

Trip-Based Public Transit Routing Using Condensed Search Trees

Sascha Witt - sascha.witt@kit.edu

Institute of Theoretical Informatics – Algorithmics

Agenda

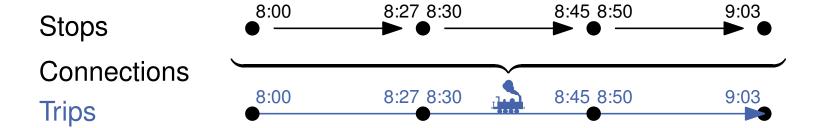
- Introduction
- Trip-Based Public Transit Routing
- Prefix Trees
- Splitting Trees
- Experiments
- Conclusion

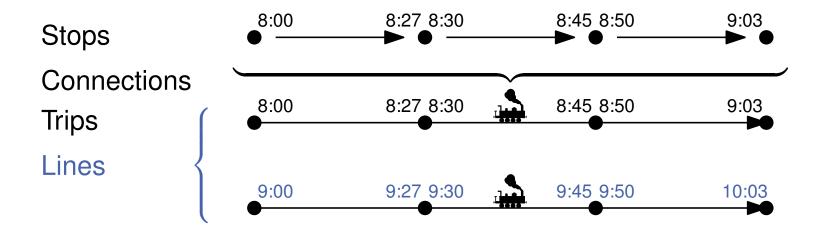
Context

- Routing in large, real-world Public Transit Networks
- One-to-one queries
- Pareto-optimal results regarding arrival time and number of transfers
- Earliest arrival and profile/range queries

