves speedups up to 30 on unparti-
tioned and up to 27 on partitioned instances. Our experiments showed, that kernelization
improves the quality of the maximal independent set. Computing a maximal independent
set on the exact kernel, rather than on the original instances leads to solutions that are up
to 13 percent larger.
However, our experiments exposed some major problems with our implementation. It does
not scale on dense graphs. Dense graphs tend to have a large number of ghost vertices. We
hold a map containing the ghost vertices. If this map gets large, a lookup gets slow. This is
the bottleneck of our algorithm. It slows down kernelization and MIS computation.
Partitioning reduces the number of ghost vertices and can therefore be used to improve the
performance of some instances.

6.2 Future Work

Our implementation can be improved. We need to minimize the lookups of ghost vertices.
One way is to change the order in which messages are handled. Currently, the vertex
removal messages get handled before the path reduction messages. Therefore, the case can
occur in which we reiceive a vertex removal message for a vertex that is neither local nor
ghost. A lookup is required.
By simply turning the order around, we would avoid the lookup and improve the perfor-
mance.
Further, the communication volume and rounds can be reduced. We would not need to
send termination messages for already deactivated vertices, if we extract the information
from the already send vertex removal message. A technique called shortcutting can be
used to decrease the number of communication rounds it takes to find a path from O(n) to
O(log n).
It might be a good idea to try a point-to-point communication model and compare it with
the BSP model used in this implementation. An algorithm using such a communication

39

6 Discussion

model could scale to a higher number of PEs.

40

A Results of Experiments

The next page shows a table containing our experimental results. For each graph it displays
number of vertices (|n|) and number of edges (|m|), number of vertices and edges of the
kernel graph (Kn and Km), size of the MIS with (|I|K) and without kernelization (|I|).
Next, it shows the running time of our algorithm on one core (tseq) and the LINEARTIME

algorithm (tLT). Further, it displays the speedup over LINEARTIME (SLT), aswell as the rel-
ative speedup of the kernelization (SRel) and MIS algorithm (SMIS). These speedups are the
maximum among the speedups on 2i, i ∈ {0, 1, 2, 3, 4, 5, 6, 7} cores for that test instance.
In comparision the table also shows the same speedups on the partitioned instance. The
speedup SLTp is the speedup against LINEARTIME on the number of cores that achieved
the highest speedup on the unpartitioned instace (SLT). Likewise SRelp and SMISp show this
for relative speedup of kernelization and MIS algorithm on partiioned instances. Notice
that a 1 in SRel or SMIS indicate that our algorithm does not scale.

41

A Results of Experiments

na
m

e
|n

|
|m

|
K

n
K

m
|I

| K
|I

|
t s

eq
in

s
t L

T
in

s
S

LT
S

R
el

S
M

IS
S
L
T
p

S
R

e
l p

S
M

I
S
p

am
az

on
-2

00
8

73
53

23
35

23
47

2
39

22
24

18
39

02
9

28
01

40
25

29
59

0.
12

0.
07

7
3.

9
6

4.
1

4.
7

1.
2

1.
6

as
ia

.o
sm

11
95

07
57

12
71

16
03

59
89

19
87

35
42

59
53

82
3

51
75

36
5

1.
2

0.
85

5.
5

7.
9

12
21

3.
9

2.
6

as
-s

ki
tte

r
16

96
41

5
11

09
52

98
23

56
45

79
20

36
11

50
20

1
10

57
50

4
0.

45
0.

31
1.

4
2.

1
1.

1
3.

1
2.

2
2

ca
-A

st
ro

Ph
18

77
2

19
80

50
78

43
66

76
4

64
38

58
67

0.
00

35
0.

00
31

0.
89

1
1

0.
89

1
1

ca
-C

on
dM

at
23

13
3

93
43

9
62

33
22

01
7

93
97

83
66

0.
00

29
0.

00
31

1.
1

1
1.

3
1.

1
1

1.
9

ca
-G

rQ
c

52
42

14
48

4
68

1
74

12
24

46
21

95
0.

00
04

9
0.

00
1

2.
1

1
1

2.
1

1
1

ca
-H

ep
Ph

12
00

8
11

84
89

27
49

30
83

8
49

41
44

40
0.

00
2

0.
00

23
1.

2
1

1
1.

2
1

1
ca

-H
ep

T
h

98
77

25
97

3
61

3
19

37
48

86
43

26
0.

00
12

0.
00

16
1.

3
1

1
1.

3
1

1
cn

r-
20

00
32

55
57

27
38

96
9

15
35

03
21

95
90

7
21

67
85

20
77

03
0.