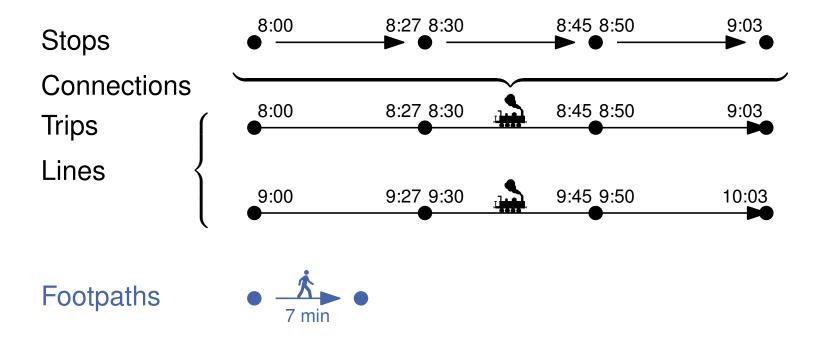
Terminology

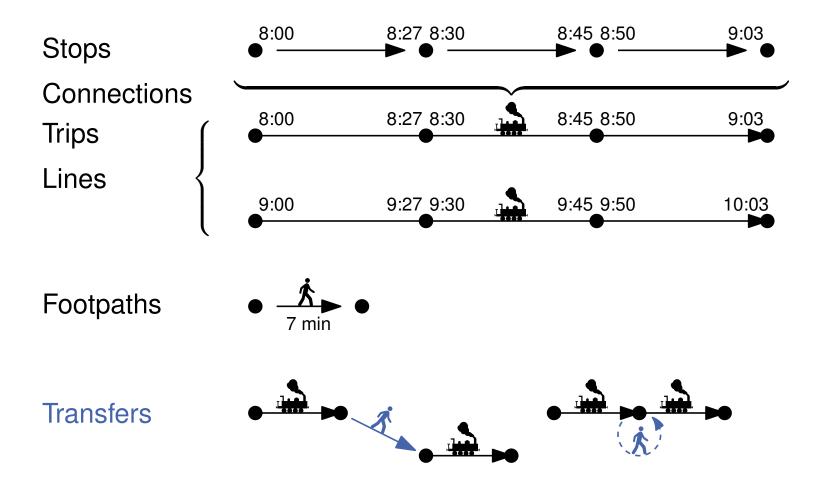
Stops

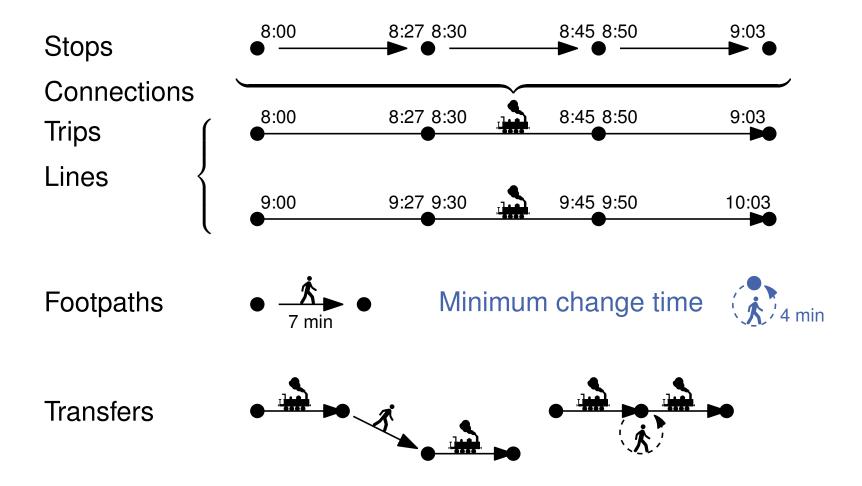

Terminology

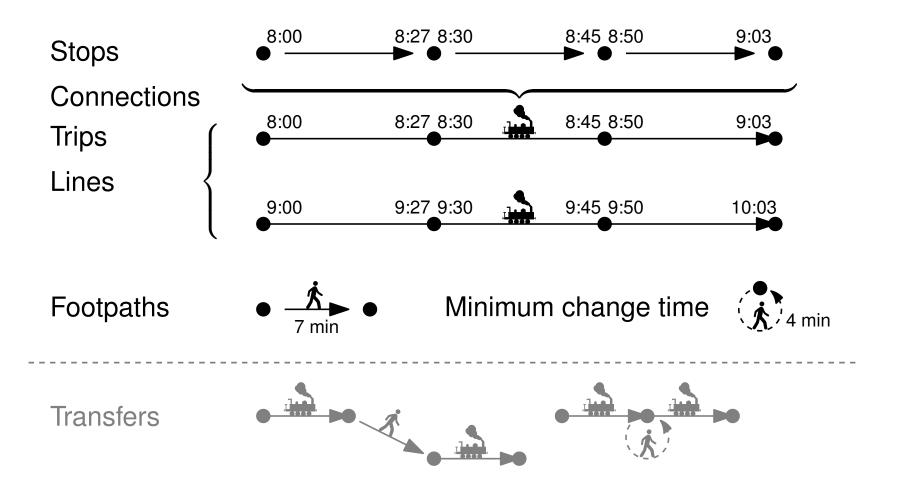


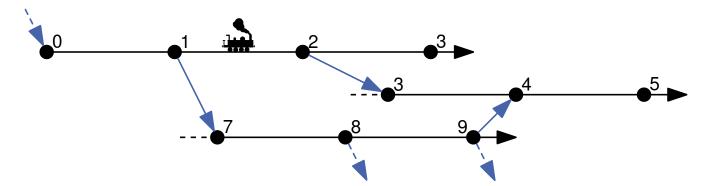
Connections





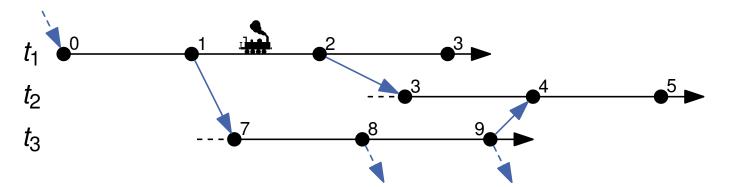


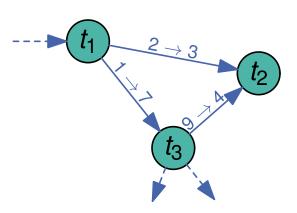




Karlsruhe Institute of Technology

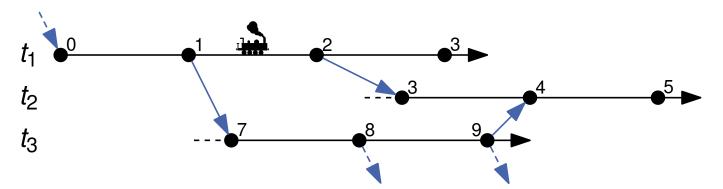
Intuition

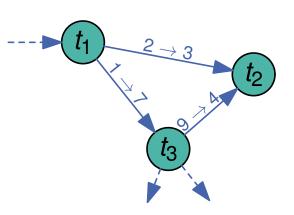

- Move emphasis from stops to trips
- Model transfers between trips explicitly


Karlsruhe Institute of Technology

Intuition

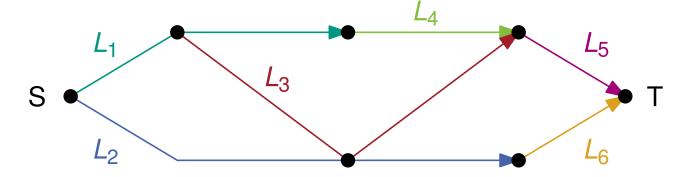
- Move emphasis from stops to trips
- Model transfers between trips explicitly


- Query is similar to breadth-first search
- Levels correspond to number of transfers


Karlsruhe Institute of Technology

Intuition

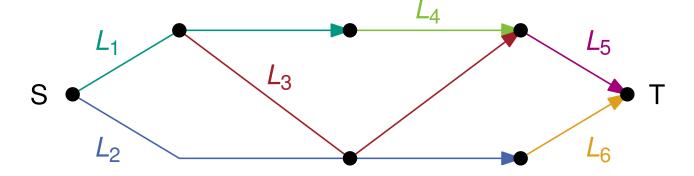
- Move emphasis from stops to trips
- Model transfers between trips explicitly

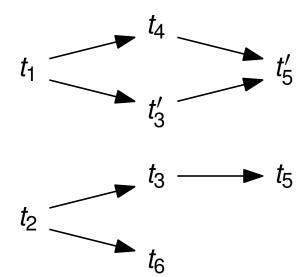


- Query is similar to breadth-first search
- Levels correspond to number of transfers
- Footpaths etc. are handled during preprocessing