01
6

0.
01

5
4

4.
4

4.
9

4
0.

98
0.

9
db

lp
-2

01
0

98
63

24
27

38
96

9
62

56
7

19
69

33
15

89
72

14
67

14
0.

03
9

0.
02

4
2.

9
4.

8
5

3.
7

1.
3

1.
2

db
lp

-2
01

1
98

63
24

33
53

61
8

15
29

23
44

35
16

48
46

38
44

32
06

0.
18

0.
11

4.
3

7.
2

3.
9

3.
2

0.
73

0.
78

de
w

ik
i-

20
13

15
32

35
4

33
09

30
29

13
30

20
7

19
02

60
93

59
50

05
58

46
04

0.
36

0.
29

2
2.

5
1

2.
8

1.
4

0.
89

em
ai

l-
E

nr
on

36
69

2
18

38
31

41
00

86
34

22
15

0
21

00
4

0.
00

43
0.

00
45

1
1

1
1

1
1

em
ai

l-
E

uA
ll

26
52

14
36

44
81

19
0

34
8

24
68

93
24

44
72

0.
01

3
0.

01
2

1.
4

1.
6

1
3.

6
2.

5
1

en
w

ik
i-

20
13

42
06

78
5

91
93

97
28

15
84

88
8

10
98

33
63

20
57

37
9

18
84

82
3

3.
2

2.
2

3.
6

5.
3

1.
3

3.
7

1
1

eu
-2

00
5

86
26

64
16

13
84

68
63

48
29

12
56

45
97

41
23

84
39

93
40

0.
06

2
0.

05
4

1.
9

2.
2

3.
5

3
1.

5
1.

7
eu

ro
pe

18
02

97
21

22
21

76
86

19
27

27
2

28
29

52
4

91
34

84
4

80
62

88
5

3
1.

5
15

30
30

21
1.

4
1.

1
fli

ck
r-

gr
ow

th
23

02
92

5
15

55
50

41
16

15
6

52
62

7
16

60
98

1
15

39
57

9
0.

79
0.

63
1

1.
3

1
1.

2
1.

1
1

fli
ck

r-
lin

ks
17

15
25

5
22

83
82

76
12

90
9

39
53

2
12

39
83

3
11

48
29

9
0.

51
0.

4
0.

96
1.

2
1

1
1.

1
1

ho
lly

w
oo

d-
20

11
21

80
75

9
11

44
92

81
6

18
60

19
0

95
87

74
63

49
50

31
49

19
49

0.
26

0.
25

1.
5

1.
5

1
1.

7
1.

2
1

in
-2

00
4

13
82

90
8

13
59

14
73

75
89

15
10

65
40

24
84

46
96

80
98

49
0.

11
0.

09
6

2.
7

3
12

2.
9

1.
1

1.
3

in
do

ch
in

a-
20

04
74

14
86

6
15

09
84

81
9

46
32

95
3

12
62

55
30

6
44

02
10

8
42

58
68

5
0.

58
0.

57
7.

7
7.

8
10

8.
8

1.
1

0.
97

lib
im

se
ti

22
09

70
17

23
31

44
15

00
51

77
55

90
4

10
94

48
10

93
30

0.
12

0.
11

1.
9

2.
2

1
1.

1
0.

59
1

ljo
ur

na
l-

20
08

53
63

26
0

49
51

42
71

28
07

87
49

90
70

4
14

75
84

2
26

80
66

9
2.

3
1.

6
2.

9
4

1.
4

3.
7

1.
3

1.
2

or
ku

t
30

72
44

1
11

71
85

08
2

28
24

83
3

99
72

41
76

68
11

33
67

45
94

0.
63

0.
5

1.
2

1.
4

1
2.

7
2.

4
1

p2
p-

G
nu

te
lla

24
26

51
8

65
36

9
9

14
19

30
8

17
02

0
0.

00
19

0.
00

31
1.

6
1

1.
4

1.
6

1
1.

4
p2

p-
G

nu
te

lla
25

22
68

7
54

70
5

32
50

16
66

5
14

64
2

0.
00

19
0.

00
27

1.
6

1.
1

1.
7

2.
1

1.
3

1.
3

p2
p-

G
nu

te
lla

30
36

68
2

88
32

8
33

49
27

41
0

24
18

9
0.

00
27

0.
00

39
1.

5
1

1.
7

2
1.

3
0.

9
p2

p-
G

nu
te

lla
31

62
58

6
14

78
92

26
40

46
89

1
41

46
6

0.
00

48
0.