Example

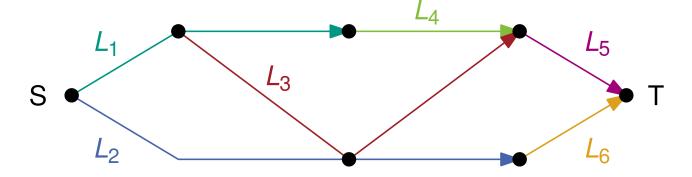
<i>L</i> ₁		
8:00	8:30	9:00
:	i	i

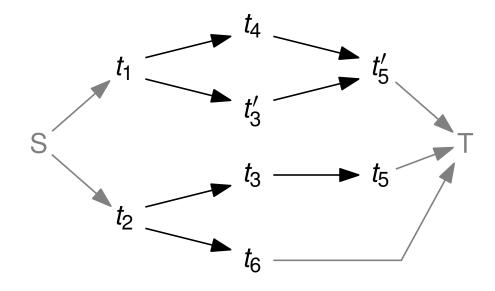

9:30
i


<i>L</i> ₅	
9:25	9:50
9:35	10:00
ŧ	ŧ

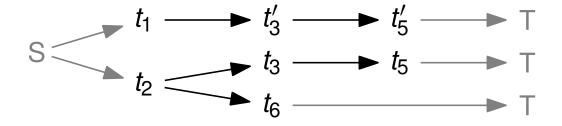
<i>L</i> ₆	
9:35	10:00
	ŧ

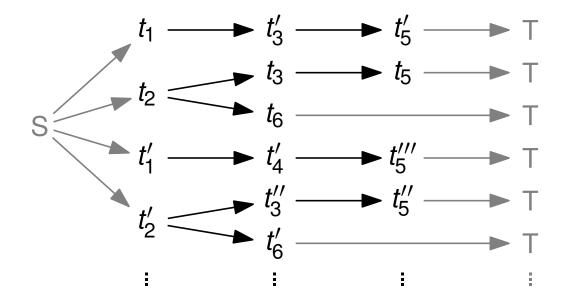
Karlsruhe Institute of Technology


Example

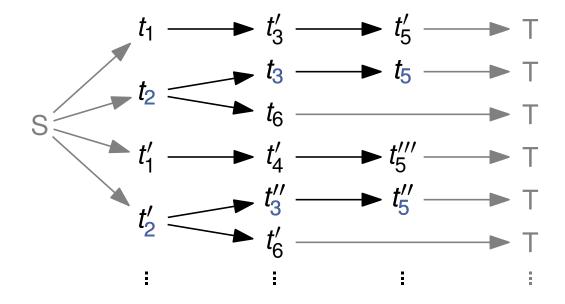


Karlsruhe Institute of Technology

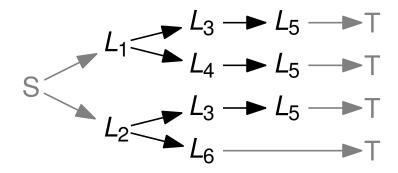

Example


Karlsruhe Institute of Technology

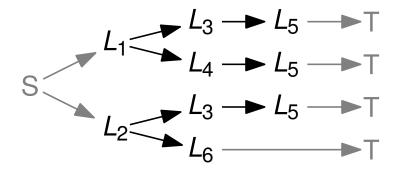
Search Tree


Search Tree

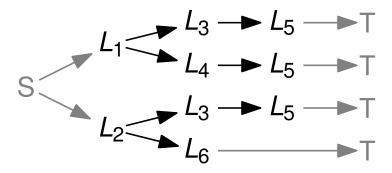
Karlaruha lastituta af T


Search Tree

- Repeating patterns
- Can be used for goal-directed search

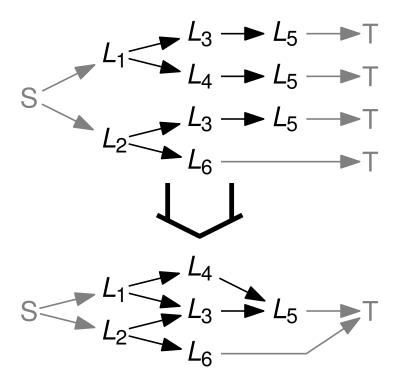

Computation

Karlsruhe Institute of Technology


Computation

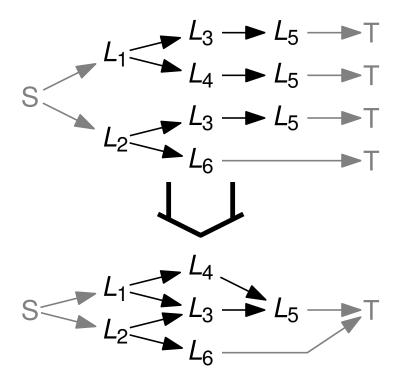
- Root is source stop, leaves are destination stops
- Each path from S to T forms a sequence of lines that is optimal at some time
- All optimal journeys are covered
- Computed by performing one-to-all profile queries

Karlsruhe Institute of Technology


Query

Find all leaves labeled T

Query

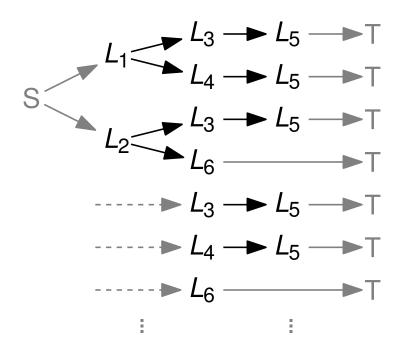


- Find all leaves labeled T
- Collapse paths into graph

Query

- Find all leaves labeled T
- Collapse paths into graph
- Perform query using this graph

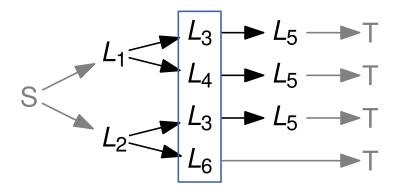
Problems



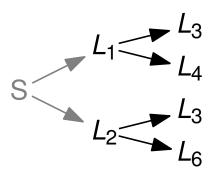
- Large memory consumption
- Each tree covers the whole network