00
64

1.
8

1.
4

1.
8

2.
2

1.
2

1.
3

pe
ts

te
r-

ca
rn

iv
or

e
62

37
66

15
69

51
66

35
38

27
60

93
39

2
24

02
57

23
33

73
0.

18
0.

14
2

2.
6

1
1.

5
0.

73
1

pe
ts

te
r-

fr
ie

nd
sh

ip
s-

ca
t-

un
iq

14
97

00
54

48
19

7
10

25
87

25
18

01
2

10
18

44
10

01
27

0.
06

4
0.

04
6

0.
73

1
1

0.
73

1
1

pe
ts

te
r-

fr
ie

nd
sh

ip
s-

do
g-

un
iq

42
68

20
85

43
54

9
29

28
85

37
62

30
7

25
65

72
25

11
16

0.
16

0.
11

0.
68

1
1

0.
68

1
1

ro
ad

N
et

-C
A

19
65

20
6

27
66

60
7

67
29

36
10

57
93

5
91

31
71

82
66

67
0.

37
0.

13
5.

8
16

17
15

2.
5

2.
3

ro
ad

N
et

-P
A

10
88

09
2

15
41

89
8

34
83

80
55

42
99

50
81

24
45

85
53

0.
19

0.
06

9
6.

2
17

23
7.

8
1.

3
1.

5
ro

ad
N

et
-T

X
13

79
91

7
19

21
66

0
40

38
90

63
85

03
64

89
17

58
47

08
0.

24
0.

08
8

6
16

27
13

2.
2

1.
5

so
c-

E
pi

ni
on

s1
75

87
9

40
57

40
33

3
13

58
26

79
2

50
39

9
0.

01
0.

00
89

0.
85

1
1

0.
85

1
1

so
c-

L
iv

eJ
ou

rn
al

1
48

47
57

1
42

85
12

37
27

15
70

34
97

81
3

26
13

33
7

23
65

56
0

2.
4

1.
6

1.
9

2.
7

1
2.

6
1.

4
1

so
c-

po
ke

c-
re

la
tio

ns
hi

ps
16

32
80

3
22

30
19

64
95

29
15

10
25

09
06

68
18

02
64

38
01

0.
57

0.
42

2.
1

2.
8

1
3.

1
1.

5
1

so
c-

Sl
as

hd
ot

09
02

82
16

8
50

42
30

75
9

24
72

28
16

6
53

32
2

0.
01

2
0.

01
1

0.
89

1
1

0.
89

1
1

uk
-2

00
2

18
52

04
86

26
17

87
25

8
11

74
59

96
20

34
24

39
0

11
01

57
43

10
60

75
33

1.
9

1.
6

12
14

12
9.

6
0.

79
0.

76
U

SA
-r

oa
d

23
94

73
47

28
85

43
12

24
43

55
2

38
12

24
7

12
23

70
30

10
76

67
56

4.
4

2.
5

2.
8

5
5.

1
27

9.
6

7.
2

w
eb

-B
er

kS
ta

n
68

52
30

66
49

47
0

44
12

48
48

82
71

9
37

41
11

35
81

76
0.

05
2

0.
03

3
0.

71
1.

1
4.

7
0.

09
9

0.
14

1.
4

w
eb

-G
oo

gl
e

87
57

13
43

22
05

1
32

10
16

18
48

29
1

49
99

83
45

98
12

0.
15

0.
11

1.
9

2.
8

1
9.

8
5.

1
1

w
eb

-N
ot

re
D

am
e

32
57

29
10

90
10

8
82

09
3

57
52

51
24

66
97

23
52

63
0.

02
7

0.
03

1.
7

1.
5

2.
5

4.
9

2.
9

2.
8

w
eb

-S
ta

nf
or

d
28

19
03

19
92

63
6

17
00

19
13

61
69

6
15

03
88

14
26

75
0.

03
7

0.
02

2
0.

65
1.

1
1

1.
7

2.
7

4.
2

w
ik

i-
Ta

lk
23

94
38

5
46

59
56

5
76

13
3

11
69

11
0

23
23

98
0

0.
17

0.
17

1.
1

1.
1

1
1.

6
1.

5
1

w
ik

i-
Vo

te
71

15
10

07
62

0
0

48
66

44
23

0.
00

15
0.

00
17

1.
1

1
1

1.
1

1
1

yo
ut

ub
e

11
34

89
0

29
87

62
3

11
82

22
70

85
78

97
80

84
21

0.
18

0.
13

1.
5

2.
1

1
1.

9
1.

3
1.

2
yo

ut
ub

e-
lin

ks
11

38
49

9
93

76
59

4
11

93
22

90
86

03
24

81
05

72
0.

18
0.

13
1.

8
2.

5
1.

1
2

1.
1

1.
3

yo
ut

ub
e-

u-
gr

ow
th

32
23

64
3

93
76

59
4

43
35

85
77

23
83

40
8

22
42

09
5

0.
66

0.
54

2.
9

3.
6

1.
1

2.
2

0.
77

0.
94

zh
is

hi
-b

ai
du

-i
nt

er
na

lli
nk

21
41

30
0

17
01

49
46

13
73

0
30

95
7

15
03

34
2

14
10

89
4

0.
76

0.
6

0.
88

1.
1

1
1.

6
1.

8
1

zh
is

hi
-b

ai
du

-r
el

at
ed

pa
ge

s
41

56
41

23
74

04
4

62
91

9
42

20
72

26
85

81
25

56
43

0.
06

9
0.

04
2

0.
62

1
1.

1
0.

62
1

2.
7

zh
is

hi
-h

ud
on

g-
in

te
rn

al
lin

k
19

84
48

4
14

42
73

82
31

05
4

24
55

15
14

79
19

3
13

90
55

8
0.

62
0.

56
0.

89
1

1
0.

89
1

1

42

Bibliography

[1] 9th dimacs implementation challenge - shortest paths.
[2] Youtube network dataset – KONECT, April 2017.
[3] Takuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/fpt algorithms in

practice: A case study of vertex cover. In Proceedings of the Meeting on Algorithm
Engineering & Expermiments, ALENEX ’15, pages 70–81, Philadelphia, PA, USA,
2015. Society for Industrial and Applied Mathematics.

[4] Noga Alon, László Babai, and Alon Itai. A fast randomized parallel algorithm for the
maximal independent set problem. 7:567–583, 12 1986.

[5] David A. Bader, Henning Meyerhenke, Peter Sanders, Christian Schulz, Andrea
Kappes, and Dorothea Wagner. Benchmarking for graph clustering and partitioning.
In Encyclopedia of Social Network Analysis and Mining, pages 73–82. 2014.

[6] R. Battiti and M. Protasi. Reactive local search for the maximum clique problem1.
Algorithmica, 29(4):610–637, Apr 2001.

[7] Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. Greedy sequential maximal
independent set and matching are parallel on average. CoRR, abs/1202.3205, 2012.

[8] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label
propagation: A multiresolution coordinate-free ordering for compressing social net-
works. In Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra,
Elisa Bertino, and Ravi Kumar, editors, Proceedings of the 20th international confer-
ence on World Wide Web, pages 587–596. ACM Press, 2011.

[9] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression tech-
niques. In Proc. of the Thirteenth International World Wide Web Conference (WWW
2004), pages 595–601, Manhattan, USA, 2004. ACM Press.

[10] S. Butenko and W.E. Wilhelm. Clique-detection models in computational biochem-
istry and genomics. European Journal of Operational Research, 173(1):1 – 17, 2006.

[11] Sergiy Butenko, Panos Pardalos, Ivan Sergienko, Vladimir Shylo, and Petro Stetsyuk.
Finding maximum independent sets in graphs arising from coding theory. In Proceed-
ings of the 2002 ACM Symposium on Applied Computing, SAC ’02, pages 542–546,
New York, NY, USA, 2002. ACM.

[12] Lijun Chang, Wei Li, and Wenjie Zhang. Computing a near-maximum independent
set in linear time by reducing-peeling. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17, pages 1181–1196, New York,
NY, USA, 2017. ACM.

43

Bibliography

[13] J. Dahlum, S. Lamm, P. Sanders, C. Schulz, D. Strash, and R. F. Werneck. Accelerat-
ing Local Search for the Maximum Independent Set Problem, February 2016.

[14] Thomas A. Feo, Mauricio G. C. Resende, and Stuart H. Smith. A greedy random-
ized adaptive search procedure for maximum independent set. Operations Research,
42(5):860–878, 1994.

[15] Jeremy T. Fineman, Calvin Newport, Micah Sherr, and Tonghe Wang. Fair maximal
independent sets. In Proceedings of the 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, IPDPS ’14, pages 712–721, Washington, DC,
USA, 2014. IEEE Computer Society.

[16] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer ap-
proach for the analysis of exact algorithms. J. ACM, 56(5):25:1–25:32, August 2009.