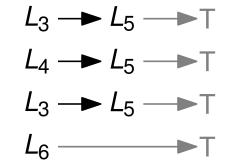
Problems

- Large memory consumption
- Each tree covers the whole network
- A lot of redundancy, especially near the leaves

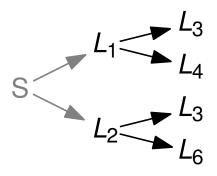


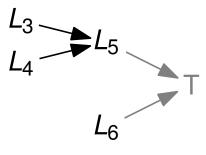
- Solution: Postfix trees
- Can be constructed from prefix trees by cutting off branches


Karlsruhe Institute of Technology

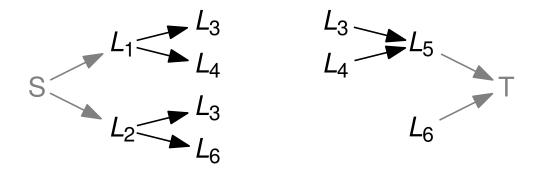

- Solution: Postfix trees
- Can be constructed from prefix trees by cutting off branches

Karlsruhe Institute of Technology


- Solution: Postfix trees
- Can be constructed from prefix trees by cutting off branches

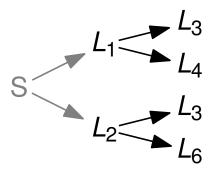


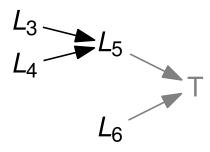
Karlsruhe Institute of Technology


- Solution: Postfix trees
- Can be constructed from prefix trees by cutting off branches

Karlsruhe Institute of Technology

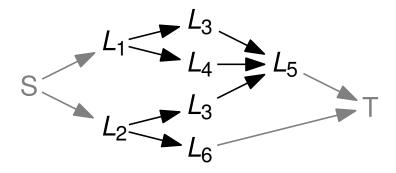
- Solution: Postfix trees
- Can be constructed from prefix trees by cutting off branches



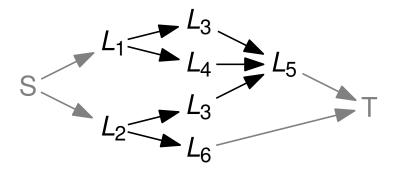

- Need to store two trees for each stop
- But these trees are much smaller

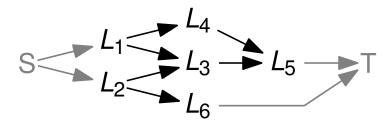
Query

Join trees at matching nodes

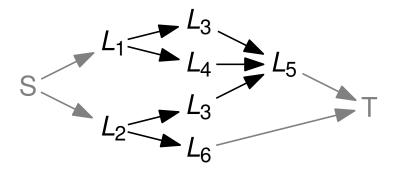


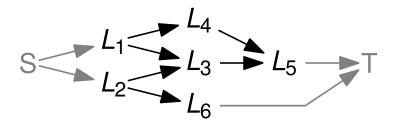
Query


Join trees at matching nodes


Query

Join trees at matching nodes


Build query graph as before


Query

Join trees at matching nodes

Build query graph as before

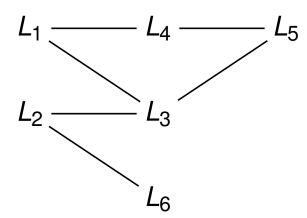
Run query as before

Karlsruhe Institute of Technology

Cut Selection

- Cut location is important
- Want to balance prefix and postfix trees, to minimize total size

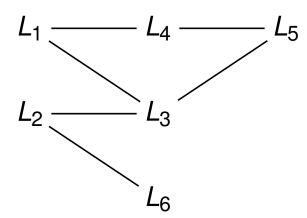
Karlsruhe Institute of Technology


Cut Selection

- Cut location is important
- Want to balance prefix and postfix trees, to minimize total size
- Our approach: Select "important" lines
- Intuitively: ICE/TGV > other train > bus

Karlsruhe Institute of Technology

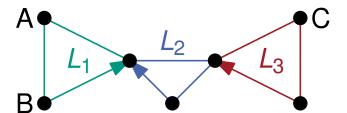
Cut Selection


- Cut location is important
- Want to balance prefix and postfix trees, to minimize total size
- Our approach: Select "important" lines
- Intuitively: ICE/TGV > other train > bus
- Use betweenness centrality on line graph as a measure of importance

Karlsruhe Institute of Technology

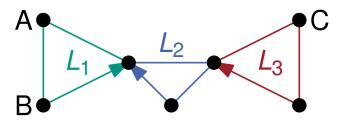
Cut Selection

- Cut location is important
- Want to balance prefix and postfix trees, to minimize total size
- Our approach: Select "important" lines
- Intuitively: ICE/TGV > other train > bus
- Use betweenness centrality on line graph as a measure of importance



As a result, trees reach out to long-distance lines

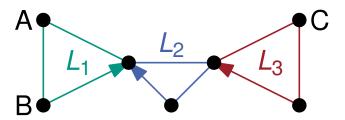
There And Back Again


Consider the following graph:

There And Back Again

Consider the following graph:

- L_2 is the most central line
- Prefix and postfix trees for A and B look like this:


$$A \longrightarrow L_1 \longrightarrow L_2$$

$$L_2 \longrightarrow L_1 \longrightarrow B$$

There And Back Again

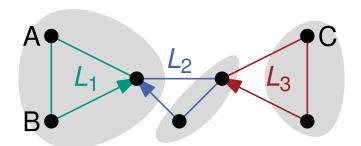
Consider the following graph:

- L_2 is the most central line
- Prefix and postfix trees for A and B look like this:

$$A \longrightarrow L_1 \longrightarrow L_2$$

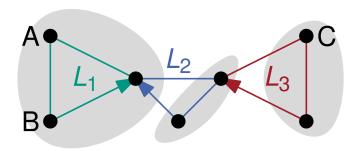
$$L_2 \longrightarrow L_1 \longrightarrow B$$

Joining them results in this query graph:


$$A \longrightarrow L_1 \longrightarrow B$$

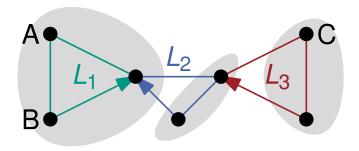
$$\downarrow L_2$$

There And Back Again


Solution: Partition stops

There And Back Again

Solution: Partition stops


 Use bitmasks to indicate which nodes should be considered for the query graph

$$L_2 \longrightarrow L_1 \longrightarrow B$$

There And Back Again

Solution: Partition stops

 Use bitmasks to indicate which nodes should be considered for the query graph

$$A \longrightarrow L_1 \longrightarrow L_2$$
100 011

$$L_2 \longrightarrow L_1 \longrightarrow B$$

Result: Fewer false positives

$$A \longrightarrow L_1 \longrightarrow B$$

Instance	Stops	Conn.	Trips	Lines	Footp.	Transfers
Germany	296.6 k	27,062 k	1,432 k	192.9 k	102.8 k	84,953 k
Sweden	50.7 k	6,054 k	261 k	17.6 k	$0.8\mathrm{k}$	16,455 k
Switzerland	27.8 k	4,650 k	611 k	14.4 k	34.3 k	12,626 k
London	20.8 k	4,991 k	129 k	2.2 k	27.6 k	15,883 k
Madrid	4.6 k	5,280 k	190 k	1.4 k	1.4 k	9,256 k

Instance	Stops	Conn.	Trips	Lines	Footp.	Transfers
Germany	296.6 k	27,062 k	1,432 k	192.9 k	102.8 k	84,953 k
Sweden	50.7 k	6,054 k	261 k	17.6 k	$0.8\mathrm{k}$	16,455 k
Switzerland	27.8 k	4,650 k	611 k	14.4 k	34.3 k	12,626 k
London	20.8 k	4,991 k	129 k	2.2 k	27.6 k	15,883 k
Madrid	4.6 k	5,280 k	190 k	1.4 k	1.4 k	9,256 k

	p. prefix	seq.	par.	speed	avg.#	mem.
Instance	tree [ms]	[h:m]	[h:m]	up	of nodes	[GB]
Germany	2,143.6	(231:16)	13:48	(16.8 x)	6,131	23.2
Sweden	166.7	4:33	0:18	15.2 x	2,433	1.6
Switzerland	209.3	3:18	0:12	16.5 x	4,315	1.6
London	1,368.1	15:19	0:42	21.9 x	20,390	6.0
Madrid	497.3	1:22	0:04	17.0 x	32,293	2.0

^{*} Quad 8-core Intel Xeon E5-4640, 2.4 GHz, 512 GB DDR3-1600, 64 threads

		Query graph	Query graph	EA	profile
Instance	Var.	size [N+E]	time [µs]	[µs]	[μs]
Germany	TB			30,856	192,952
Sweden	TB			2,760	16,532
Switzerland	TB			1,780	18,104
London	TB			1,374	96,114
Madrid	TB	_	_	711	54,118
Germany	PT	41 + 58	994.4	63.3	155.0
Sweden	PT	23 + 32	24.6	40.4	88.6
Switzerland	PT	38 + 59	34.0	45.8	155.9
London	PT	91 + 196	138.2	101.1	2,786.6
Madrid	PT	150 + 407	306.9	81.7	6,913.8
Germany	ST	124 + 232	81.1	75.0	430.5
Sweden	ST	66 + 122	32.5	27.2	207.1
Switzerland	ST	118 + 233	76.1	32.7	327.6
London	ST	331 + 1,242	1,583.3	141.4	14,545.4
Madrid	ST	456 + 2,073	11,822.9	165.8	28,919.0

algorithm	instance	stops [10 ³]	conn. [10 ⁶]	AS A	O'O'III	mem. [GB]	pre. [h]	query [μs]
CSA	Germany	252.4	46.2	0	0			298.6 k
ACSA	Germany	252.4	46.2	0	0	n/a	0.2	8.7 k
TP	Germany	248.4	13.9	•	0	140.0	372.0	300.0
Sc-TP	Germany	250.0	15.0	•	0	1.2	16.5	32.0 k
TB	Germany	296.6	27.1	•	0	23.2	231.3	156.1
TTL	Sweden	51.4	n/a	0	0	\approx 0.5	0.2	\approx 10.0
PTL	Sweden	51.1	12.7	•	0	12.3	36.2	27.6
TB	Sweden	50.7	6.1	•	0	1.6	3.8	59.7
PTL	Switzerland	27.1	23.7	•	0	12.7	61.6	21.7
TB	Switzerland	27.8	4.7	•	0	1.6	2.7	108.8
CSA	London	20.8	4.9	0	0			1.8 k
PTL	London	20.8	5.1	•	0	26.2	49.3	30.0
TB	London	20.8	5.0	•	0	6.0	11.6	1.7 k
TTL	Madrid	4.6	n/a	0	0	≈ 0.4	0.1	\approx 30.0
PTL	Madrid	4.7	4.5	•	0	9.9	10.9	64.3
TP	Madrid	4.6	4.8	•	0	n/a	185.0	3.1 k
ТВ	Madrid	4.6	5.3	•	0	2.0	1.1	12.0 k

algorithm	instance	stops [10 ³]	conn. [10 ⁶]	ASI OF	O O ST.	mem. [GB]	pre. [h]	query [μs]
ACSA TP TB	Germany Germany Germany	252.4 248.4 296.6	46.2 13.9 27.1	•	•	n/a 140.0 23.2	0.2 372.0 231.3	171.0 k 5.0 k 511.6
PTL TB	Sweden Sweden	51.1 50.7	12.7 6.1	•	•	0.7 1.6	0.5 3.8	12.1 239.6
PTL TB	Switzerland Switzerland	27.1 27.8	23.7 4.7	•	•	0.7 1.6	0.7 2.7	24.5 403.7
PTL CSA TB	London London London	20.8 20.8 20.8	5.1 4.9 5.0	•	•	1.3	0.9	74.3 466.0 k 16.1 k
PTL TB	Madrid Madrid	4.7 4.6	4.5 5.3	•	•	0.4 2.0	0.4 1.1	111.9 40.7 k

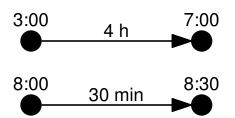
Conclusion

- Speed-up technique for trip-based public transit routing
- Exploits regularities in timetables
- Fast preprocessing of country-sized networks
- Pareto-optimal bi-criteria 24 h profile queries on microsecond scale

Conclusion

- Speed-up technique for trip-based public transit routing
- Exploits regularities in timetables
- Fast preprocessing of country-sized networks
- Pareto-optimal bi-criteria 24 h profile queries on microsecond scale

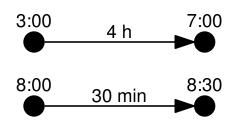
Future Work


- Improve preprocessing time (and space) for very large networks
- Improve performance on metropolitan networks
- Better scaling to larger networks and longer timeframes

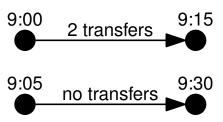
Introduction

Public Transit Routing

Inherently time-dependent:
 Travel times depend on departure time

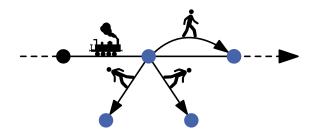


Introduction

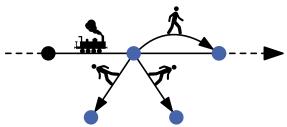

Public Transit Routing

Inherently time-dependent:
 Travel times depend on departure time

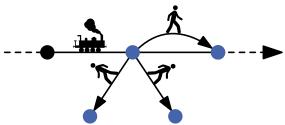
- Multiple natural problem variants
 - Earliest arrival queries
 - Profile (range) queries
 - Multi-criteria queries (e.g., number of transfers taken)

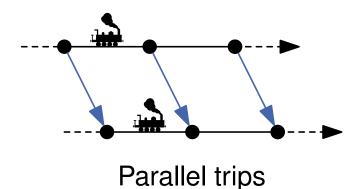

Preprocessing

Preprocessing

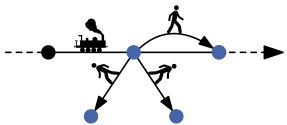

Karlsruhe Institute of Technology

Preprocessing

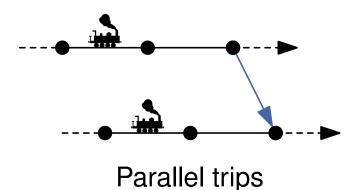

Compute transfers between trips


For each line, find the first reachable trip $(arrival time + footpath length \le departure time)$

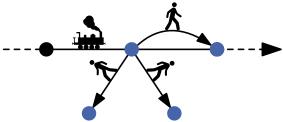
Preprocessing



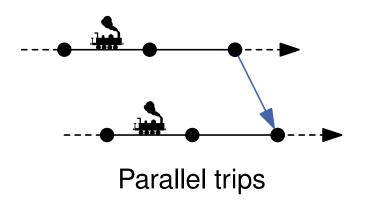
- For each line, find the first reachable trip (arrival time + footpath length \leq departure time)
- Huge number of transfers, not all of which are useful

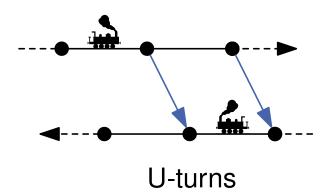


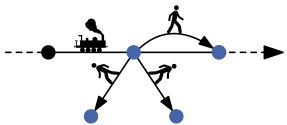
Preprocessing

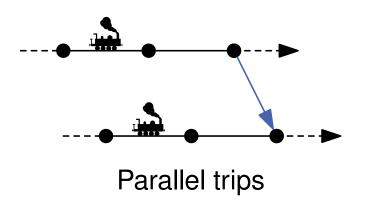


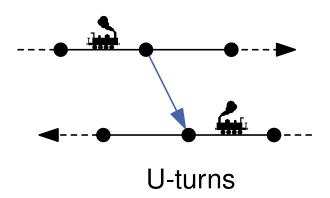
- For each line, find the first reachable trip (arrival time + footpath length ≤ departure time)
- Huge number of transfers, not all of which are useful



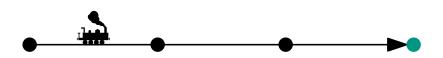

Preprocessing


- For each line, find the first reachable trip (arrival time + footpath length ≤ departure time)
- Huge number of transfers, not all of which are useful