[17] Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and
Moritz von Looz. Communication-free massively distributed graph generation. In
2018 IEEE International Parallel and Distributed Processing Symposium, IPDPS
2018, Vancouver, BC, Canada, May 21 – May 25, 2018, 2018.

[18] Peter Artymiuk P.J. Gardiner, Eleanor Willett. Graph-theoretic techniques for macro-
molecular docking. In Journal of Chemical Information and Computer Science, 2000.

[19] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[20] A. Goldberg, S. Plotkin, and G. Shannon. Parallel symmetry-breaking in sparse
graphs. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, STOC ’87, pages 315–324, New York, NY, USA, 1987. ACM.

[21] Mark Goldberg and Thomas Spencer. Constructing a maximal independent set in
parallel. SIAM J. DISC. MATH, 2:322–328, 1989.

[22] Andrea Grosso, Marco Locatelli, and Wayne Pullan. Simple ingredients leading to
very efficient heuristics for the maximum clique problem. Journal of Heuristics,
14(6):587–612, December 2008.

[23] Demian Hespe, Christian Schulz, and Darren Strash. Scalable Kernelization for Max-
imum Independent Sets, pages 223–237.

[24] Hasan Heydari, S. Mahmoud Taheri, and Kaveh Kavousi. Distributed maximal inde-
pendent set on scale-free networks. CoRR, abs/1804.02513, 2018.

[25] T. Kanewala, M. Zalewski, and A. Lumsdaine. Parallel asynchronous distributed-
memory maximal independent set algorithm with work ordering. In 2017 IEEE 24th
International Conference on High Performance Computing (HiPC), pages 52–61,
Dec 2017.

[26] Richard M. Karp and Avi Wigderson. A fast parallel algorithm for the maximal
independent set problem. In Proceedings of the Sixteenth Annual ACM Symposium
on Theory of Computing, STOC ’84, pages 266–272, New York, NY, USA, 1984.
ACM.

44

Bibliography

[27] Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter. Distributed time-
dependent contraction hierarchies. In Paola Festa, editor, Experimental Algorithms,
pages 83–93, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[28] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[29] M Luby. A simple parallel algorithm for the maximal independent set problem. In
Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing,
STOC ’85, pages 1–10, New York, NY, USA, 1985. ACM.

[30] Alan Mislove. Online Social Networks: Measurement, Analysis, and Applications to
Distributed Information Systems. PhD thesis, Rice University, 2009.

[31] D. Puthal, S. Nepal, C. Paris, R. Ranjan, and J. Chen. Efficient algorithms for social
network coverage and reach. In 2015 IEEE International Congress on Big Data,
pages 467–474, June 2015.

[32] Mauricio G. C. Resende, Diogo V. Andrade, and Renato Werneck. Fast local search
for the maximum independent set problem. In International Workshop on Experimen-
tal Algorithms (WEA), volume 5038, pages 220–234, Provincetown, MA, May 2008.
Springer.

[33] Peter Sanders and Christian Schulz. Think Locally, Act Globally: Highly Balanced
Graph Partitioning. In Proceedings of the 12th International Symposium on Experi-
mental Algorithms (SEA’13), volume 7933 of LNCS, pages 164–175. Springer, 2013.

[34] Johannes Schneider and Roger Wattenhofer. A log-star distributed maximal indepen-
dent set algorithm for growth-bounded graphs. In Proceedings of the Twenty-seventh
ACM Symposium on Principles of Distributed Computing, PODC ’08, pages 35–44,
New York, NY, USA, 2008. ACM.

[35] R. Tarjan and A. Trojanowski. Finding a maximum independent set. SIAM Journal
on Computing, 6(3):537–546, 1977.

[36] Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent
set. CoRR, abs/1312.6260, 2013.

45

http://snap.stanford.edu/data

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Contribution
	Structure of Thesis

	Fundamentals and Related Work
	Basic Definitions
	Related Problems

	Distributed Memory and Graphs
	Degree two paths spreading multiple PEs
	Graph Partitioning

	Related Work
	Exact Algorithms
	Approximation for Maximum Independent Set
	Parallel Algorithms for Maximal Independent Set

	Reduction Rules
	The Algorithm
	Computing the Kernel
	Local Work
	Communication Between PEs
	Putting it All Together

	Computing the maximal independent set
	Implementation Details

	Experimental Evaluation
	Experimental setup
	Running Time and Scalability
	Impact of Partitioning
	The Effect of Kernelization

	Discussion
	Conclusion
	Future Work

	Results of Experiments
	Bibliography