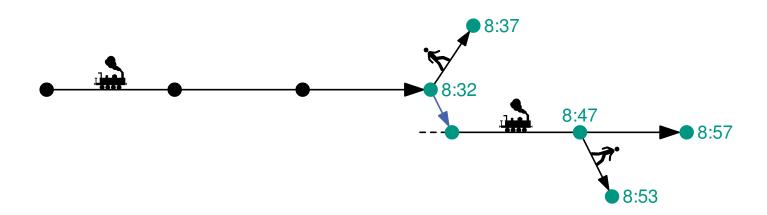

Preprocessing

- For each line, find the first reachable trip (arrival time + footpath length ≤ departure time)
- Huge number of transfers, not all of which are useful

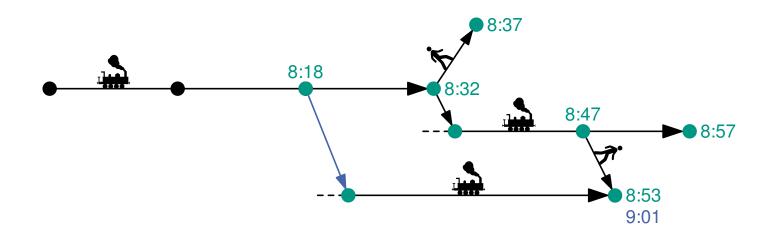


Preprocessing

Reduce number of transfers by eliminating redundant ones

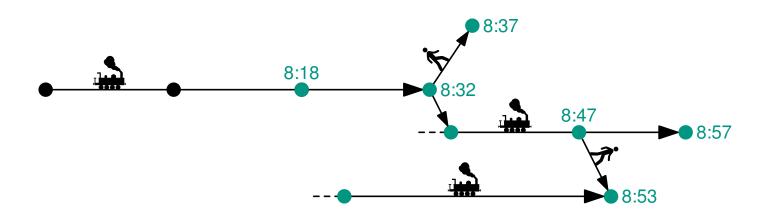

Karlsruhe Institute of Technology

- Reduce number of transfers by eliminating redundant ones
- Process trips backwards



- Reduce number of transfers by eliminating redundant ones
- Process trips backwards
- Keep track of which stops can be reached at what time

Karlsruhe Institute of Technolog


- Reduce number of transfers by eliminating redundant ones
- Process trips backwards
- Keep track of which stops can be reached at what time
- Evaluate transfers by checking if they improve arrival times

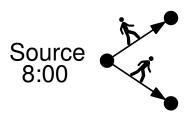
- Reduce number of transfers by eliminating redundant ones
- Process trips backwards

- Keep track of which stops can be reached at what time
- Evaluate transfers by checking if they improve arrival times
- Removes up to 90% of original transfers

Karlsruhe Institute of Technology

Query

Input: Source stop, target stop, departure time

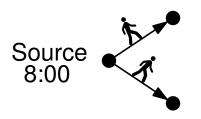

Source 8:00

Target

Karlsruhe Institute of Technology

Query

- Input: Source stop, target stop, departure time
- Identify trips reachable from the source


Target

	don	lina	trin	indov
	dep.	ime	trip	index
	8:00	2	15	8
	8:03	4	56	0
	8:07	11	456	31
	9:00	110	3256	6
•				

Karlsruhe Institute of Technology

Query

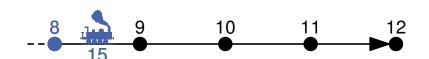
- Input: Source stop, target stop, departure time
- Identify trips reachable from the source
- Identify lines reaching the target

dep.	line	trip	index
8:00	2	15	8
8:03	4	56	0
8:07	11	456	31
9:00	110	3256	6

line	index	footpath
3	8	
8	17	4 min
27	3	4 min

Query

Queue trips and mark as reached

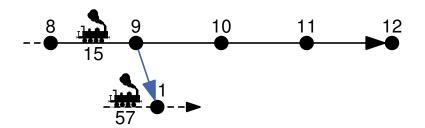

	Queu	е	Reach	ned
# tr.	trip	range		_
0	15	8–12	15 16	8
0	56	0-14	17	8
0	456	31–78		•
0	3256	6–45	56 57	0
			450	~ 4
			456 457	31 31

dep.	line	trip	index
8:00	2	15	8
8:03	4	56	0
8:07	11	456	31
9:00	110	3256	6

•	line	index	footpath
•	3	8	
	8	17	4 min
	27	3	4 min

Query

- Queue trips and mark as reached
- Process queue

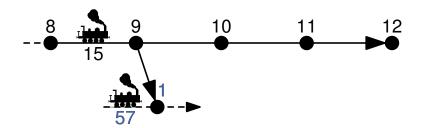


	Queu	е	Reac	hed
# tr.	trip	range	15	. 8
0	15	8–12	16	
0	56	0–14	17	8 8
0	456	31–78	F.C.	
0	3256	6–45	56 57	0
			456 457	31 31
			3256	6

line	index	footpath
3	8	
8	17	4 min
27	3	4 min

Query

- Queue trips and mark as reached
- Process queue
- Examine transfers



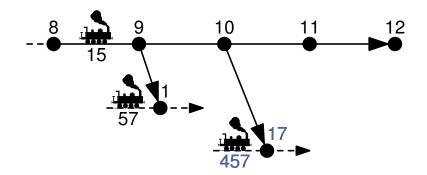
Reache	е	Queu	
1	range	trip	# tr.
15 16	8–12	15	0
17	0–14	56	0
	31–78	456	0
56 57	6–45	3256	0
456 3 457 3			
3256			

•	line	index	footpath
•	3	8	
	8	17	4 min
	27	3	4 min

Query

- Queue trips and mark as reached
- Process queue
- Examine transfers
 - Compare against label

Panchad

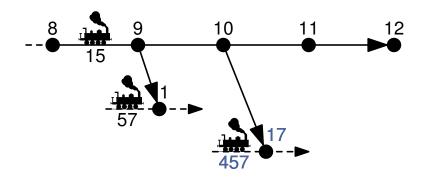

	Queu	е		neaci	ieu
# tr.	trip	range	_	15	 8
0	15	8–12		16	8
0	56	0–14		17	8
0	456	31–78			
0	3256	6–45		56	0
U	0230	0 73		57	0
				456	31
				457	31

 Ω

•	line	index	footpath
•	3	8	
	8	17	4 min
	27	3	4 min

Query

- Queue trips and mark as reached
- Process queue
- Examine transfers
 - Compare against label

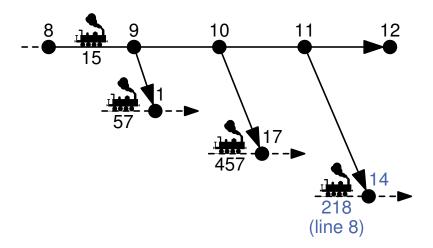


	Queu	е	Reach	ned
# tr.	trip	range	 15	8
0	15	8–12	16	8
0	56	0–14	17	8
0	456	31–78	 F0	•
0	3256	6–45	56 57	0
			456	31
			457	31

line	index	footpath
3	8	
8	17	4 min
27	3	4 min

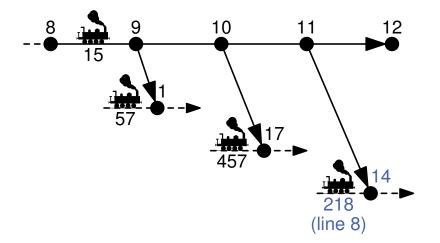
Query

- Queue trips and mark as reached
- Process queue
- Examine transfers
 - Compare against label
 - Queue newly reached trips


	Queu	е		Reacl	ned
# tr.	trip	range	•	15	. 0
0	15	8–12		16	8 8
0	56	0–14		17	8 8
0	456	31–78		· · ·	•
0	3256	6–45		56 57	0
1	457	17–31			U
				456	31
				457	17
				458	17

line	index	footpath
3	8	
8	17	4 min
27	3	4 min

- Queue trips and mark as reached
- Process queue
- Examine transfers
 - Compare against label
 - Queue newly reached trips
 - Output a journey if target is reached


	Queu	е		Reach	ned
# tr.	trip	range	-	1.5	
0	15	8–12		15 16	8 8
0	56	0–14		17	8
0	456	31–78			•
0	3256	6–45		56 57	0
1	457	17–31			U
1	218	14–23		218	14
				456 457 458	31 17 17

line	index	footpath
3	8	
8	17	4 min
27	3	4 min

Query

- Queue trips and mark as reached
- Process queue
- Examine transfers
 - Compare against label
 - Queue newly reached trips
 - Output a journey if target is reached

ached	Reac	Queue		
 E O	15	range	trip	# tr.
	15 16	8–12	15	0
6 8 7 8	17	0–14	56	0
	 	31–78	456	0
	56 57	6–45	3256	0
		17–31	457	1
8 14	218	14–23	218	1
 'C 01	156			

line	index	footpath
3	8	
8	17	4 min
27	3	4 min

 $arrival_time(218, 17) = 9:24 \Longrightarrow Arrival at 9:28 after 1 transfer$

Danchad

- Queue trips and mark as reached
- Process queue
- Examine transfers
 - Compare against label
 - Queue newly reached trips
 - Output a journey if target is reached
- Continue until queue is empty

ieu	neaci	e	Queue		
8	15	range	trip	# tr.	
8	16	8–12	15	0	
8	17	0–14	56	0	
^		31–78	456	0	
0	56 57	6–45	3256	0	
·	• • •	17–31	457	1	
14	218	14–23	218	1	
31 17 17	456 457 458				

 Ω

line	index	footpath
3	8	
8	17	4 min
27	3	4 min

Arrival at 9:28 after 1 transfer

- Queue trips and mark as reached
- Process queue
- Examine transfers
 - Compare against label
 - Queue newly reached trips
 - Output a journey if target is reached
- Continue until queue is empty
- Skip trips that cannot improve the currently best arrival time

departure_time(1302, 8) = 9:32 > 9:28

Queue			Reacl	ned
# tr.	trip	range	15	. 0
1	1302	8–45	16	8 8
1	2871	3–11	17	8
2	512	0–19	· · ·	•
2	1523	19–88	56 57	0
2	43	13–15		·
2	44	4–53	218	14
			456 457 458	31 17 17
			3256	6

line	index	footpath
	IIIGOX	Ισστρατίτ
3	8	
8	17	4 min
27	3	4 min

Arrival at 9:28 after 1 transfer

Query

- Process queue
- Examine transfers
 - Compare against label
 - Queue newly reached trips
 - Output a journey if target is reached
- Continue until queue is empty
- Skip trips that cannot improve the currently best arrival time

Dagahad

nea	Reaci	Queue		
. 0	15	range	trip	# tr.
8 8 8	16	3–11	2871	1
8	17	0–19	512	2
	 50	19–88	1523	2
0	56 57	13–15	43	2
Ū		4-53	44	2
14	218			
31 17 17	456 457 458			

line	index	footpath
3	8	
8	17	4 min
27	3	4 min

Arrival at 9:28 after 1 transfer